
 

 

Dirac theory in Euclidean 3D Geometric algebra (Cl3) 
 

Miroslav Josipović, Zagreb, Croatia 

 

Abstract 

 

This article is intended as an addition to the book [10], since, in the first 

edition, I was double minded whether to introduce the Dirac theory for young 

students. Now I am quite sure that it should be introduced, and for several reasons. 

First, the Cl3 formulation of the Dirac theory is simple and the derivation of the 

Dirac’s formula is straightforward. Second, it is relatively easy to show that gamma 

matrices are not the only possibility in linearizing the Klein-Gordon equation (we 

even do not need it in Cl3). Finally, the fact that it is possible to use the same 

mathematical (3D) formalism for classical mechanics, the special (and general) theory 

of relativity (without Minkowski space), electromagnetism, and both non-relativistic 

and relativistic quantum mechanics (without the imaginary unit) is remarkable. Not to 

mention the geometric clarity and possibilities of unifications, as well as 

generalizations. Moreover, all this without coordinates, matrices, tensors… In 

addition, we should appreciate the new concept of oriented numbers and simple fact 

that Cl3 contains complex, hypercomplex, and dual numbers, quaternions, spinors, 

etc. Geometric algebra of 3D Euclidean vector space (Cl3) is truly rich in structure 

and the question remains as to how physics would have developed had the ideas of 

Grassmann and Clifford been accepted in the late nineteenth and early twentieth 

centuries.  

In the text, APS (algebra of physical space) and Cl3 (Cl is due to Clifford) 

mean the same: geometric algebra of 3D Euclidean vector space. The abbreviation 

Q/C is for quantum/classical. 
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Problems with the Klein-Gordon equation 

 

We are using ˆ
i  for the Pauli matrices, ie  for orthonormal vectors in 3D Euclidean 

vector space (sometimes we also use i ), and 1 2 3j e e e  for the commutative unit 

pseudoscalar in Cl3. 

Trying to solve the problems of the Klein-Gordon equation (see [8]), Dirac 

started with the equation 

     , ,k

t ki t m t      x x , k = 1, 2, 3, 

for  , Nt x , 
k  and   are supposed to be N N  matrices over a field (it will 

be ). In order for this equation to be squared to the Klein-Gordon equation, we use a 

kind of conjugation and get (see [13]) 

2j k k j ij

NI      ,    (1) 



 

 

0j j    , 2

NI  .    (2) 

where NI  is the identity matrix. The smallest number N  for which the above 

relations are satisfied is 4N   and this is how Dirac came to his gamma-matrices. 

Why matrices? Well, because we need non-commutative quantities here. 

However, quaternions are also non-commutative and we can represent the quaternion 

units by ˆ
ki , 1,2,3k    (see [7] and the Sect. 1.9.10 in [10]). Moreover, what about 

vectors? Obviously, the relation (1) could be satisfied by the Pauli matrices or 

orthonormal vectors from Cl3. Unfortunately, people like to say things like “3D 

vector space is not relativistic enough”. In fact, it is intrinsically relativistic; the 

problem is how to multiply vectors. A multivector in Cl3 can be written in the form 

a e jb e 

  , 0,1,2,3  , 0 1e  , , a b   , 

 where both a
 and b

 satisfy the Lorentz transformations (see the Sect. 5.4.7 in 

[10]). The argument against the Pauli matrices is that the relation (2) cannot be 

satisfied if 
k  and   are 3D matrices, which is true. However, what if 

k  are the 

Pauli matrices and   is – something different? 

In addition to the 4 4  gamma-matrices, Dirac introduced spinors 
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where iz  are complex numbers. Note that all information in   can also be 

organized in a 2 2  complex matrix, like 

1 2

3 4

z z
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, 

which, contrary to  , is possibly invertible (it could be important, see[13]). 

Now, what if the quantity   in   is not a 2 2  complex matrix, but a 

matrix operation (operator). Then, instead of  , we can write    , which, 

instead of (2), gives new conditions (for the details, see [13]) 

    0j j       , 

      
2

i i i        . 

The operation     has several properties (see [13]) 

   j j I     , 

       1 I       , 

   i i     . 

 
* *

* *

a b d c
I

c d b a
 

  
   

   
, 

  3

1 0
ˆ

0 1
I 

 
  

 
, 



 

 

and, finally 
* *

* *

a b d c

c d b a


  
   

    
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Note that we can also write 

   † 3
ˆadj    , 

where  †adj   denotes the classical adjoint (adjugate) of †  and †  denotes a 

Hermitian conjugation. As an example, for 2 2  matrices we have 

adj
a b d b

c d c a

   
   

   
,  

1adjA A det A (with the conditions of existence). 

If we write (   and    are columns of two complex numbers) 

 *

2
ˆ   i     , 

it fallows that 

   *

2
ˆ    i      

and 

 k

t ki m      , 

 k

t ki m      . 

We have left and right spinors   and   , combined in the form of a square matrix. 

