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Abstract

An accurate model for the lift force on a baseball is important for several applications.

The precision of previous models has been limited by the use of small samples of mea-

surements acquired in controlled experiments. The increased prevalence of ball-tracking

radar systems provides an abundant source of data for modeling, but the effective use of

these data requires overcoming several challenges. We develop a new model that uses this

radar data and is constrained by the physical principles and measurements derived from the

controlled experiments. The modeling process accounts for the uncertainty in different data

sources while exploiting the size and diversity of the radar measurements to mitigate the

effects of systematic biases, outliers, and the lack of geometric information that is typically

available in controlled experiments. Fine-grained weather data is associated with each radar

measurement to enable compensation for the local air density. We show that the new model

is accurate enough to capture changes in lift due to small changes in surface roughness which

could not be discerned by previous models.
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1 Introduction

Baseball is a multibillion dollar industry that is popular in many countries around the

world. The mechanics governing many facets of the sport can be represented using physical

models [1] [11]. Of particular interest is the flight of a pitch which is a complicated function

of the forces on the ball when it leaves a pitcher’s hand and the weather conditions. Small

changes in pitch trajectory can significantly impact results which underscores the need

for accurate models in processes for pitcher evaluation and development [14]. Detailed

physical models for pitch trajectories can also support several other applications including

the monitoring of sensor calibration systems and properties of the baseball itself.

Key to understanding pitch trajectories is an accurate model for the dependence of

the lift force on the velocity and spin of the ball [21]. Given the complex geometry of a

baseball with a surface composed of leather pieces that are stitched together to generate a

pattern of raised seams, this dependence cannot be derived from first principles but must be

measured. The relevant parameters are easiest to measure in controlled laboratory settings

using wind tunnels [5][8][34], multi-camera high-speed video systems [2][16][22][26], or light

gates [17] [18]. Each of these experiments, however, has generated measurements for fewer

than 200 pitches which limits the accuracy of the recovered models.

In recent years, an array of sensors [13] has been deployed that capture several terabytes

of data during each Major League Baseball (MLB) game. The Trackman (TM) radar, for

example, has captured data for more than 700,000 pitches per year since being introduced

as MLB’s primary pitch-tracking technology in 2017. The availability of large data sets

provides important benefits for modeling especially in the ability to reduce the variance

of estimators [28]. But there are also significant challenges. Most MLB games are played

outdoors where the weather conditions are uncontrolled. The TM measurements are con-

taminated by outliers and there are systematic biases in sensor output from site-to-site. In

addition, the TM system does not generate the full set of parameters that can be measured

in the laboratory.

The effective use of data acquired during MLB games requires that constraints and

sources of uncertainty are carefully incorporated into the modeling process. To this end,
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the principles and measurements generated by the previous laboratory experiments are used

to frame the integration of the TM data into new models. Systematic biases due to pitchers,

pitch types, and site calibration differences are accounted for by partitioning the TM data

into pitch groups. A robust estimation process is used to mitigate the effect of outliers.

A final model is constructed using an optimization method that considers the uncertainty

in different measurement sources and leverages the size and diversity of the radar data to

overcome the lack of an explicit spin vector measurement. To compensate for variation

in weather conditions, we augment the TM data with measurements from weather sensors

near the time and location of each pitch. The new approach provides the ability to examine

dependence on variables with effects that can be masked by the uncertainty in less precise

models. We show that the new model for lift force is sensitive to small changes in surface

roughness due to variation in seam height. These effects are important in the quantification

of pitcher performance [14], but have not been detectable by models derived from small

samples in controlled experiments [3][18][19].

2 Baseball Aerodynamics

2.1 The Flight of a Baseball

A baseball traveling through the air with a translational velocity vector v is acted on by

three forces as shown in Figure 1. Gravity pulls the ball down, drag acts opposite the

velocity direction, and the Magnus force [7] causes the ball to change direction due to spin.

The Magnus force depends on the spin vector ω which has a magnitude defined by how

fast the ball is spinning, e.g. 2400 revolutions per minute (rpm), and a direction defined by

the spin axis and the right-hand rule as shown in Figure 2. The magnitude of the Magnus

force [26] is given by

|FM | = 1

2
ρACL|v|2 (1)

where ρ is the air density, A is the ball cross-sectional area, and CL is the dimensionless lift

coefficient. If we define the velocity and spin vector directions by the unit vectors v̂ = v/|v|
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and ω̂ = ω/|ω|, then the Magnus force is in the direction of ω̂ × v̂.

