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Abstract

This technical report, an adjunct to the paper [36], describes some problems in
AI research and how the SP System (meaning the SP Theory of Intelligence and its
realisation in the SP Computer Model) may help to solve them. It also contains a
fairly detailed outline of the SP System. Most of the problems considered in this
report are described by leading researchers in AI in interviews with science writer
Martin Ford, and presented in his book Architects of Intelligence. Problems and
their potential solutions that are described in this report are: the need for more
emphasis in research on the use of top-down strategies is met by the way SP has
been developed entirely within a top-down framework; the risk of accidents with self-
driving vehicles may be minimised via the theory of generalisation within the SP
System; the need for strong compositionality in the structure of knowledge is met by
processes within the SP Computer Model for unsupervised learning and the organi-
sation of knowledge; although commonsense reasoning and commonsense knowledge
are challenges for all theories of AI, the SP System has some promising features;
the SP programme of research is one of very few working to establishing the key
importance of information compression in AI research; Likewise, the SP programme
of research is one of relatively few AI-related research programmes attaching much
importance to the biological foundations of intelligence; the SP System lends weight
to ‘localist’ (as compared with ‘distributed’) views of how knowledge is stored in
the brain; compared with deep neural networks, the SP System offers much more
scope for adaptation and the representation of knowledge; reasons are given for why
the important subjects of motivations and emotions have not so far been considered
in the SP programme of research. Evidence in this report, and [36], suggests that
the SP System provides a relatively promising foundation for the development of
artificial general intelligence.

1 Introduction

This technical report, an adjunct to the paper [36], describes problems in artificial in-
telligence (AI) research and how the SP System may help to solve them. In Appendix
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A it also provides a fairly detailed outline of the SP System, meaning the SP Theory of
Intelligence and its realisation in the SP Computer Model.

Most of the problems in AI research considered in this report are described by leading
researchers in AI in interviews with science writer Martin Ford, and reported by him in
his book Architects of Intelligence [3]. Each problem in AI research is described in its
own section, with a description of how SP System may help to solve it.

As with [36]:

� This report performs an important task that is needed in any field of science: the
evaluation of problems in the field and how they may be solved.

� Information compression (IC), and more specifically, the powerful concept of SP-
multiple-alignment (SPMA) (Appendix A.4) are fundamental in the workings of
the SP System.

� IC with SPMAs provide much of the versatility of the system across diverse aspects
of intelligence (including several kinds of reasoning), the representation of several
kinds of knowledge, and the seamless integration of diverse aspects of intelligence
and diverse kinds of knowledge, in any combination (Appendix A.11).

� The paper [36] with this report, and the papers [34] and [35], are mutually support-
ive, demonstrating some of the potential of IC as a unifying principle in aspects
of intelligence and the representation and processing of knowledge. Accordingly,
they demonstrate the potential of IC as a means of making sense of complexity in
some of its manifestations.

� Despite their successes, deep neural networks (DNNs) have several shortcomings,
and many of these are the problems in AI research which are the subject of [36]
with this report.

� On the strength of evidence presented in [36] with this report, there is clear poten-
tial for the SP System to help solve all the problems which are the subject of the
two documents. The strengths and potential of the SP System in comparison with
alternatives suggest that the SP System provides a relatively promising foundation
for the development of artificial general intelligence.

1.1 Abbreviations

Since readers may wish to approach topics in various directions, all abbreviations are
defined in this section as well as where they are first used.

Each of the following items shows the section in this report where the abbreviation
is first used.

� Artificial General Intelligence (Section 2.1): ‘AGI’.

� Artificial intelligence (Section 1): ‘AI’.
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� Commonsense reasoning and commonsense knowledge (Section 5): ‘CSRK’.

� Deep Neural Network (Section 1): ‘DNN’.

� Human learning, perception, and cognition (Section 2): ‘HLPC’.

� Information compression (Section 1): ‘IC’.

� Information compression via the matching and unification of patterns (Appendix
A.3): ‘ICMUP’.

� SP-multiple-alignment (Section 1): ‘SPMA’.

It is intended that ‘SP’ should be treated as a name. Reasons for that name are
given in Appendix A.1.

2 The need to rebalance research towards top-down strate-
gies

“... one of [the] stepping stones [towards progress in AI] would be an AI
program that can really handle multiple, very different tasks. An AI program
that’s able to both do language and vision, it’s able to play board games and
cross the street, it’s able to walk and chew gum. Yes, that is a joke, but I
think it is important for AI to have the ability to do much more complex
things.” Oren Etzioni [3, p. 502].

This quote is, in effect, a call for a top-down strategy in AI research, developing a
theory or theories that can be applied to a range of phenomena, not just one or two
things in a narrow area. The potential advantages of that kind of strategy in terms of
the generality of theories, and their value in terms of Ockham’s razor, are described in
Section 2.1, below.

In this connection, the SP System performs well. Appendix A.1 describes how the
SP System has adopted a unique top-down strategy, attempting to simplify and integrate
observations and concepts across AI, mainstream computing, mathematics, and human
learning, perception, and cognition (HLPC. And it seems fair to say that development of
the SP System, with the powerful concept of SPMA at its core, has achieved a favourable
combination of conceptual Simplicity with descriptive and explanatory Power (ibid.).

