A Short Proof Pertaining to the Euler/De-Moivre Complex Identity

Aryamoy Mitra

Abstract

This paper is a succinct demonstration of an equality derived from the differentiated expressions corresponding to the relation between Euler's and De-Moivre's formulations of complex numbers.

A Short Proof Pertaining to the Euler-De Moivre Complex Identity

[Aryamoy Mitra]

This proof will demonstrate, that for any value of $\theta ;\left|e^{i \theta}=\frac{1}{2 \cos \theta-e^{i \theta}}\right|$
Phase 1: Consider the classic equivalency between De Moivre's and Euler's formulae

$$
\begin{gathered}
e^{i \theta}=\operatorname{cis} \theta \\
e^{i \theta}=\cos \theta+i \sin \theta \\
i \sin \theta=e^{i \theta}-\cos \theta \\
\boldsymbol{i}=\frac{\boldsymbol{e}^{i \theta}-\cos \theta}{\sin \theta}
\end{gathered}
$$

Let this equation be titled $E 1$.
Phase 2: Consider the same theorem; but differentiate the expression with respect to θ on both sides.

$$
\begin{gathered}
e^{i \theta}=\cos \theta+i \sin \theta \\
\frac{d\left[e^{i \theta}\right]}{d \theta}=\frac{d[\cos \theta+i \sin \theta]}{d \theta}
\end{gathered}
$$

Since $\frac{d\left[e^{i \theta}\right]}{d \theta}=i e^{i \theta}$ (derivatives of exponential functions);

$$
\begin{gathered}
i e^{i \theta}=\frac{d[\cos \theta+i \sin \theta]}{d \theta} \\
i e^{i \theta}=\frac{d[\cos \theta]}{d \theta}+\frac{d[i \sin \theta]}{d \theta} \\
i e^{i \theta}=\frac{d[\cos \theta]}{d \theta}+i \frac{d[\sin \theta]}{d \theta} \\
i e^{i \theta}=-\sin \theta+i \cos \theta \\
i e^{i \theta}-i \cos \theta=-\sin \theta
\end{gathered}
$$

If one were to multiply both sides by a factor equivalent to -1 ;

$$
\begin{gathered}
-1\left(i e^{i \theta}-i \cos \theta\right)=-1(-\sin \theta) \\
i \cos \theta-i e^{i \theta}=\sin \theta \\
i\left(\cos \theta-e^{i \theta}\right)=\sin \theta \\
\boldsymbol{i}=\frac{\sin \theta}{\boldsymbol{\operatorname { c o s }} \theta-\boldsymbol{e}^{i \theta}}
\end{gathered}
$$

Let this equation be titled $E 2$.

Phase 3: Equivalency;
Since E1 and E2 both describe i in terms of trigonometric functions, they can be equated with one another;

$$
i=\frac{e^{i \theta}-\cos \theta}{\sin \theta}=\frac{\sin \theta}{\cos \theta-e^{i \theta}}
$$

Cross-multiplying yields;

$$
\begin{gathered}
(\sin \theta)(\sin \theta)=\left(e^{i \theta}-\cos \theta\right)\left(\cos \theta-e^{i \theta}\right) \\
\sin ^{2} \theta=\left(e^{i \theta}-\cos \theta\right)\left(\cos \theta-e^{i \theta}\right) \\
\sin ^{2} \theta=\left(e^{i \theta}-\cos \theta\right)\left(\cos \theta-e^{i \theta}\right) \\
\sin ^{2} \theta=e^{i \theta} \cos \theta-\left(e^{i \theta}\right)^{2}-\cos ^{2} \theta+e^{i \theta} \cos \theta \\
\sin ^{2} \theta=2 e^{i \theta} \cos \theta-\left(e^{i \theta}\right)^{2}-\cos ^{2} \theta \\
\sin ^{2} \theta+\cos ^{2} \theta=2 e^{i \theta} \cos \theta-\left(e^{i \theta}\right)^{2}
\end{gathered}
$$

Since $\sin ^{2} \theta+\cos ^{2} \theta=1$;

$$
\begin{gathered}
2 e^{i \theta} \cos \theta-\left(e^{i \theta}\right)^{2}=1 \\
2 e^{i \theta} \cos \theta-\left(e^{i \theta}\right)^{2}=1 \\
e^{i \theta}\left(2 \cos \theta-e^{i \theta}\right)=1 \\
\boldsymbol{e}^{i \theta}=\frac{1}{2 \boldsymbol{c o s} \theta-\boldsymbol{e}^{i \theta}}
\end{gathered}
$$

On account of the original theorem, θ must be expressed in degrees in the term ' $2 \cos \theta^{\prime}$, and radians in the term $e^{i \theta}$;

Confirming this equality: For $\theta=\pi$ radians:

$$
\begin{gathered}
e^{i \theta}=e^{i \pi}=-1 \\
\frac{1}{2 \cos \theta-e^{i \theta}}=\frac{1}{2 \cos 180-e^{i \pi}} \\
=\frac{1}{-2-(-1)} \\
\frac{1}{-1}=-1=e^{i \pi}
\end{gathered}
$$