Figure 1: Forces on a spinning baseball in flight

Figure 2: Spin vector ω

The spin vector ω can be written as

ω = ω‖ + ω⊥ (2)

where ω‖ is parallel to v̂ and ω⊥ is perpendicular to v̂. ω‖ is known as the gyro component

of the spin and does not contribute to the Magnus force [27]. The magnitude of ω⊥ is given

by

|ω⊥| = |ω||ω̂ × v̂|. (3)
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The dimensionless spin parameter S [21] plays an important role in determining CL and is

defined as the ratio of the speed of the ball surface relative to its center to the translational

speed of the ball center

S =
2πR|ω|
|v| (4)

where R is the ball radius.

2.2 The Relationship Between CL and S

Watts and Bahill [33] speculated in 1990 that the lift coefficient CL depends on the ratio

|ω̂× v̂| of |ω⊥| to |ω| and Jinji and Sakurai [16] later confirmed this using an experiment with

measurements for 168 pitches using a set of synchronized video cameras. Nagami et al. [22]

used a similar setup to make measurements for 75 pitches and to show experimentally that

CL = f(S)|ω̂ × v̂| (5)

where f(S) is an increasing function of S with f(0) = 0. They also showed that this conclu-

sion was consistent with previous video-based optical measurements made by Nathan [26]

(22 pitches) and Alaways and Hubbard [2] (17 pitches) for the special case where |ω̂× v̂| = 1.

The studies reported in [2] and [26] assigned uncertainties to the measurements using meth-

ods described in the articles.

A frequently used approximation to f(S) was presented in [11] that is based on a fit of

experimental data from several sources including [2][16][26]. This data, however, is based

on a relatively small number of pitch measurements as detailed above. These measurements

also have significant scatter, particularly in the region 0.1 ≤ S ≤ 0.3 which is most relevant

for MLB pitches. In this work we consider estimating the function f(S) by combining these

optical measurements with a large set of radar measurements collected during MLB games.

The function f(S) is important for several applications that we will discuss in Section 6.
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3 Radar Measurements

3.1 Pitch Data

The Trackman (TM) phased-array Doppler radar operates in the X-band at approximately

10.5 GHz and has been used to measure 3-D pitch trajectories and spin information for over

two million pitches thrown in MLB games between 2017 and 2019. The TM system gener-

ates a nine-parameter model for each pitch in terms of the three-dimensional acceleration

vector a = (ax, ay, az) which is assumed constant over the pitch trajectory and the three-

dimensional velocity and position vectors for a point on the trajectory. These parameters

can be used to recover the full path of the pitch from the measured release point using the

equations of motion. The system also estimates the magnitude of the spin vector |ω| from
the distribution of Doppler shifts.

3.2 Estimating CL and S

The TM radar data can be used to estimate the lift coefficient CL and the spin parameter

S for each pitch using equations (1) and (4). Since both CL and S depend on the velocity

magnitude |v| which is not constant, we use the mean velocity magnitude |vµ| over each

pitch trajectory to construct the estimates. A similar approach has been used in previous

studies [24]. The acceleration vector recovered by the TM system can be represented by

a = aD + aM + aG (6)

where aD, aM , and aG are the accelerations corresponding to the drag, Magnus, and grav-

itational forces depicted in Figure 1. Since the drag force is parallel and opposite to the

velocity direction and the Magnus force is perpendicular to the velocity direction, we can

compute the magnitude of aD as the projection of a−aG onto the velocity direction so that

aD = − [(a− aG) · v̂µ] v̂µ (7)

where v̂µ = vµ/|vµ|. Therefore the Magnus acceleration is given by
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aM = a− aD − aG = a + [(a− aG) · v̂µ] v̂µ − aG. (8)

and using equation (1) the lift coefficient for the pitch trajectory can be estimated by

CL =
2m|aM |
ρA|vµ|2

(9)

where m is the mass of the baseball and Newton’s second law is used to relate the Magnus

force FM and the Magnus acceleration aM . Equation (4) can be used to compute the spin

parameter for the trajectory using

S =
2πR|ω|
|vµ|

· (10)

Each quantity on the right-hand side of equations (9) and (10) is known or can be recovered

from the TM measurements except for the air density ρ.