Here is a citation from [13]: 

“But, is there any advantage in using 2 × 2 complex matrices instead of 4 -valued 

column matrices in Dirac theory? We believe that there is, and we classify the 

advantages as computational, didactical and epistemological. The computational 

advantages are seen, for instance, when we notice that, in many cases, a square matrix 

possesses an inverse matrix, whereas a column matrix does not. The existence of an 

inverse element makes it easier to manipulate some mathematical expressions, and the 

proof of Fierz identities (see [13], A/N) is a very good example of this computational 

advantage. The didactical advantages are manifested by the fact that the same 

mathematical structure that can be used to study mechanics, in particular rigid body 

kinematics (in terms of the Cayley - Klein parameters), and electromagnetism can be 

used to study quantum mechanics. In other words, there is no need for an additional 

mathematical structure in relativistic quantum mechanics besides the one already used 

in classical mechanics and electromagnetism. In order to grasp the epistemological 

advantages, we must take into account the fact that the 2 × 2 complex matrix algebra 

is in fact a representation of an algebra constructed from entities with a clear 

geometrical meaning. This is the APS. The elements of this algebra are the 

representatives of geometrical objects that are oriented line segments, oriented plane 

fragments, and oriented volumes. For this reason, the original denomination given by 

Clifford for this mathematical structure was geometric algebra.” 

 

 



 

 

Dirac’s equation in Cl3 
 

Here we use the units 1 , 1c  , the nabla operator  
3
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and the paravectors 

t    , A  A , 

where A  is EM potential. 

Momentum in Cl3 formulation is (see [10]) 
†Λ Λp m mu  , 

where Λ  is an eigenspinor (a special Lorentz rotor that transforms a particle from the 

rest frame to the lab frame), ΛΛ=1 , and u  is the proper velocity, 1uu  . In the rest 

frame, we have 0 1u  , 0p m , and in the lab frame 
†Λ Λp m mu  . 

It fallows that 
†Λ Λ Λp p m  ,   (3) 

and we can add 

Λ Λp m  , 

for negative energies (see the Literature). The relation (3) is the classical version of 

the Dirac’s equation. The eigenspinors technique is simple and powerful. Current 

density associated with the rest-frame (real) distribution  x  is 

    † †=Λ ΛJ x x  ,  

which gives Dirac’s spinors in the form  

Λ  , 

which is also a solution of (3), so we have the equation  

p m  . 

Thus, Dirac’s spinors are just Lorentz rotors with dilatation (for the comparison, see 

the Sect. 2.10.6 in [10]). 

The proper velocity of the particle can also be written in the form 

† 2Λ Λj ju p m e e B    ,   

where B  is a boost, and   is Yvon-Takabayasi  angle (see [11]). Note that for a 

complex phase we have    exp expj j    and we still have the condition  

1uu  , because j  commutes with all elements of Cl3.  

The differential form of the standard formulation of Dirac equation is obtained 

by replacing the conjugate momentum p eA   by j  . In the paravector 

formulation,  p eA   is replaced by 3j e  (we move to the quantum side of the 

Q/C interface), which gives 

3p j e eA m        

or 

3j e eA m     . 



 

 

Under a Lorentz transformation L , we have 

L L   , L  ,  A L AL , 

( 3e  is invariant because it always represents the spin in the rest frame of the electron). 

From this, the Lorentz covariance fallows easily (see [11]).  

Here is a useful relation between standard and Cl3 spinors (see the Sect. 2.10 

in [10]): 
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. 

The reader can show (or see in [11]) that the Cl3 formulation is equivalent to the 

standard formulation. Hint: use the projectors 

 31 / 2P e   . 

A simple solution 
 

For 0A , we have p const , therefore, a possible solution for 3j e m    

is 

     3S
0 expx j px e   , 

where 
S

px  is just m  (  is the proper time, see [3]). We see that  

     30 expx m je        (4) 

describes a rapid rotation at the frequency 2m  , which is called the Zitter-

bewegung frequency, about the direction 3e  in the particle frame. For the details, see 

[11], where you can find about positive and negative solutions, standing waves, 

Zitterbewegung frequency, Klein paradox, the basic symmetry transformations (CPT, 

see also [13]),  the Schrödinger equation, complex APS (i.e. Cl3) formulation of the 

Dirac theory (see also [6]), etc. 

The reader can investigate some quantities that are useful in applications. 

Defining 

2 2    , tan





 , 

we have 

 expj j       , complex scalar; 

†J  , the current, a paravector; 

3S je  , a complex vector; 

†

3s e  , the spin distribution, a paravector; 

 exp / 2j L   , 1LL  . 

The reader may try to apply these quantities to the solution (4). 

The reader may also be interested in STA, a 4D geometric algebra with the 

signature (1,3). However, note that STA does not fulfill the simple idea about the 

same formalism for many physical theories. Not to mention that we need just the even 



 

 

part of the STA. Possible advantages of STA for the Dirac theory could be fulfilled by 

CAPS (a complex version of APS, i.e. Cl3, see [6]). However, note that Cl3 is the 

minimal algebra with the highest possibilities in describing the physical theories, and 

with clear geometric interpretation at every step of calculations. I recommend the 

reader to master Cl3 and the main physical theories in Cl3 first. Connections between 

the theories and similarities in mathematical formulations are breathtaking.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A multivector in 3D: 

the disk represents an oriented bivector,  

the transparent sphere represents a 

pseudoscalar, which orientation is given 

by a color. 

 

This simple geometric object is enough to 

formulate all main physical theories. 
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