4 Computing Air Density

The air density ρ can be computed from the altitude, temperature, relative humidity, and

barometric pressure. MLB provides the temperature for the start of each game and infor-

mation on whether a retractable roof is open or closed. We obtained additional weather

information by identifying the three closest weather stations that report on Weather Un-

derground (wunderground.com) for each MLB stadium. Using the time stamps provided

by the TM system, we determined the closest station that reported within thirty minutes

of each pitch. For pitches with multiple weather reports from the closest station within this

time window, we associated the closest weather data in time. For domed stadiums or cases

where a retractable roof was closed, the air density was computed using the MLB game

temperature, a relative humidity of 50 percent, and the barometric pressure retrieved from

a nearby weather station as described above. The altitude for each MLB stadium was ob-

tained from the Seamheads Ballparks Database (seamheads.com). We used this approach

to assign weather data to the 2.164 million pitches analyzed in this study over the 2017

to 2019 MLB seasons. The average time difference between pitches and weather data was
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14.06 minutes and the average distance between the stadium and the weather station used

for the measurement was 1.93 km.

The air density ρ associated with each pitch was computed in units of kg/m3 using the

model from [6] given by

ρ =
(1.2929 ∗ 273.0)(P − 0.01V H)

760.0(T + 273.0)
(11)

where H is relative humidity in percent and T is temperature in degrees Celsius. P is the

absolute atmospheric air pressure given by

P = b ∗ exp [(−gME)/(RT + 273.15)] (12)

where b is the barometric pressure in millimeters of mercury, g is the earth’s gravitational

acceleration in m/sec2, M is the molecular mass of air in kg/mole, E is the elevation in

meters, and R is the universal gas constant in joules/(◦ K mole). V is the saturation vapor

pressure in millimeters of mercury which is computed using the model in [9] given by

V = 4.5841 ∗ exp
[
(18.687− T/234.5)T

257.14T

]
· (13)

The estimated value of ρ obtained using equations (11), (12), and (13) is used in (9) to

complete the estimate of CL.

5 Recovering f(S)

5.1 Sources of Scatter in (S, CL) Data

The goal of this work is to find the function f(S) that defines the mapping CL = f(S)|ω̂×v̂|.
We showed in Sections 3 and 4 that by combining TM measurements and weather data we

can estimate S andCL for each pitch. In contrast to the video setups described in Section 2.2,

however, the TM system does not allow direct measurement of |ω̂ × v̂|. To alleviate this

difficulty, we can consider using the domain knowledge that |ω̂× v̂| is often close to one for

fastballs. If this were exactly true, then we would expect a scatterplot of CL versus S for

fastballs to generate a curve that gives the function f(S). Figure 3 is a scatterplot of CL
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versus S for pitches classified as four-seam fastballs in 2017 along with the best-fit line. We

see that the trend of the relationship is increasing as expected, but that there is significant

scatter in the values of CL for a given value of S.

Figure 3: CL versus S for four-seam fastballs, 2017

There are several sources that contribute to the scatter in Figure 3. We examine a few

of these sources in more detail in Figure 4 which plots the S and CL values for four-seam

fastballs thrown by pitcher Ervin Santana in 2017. The pitches in blue were thrown at

Santana’s home ballpark, Target Field in Minnesota, and the pitches in red were thrown at

twelve different ballparks when his team was not playing at home. We see that there is a

significant positive bias in the CL values for Target Field which can be traced to calibration

issues with the TM system at that site [31]. If we restrict the analysis to either the Target

Field games (blue points) or the away games (red points), we see that there is still substantial

scatter from pitch-to-pitch which includes multiple outliers at a significant distance from

the center of the distributions. This scatter is due to natural variation in pitches, variation

in the physical properties of the baseball [4], sensor noise, and pitch classification errors.
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Figure 4: CL versus S for Ervin Santana, Four-Seam Fastball, 2017

5.2 Robust Estimates and Uncertainty

A specific pitch type thrown by a particular pitcher will have unique velocity and spin

characteristics which can change from year-to-year as a pitcher ages and makes adjustments.

Thus, we generate a set of (S, CL) points from the TM data by considering separately pitches

corresponding to a specific pitcher, pitch type, and year. We reduce the effects of ballpark

bias by only considering pitches thrown by a pitcher in away games. After imposing this

constraint, we identify all (pitcher, pitch type, year) pitch groups, e.g. (Ervin Santana,

Four-seam fastball, 2017), which include at least 200 pitches. There were a total of 1678 of

these groups in our data set which were nearly equally distributed over the three years with

549 in 2017, 565 in 2018, and 564 in 2019.

For a given pitch group, we reduce the measurements to a single estimate of (S, CL).

Since the data is contaminated by outliers, we use robust estimates based on the sample

median [15]. Figure 5 demonstrates the action of the sample median as compared to the

standard sample mean. This figure plots the histogram of the CL values for the 294 pitches

in the (CC Sabathia, Sinker, 2017) group after restricting to away games. We see that the
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distribution includes outliers to the right which contribute to the mean of 0.191 exceeding

the median of 0.178. To minimize the impact of outliers, the (S, CL) estimate for each pitch

group is given by (Ŝ, ĈL) where Ŝ is the sample median of the group S values and ĈL is the

sample median of the group CL values.
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Figure 5: Distribution of CL for CC Sabathia, sinker, 2017, away games

For a sample of size n derived from a distribution with probability density p(x) and

median m, the uncertainty in the sample median m̂ can be approximated by the asymptotic

variance of the estimator [29] which is given by

Var(m̂) =
1

4np2(m)
· (14)

For a computed m̂, we can approximate the right-hand side of equation (14) by evaluating

a kernel density estimate [32] for p(x) at the sample median m̂. Figure 6 illustrates this

process for the ĈL estimate for two pitch groups. The first group is (Matt Boyd, Changeup,

2017) with a size of 244 pitches and a sample median of ĈL1 = 0.191. The second group is

(Marco Estrada, Four-seam fastball, 2017) with a size of 908 pitches and a sample median

of ĈL2 = 0.264. The kernel density estimates p̂1(CL) and p̂2(CL) for these two groups are
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plotted in Figure 6 and yield values of p̂1(ĈL1) = 5.793 and p̂2(ĈL2) = 17.975. Equation (14)

then yields a standard deviation for ĈL1 of 1/(2 ∗
√
244 ∗ 5.793) = 0.00553 and for ĈL2 of

1/(2 ∗
√
908 ∗ 17.975) = 0.00092. Thus, Group 2 has a significantly smaller uncertainty due

to both its larger sample size and its more concentrated distribution.
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17.5
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Boyd Changeup, Away Games 2017
Estrada Four-Seam FB, Away Games 2017

Figure 6: Kernel density estimates for CL, Boyd and Estrada pitch groups, 2017

5.3 Combining Radar and Optical Measurements

Figure 7 is a scatterplot of the 1678 (Ŝ, ĈL) points generated using the method described in

the previous section. We see that there is still significant variation in CL for a given S. Since

CL depends on both S and |ω̂ × v̂|, this variation is due largely to differences in |ω̂ × v̂| for
different pitch groups. If we assume that there are groups for which |ω̂× v̂| = 1, then we can

estimate f(S) by finding a curve that is an upper bound to the (Ŝ, ĈL) points. To improve

the accuracy of the estimate, we can also consider the use of the optical video measurements

with assigned uncertainties [2][26] that were described in Section 2.2. In addition to having

known values for |ω̂× v̂|, the optical data also includes measurements over a wider range of

S values.
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Figure 7: ĈL versus Ŝ for 1678 TM pitch groups over 2017 to 2019

Let (S
O
(i), C

LO
(i)) for 1 ≤ i ≤ NO denote the set of (S, CL) points estimated using the

optical video-based techniques and let σ
O
(i) be the standard deviation of each C

LO
(i). Let

(S
T
(i), C

LT
(i)) for 1 ≤ i ≤ NT denote the set of (Ŝ, ĈL) points recovered from the TM data

and let σ
T
(i) be the standard deviation of each C

LT
(i) as computed using the approximation

to equation (14) described in Section 5.2. Given a set of possible approximating functions

f(S), we define the optimizing function as the one that minimizes the sum of the absolute

errors weighted by the standard deviations of the measurements

E =
NO∑

i=1

(
E

O
(i)

σ
O
(i)

)
+

NT∑

i=1

(
E

T
(i)

σ
T
(i)

)
(15)

where

E
O
(i) = |C

LO
(i)− f(S

O
(i))| (16)

and
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E
T
(i) =





C
LT
(i)− f(S

T
(i)) if C

LT
(i) ≥ f(S

T
(i))

0 if C
LT
(i) < f(S

T
(i))

(17)

Since the optical measurements were generated for the |ω̂ × v̂| = 1 configuration, the error

E
O
(i) for each point (S

O
(i), C

LO
(i)) is considered in E. Since |ω̂ × v̂| may be less than one

for the radar measurements, the error E
T
(i) in equation (17) only contributes to E if a point

(S
T
(i), C

LT
(i)) is above the approximating function value f(S

T
(i)).

We applied this optimization method to the TM data (NT = 1678) in combination with

the optical video data (NO = 39) from Alaways and Hubbard [2] and Nathan [26]. After

considering a range of increasing parametric functions, we found that a Hill function of the

form

CL(S) =
ASn

an + Sn
(18)

with parameters A = 0.370, n = 1.651, and a = 0.137 gave the best fit using the error

measure in equation (15). Figure 8 plots this new model f̂(S) along with the TM data and

the optical video data. The Previous Model curve in the figure was presented in [11] as a

representation for several sets of optical measurements [26] and is given by

CL(S) =
S

2.32S + 0.4
· (19)

We see that there are significant differences between the models represented by equa-

tions (18) and (19) particularly in the range 0.20 ≤ S ≤ 0.35 which is important for

MLB pitches.

5.4 Sensitivity to Additional Variables: Surface Roughness

We have seen that the lift coefficient CL has a strong dependence on the spin parameter S.

Watts and Ferrer [34] suggested in 1987 that CL may also depend on the surface roughness.

For a baseball, surface roughness is often defined in terms of the seam height. Laboratory

measurements [17] reported in 2011 confirmed the Watts/Ferrer hypothesis by demonstrat-

ing that the high-seamed collegiate ball had a lift coefficient that was measurably greater
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Figure 8: New model f̂(S) with points recovered from TM and optical systems

than for the lower-seamed MLB ball. Processes have been developed to accurately measure

seam height [19] and a more recent laboratory study [18] found no discernible difference in

CL across seam height variation from 0.034 inches to 0.046 inches. Other experiments [3] [19]

that also considered fewer than 100 measurements were similarly unable to detect depen-

dence of CL on seam height. Over the three years in our current study, the average seam

height for the MLB ball decreased from 0.0329 inches in 2017 to 0.0305 inches in 2019 with

significant variation in seam height during each year [4]. We can ask whether the process

for modeling CL developed in this work is sensitive to these small changes in average seam

height.

Figure 9 plots the twenty (Ŝ, ĈL) points in Figure 8 with the largest ratios ĈL/f̂(Ŝ) for

each of the three years. These are the points with the highest estimated lift coefficient ĈL

relative to the optimizing function value f̂(Ŝ). We see that for a fixed S, the 2017 points

tend to have the largest ĈL values which is consistent with 2017 having the largest average

seam height. If we separately find a model of the form Kf̂(S) for each year that minimizes

E in equation (15) by considering only the measurements in the TM range (0.1 ≤ S ≤ 0.35),

we find K2017 = 1.000, K2018 = 0.970, and K2019 = 0.968. Figure 10 is a scatterplot of K

versus average seam height for each year and shows that the model can account for increases
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in CL due to small increases in seam height.
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Figure 9: (Ŝ, ĈL) points with the largest ĈL/f̂(Ŝ) for each year
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Figure 10: Lift coefficient dependence on average seam height

All other things being equal, we would expect that a decrease in CL would lead to

a corresponding decrease in pitch movement. Figure 11 plots the average length of the

(pfx x,pfx z) movement vector over all pitches for the three seasons versus average seam

height and we see a trend that is similar to the trend in Figure 10. We observe that even

these relatively small changes in movement can have a meaningful impact on the effectiveness

of pitches [14].
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Figure 11: Pitch movement dependence on average seam height

6 Applications

In this section, we present applications that make use of the recovered f̂(S) function for

monitoring TM system calibration and for supporting pitcher evaluation and development.

6.1 Monitoring Sensor Calibration

The function f̂(S) represents the maximum value of the lift coefficient CL for spin parame-

ter S. Since CL and S can be estimated from the TM data for each pitch using the method

described in Section 3.2, we can use this function to monitor the accuracy of the TM cali-

bration. For this purpose, we consider the distribution of the ratio CL/f̂(S) where CL and

S are estimated for each pitch in a game. As an example, Figure 12 plots the distribution of

this ratio for the TM measurements for an MLB game played at SunTrust Park in Atlanta

on 11 June 2017. This is a fairly typical distribution with a mean of 0.72 and a maximum

of 1.4 with a fraction of the ratios exceeding one due to the sources of scatter described in

Section 5.1. Figure 13 plots the distribution of ratios for the next MLB game played at

SunTrust Park which occurred on 16 June 2017. We see that the distribution is significantly

shifted to the right due to calibration errors with a mean of 1.37 and a number of ratios
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exceeding 2.0. Given the large disparity between the distributions in Figures 12 and 13,

sensor calibration errors could be rapidly detected in real-time using f̂(S).
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Figure 12: Distribution of CL/f̂(S) for SunTrust Park, 11 June 2017
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Figure 13: Distribution of CL/f̂(S) for SunTrust Park, 16 June 2017
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6.2 Recovering the Spin Vector

The function f̂(S) is the link that enables the spin vector ω to be derived from TM data [24].

This vector and the associated active spin fraction [23] are important tools for pitcher

development and evaluation [20]. The active spin fraction |ω⊥|/|ω| measures the proportion

of the spin vector magnitude that is transferred to the Magnus force FM . The spin vector ω,

more generally, determines the magnitude and direction of FM as detailed in Section 2. The

Magnus force causes a change in a pitch’s location in a predefined plane which is described

by a movement vector [25]. The direction and magnitude of the movement vector have been

shown to be key determinants of a pitch’s effectiveness [14]. Since a pitcher controls the spin

vector with the orientation of his hand and fingers when he releases a pitch, the availability

of measurements of the spin vector under game conditions can allow for pitcher mechanics

to be monitored and can streamline the process of refining pitches to achieve desired results.

We briefly summarize the use of the estimated f̂(S) function to recover the active spin

fraction and the spin vector. The active spin fraction is defined by

A =
|ω⊥|
|ω| (20)

which simplifies to A = |ω̂ × v̂| using equation (3). Since CL and S can be estimated from

TM data for a pitch as described in Section 3.2, A can be estimated using equation (5) by

Â =
CL

f̂(S)
· (21)

In a similar way, f̂(S) can be used to estimate the spin vector ω. As described in Section 2.1,

the ω‖ component of the spin vector ω is parallel to v̂ and can be expressed as

ω‖ = |ω‖|v̂ (22)

where since ω‖ and ω⊥ are perpendicular we can write

ω‖ =
√
|ω|2 − |ω⊥|2 v̂. (23)

Since the ω⊥ component of the spin vector is perpendicular to both the velocity vector v

and the Magnus acceleration aM , the direction of ω⊥ is specified by the unit vector v̂ × âM
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where âM = aM/|aM |. Using equation (3) we can write

ω⊥ = |ω||ω̂ × v̂|(v̂ × âM ) (24)

where the estimate Â from (21) can be used for |ω̂ × v̂| and the remaining quantities in

equations (23) and (24) are either directly measured by the TM radar or can be derived

as described in Section 3. This allows an estimate of ω to be generated by combining the

right-hand sides of equations (23) and (24) according to

ω = |ω||ω̂ × v̂| (v̂ × âM)±
√
|ω|2 − |ω⊥|2 v̂ (25)

where the ambiguous sign is positive for a right-handed pitcher and negative for a left-

handed pitcher. We observe that measurements derived from individual pitches can have

substantial scatter as discussed in Section 5.1. This suggests the use of robust estimates

over pitch groups and a careful consideration of uncertainty as described in Section 5.2 when

using f̂(S) to estimate A and ω.

7 Conclusion

The use of sensor systems to acquire measurements at sporting events has enabled a range

of new applications [10][13][35]. In this work, we have developed a new model for the

lift coefficient of a baseball as a function of the spin parameter. The model was built by

combining a large set of TM radar measurements made under uncontrolled game conditions

with smaller sets of optical measurements made under controlled laboratory conditions.

Fine-grained weather data was used to associate an air density estimate with each radar

measurement. The modeling process considers the uncertainty in the various measurements

and leverages the size and diversity of the radar data to address the presence of biases and

outliers. We show that the new model is sensitive to changes in the lift coefficient due to

small changes in seam height which cannot be distinguished by previous models. This level

of accuracy provides the potential for day-to-day monitoring of the physical properties of

the baseball which has become a topic of considerable interest [3] [4]. The new model may

also be helpful in quantifying other small effects that have been difficult to measure such
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as a side force that can occur if the ball is rougher on one side over a significant fraction of

its trajectory [12][33]. We have described several additional applications of this approach in

areas that include player evaluation [30] and development [20] as well as system calibration.

We expect that the new model can improve the utility of the TM radar system which is

currently used at many professional, college, and high school baseball facilities.
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