2.1 Some advantages of a top-down strategy

Key features of a top-down strategy in research, and its potential benefits, are mainly
these:

1. Broad scope and Ockham’s razor. To achieve generality, the data from which a
theory is derived should have a broad reach, like the overarching goal of the SP
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programme of research, described in Appendix A.1, repeated at the beginning of
this main section: to simplify and integrate observations and concepts across AI,
mainstream computing, mathematics, and HLPC.

That broad scope is important for two reasons:

� In accordance with Ockham’s razor, a theory should be as Simple as possible
but, at the same time, it should retain as much as possible of the descriptive
and explanatory Power of the data from which it is derived (Appendix A.1).

� But those two measures are far more significant when they apply to a wide
range of phenomena than when they apply only to a small piece of data.

Of course, a top-down strategy does not guarantee that one will achieve a favourable
combination of Simplicity with Power. But it is a useful first step.

2. If you can’t solve a problem, enlarge it. A broad scope, as above, can be challenging,
but it can also make things easier. Thus President Eisenhower is reputed to have
said: “If you can’t solve a problem, enlarge it”, meaning that putting a problem in
a broader context may make it easier to solve. Good solutions to a problem may
be hard to see when the problem is viewed through a keyhole, but become visible
when the door is opened.

3. Micro-theories rarely generalise well. Apart from the potential value of ‘enlarging’ a
problem (point 2 above), and broad scope (point 1), a danger of adopting a narrow
scope is that any micro-theory or theories that one may develop for that narrow
area are unlikely to generalise well to a wider context—with correspondingly poor
results in terms of Simplicity and Power.

For reasons of that kind, Allen Newell, in his famous essay “You can’t play 20
questions with nature and win” [13], urges researchers in psychology to develop
theories with wide scope (pp. 284–289), and, accordingly, to work with “a genuine
slab of human behaviour” (p. 303). This kind of thinking is the basis of his book
Unified Theories of Cognition [14].

4. Bottom-up strategies and the fragmentation of research. The prevailing view about
how to reach artificial general intelligence (AGI) seems to be “... that we’ll get to
general intelligence step by step by solving one problem at a time.” expressed by
Ray Kurzweil [3, p. 234]. And much research in AI has been, and to a large extent
still is, working within this kind of bottom-up strategy: developing ideas in one
area, and then perhaps trying to generalise them to another area, and so on.

But it seems that in practice the research rarely gets beyond two areas, and, as a
consequence, there is much fragmentation of research (next).

2.2 The fragmentation of research

In connection with the fragmentation of research (point 4, above), John Kelly and Steve
Hamm (both of IBM) write:
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“Today, as scientists labor to create machine technologies to augment our
senses, there’s a strong tendency to view each sensory field in isolation as
specialists focus only on a single sensory capability. Experts in each sense
don’t read journals devoted to the others senses, and they don’t attend one
another’s conferences. Even within IBM, our specialists in different sensing
technologies don’t interact much.” [6, location 1004].

And Pamela McCorduck writes:

“The goals once articulated with debonair intellectual verve by AI pioneers
appeared unreachable ... Subfields broke off—vision, robotics, natural lan-
guage processing, machine learning, decision theory—to pursue singular goals
in solitary splendor, without reference to other kinds of intelligent behaviour.”
[11, p. 417]. Later, she writes of “the rough shattering of AI into subfields
... and these with their own sub-subfields—that would hardly have anything
to say to each other for years to come.” [11, p. 424]. She adds: “Worse,
for a variety of reasons, not all of them scientific, each subfield soon began
settling for smaller, more modest, and measurable advances, while the grand
vision held by AI’s founding fathers, a general machine intelligence, seemed
to contract into a negligible, probably impossible dream.” (ibid.).

Honorable attempts to overcome these problems are two main strands of work: 1)
research mentioned above inspired by Newell’s Unified Theories of Cognition [14]; and
2) research aiming to develop AGI (see, for example, [5]). But, while both strands of
research are welcome, it seems that neither of them have yet managed to escape properly
from the problems of bottom-up research.

That a top-down approach to the development of a fully-integrated AGI is proving
difficult is suggested by the following observations in the preface to the proceedings of a
recent conference on AGI research:

“Despite all the current enthusiasm in AI, the technologies involved still
represent no more than advanced versions of classic statistics and machine
learning. Behind the scenes, however, many breakthroughs are happen-
ing on multiple fronts: in unsupervised language and grammar learning,
deep-learning, generative adversarial methods, vision systems, reinforcement
learning, transfer learning, probabilistic programming, blockchain integra-
tion, causal networks, and many more.” [5, Preface, Location 51].

In other words, attempts to develop unified theories of cognition, or AGI, have, so far,
not overcome the fragmentation of AI that is so well described by Pamela McCorduck
[11, p. 417], quoted above. And it seems that part of the problem is the reluctance of
researchers to break free from a bottom-up strategy in research.
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2.3 Publish or perish

It appears that the main reason for this tendency for researchers to work in small fields
is because it is much easier to produce publishable results in a small field than it is with
something more ambitious. And the motive for working in an area where it is easy to
produce publishable results appears to be largely because of the relentless pressure to
“publish or perish”.

In connection with that pressure, the Yerkes–Dodson law suggests that too much
pressure can be counter-productive. By way of explanation, the Yerkes–Dodson curves
[37] relate ‘arousal’, on the x axis, to ‘performance’ on some task, on the y axis. If
‘arousal’ is seen to be the result of pressure to achieve results, performance on simple
tasks increases up to a plateau with increased pressure, but performance on complex
tasks improves up to a peak with increasing pressure but then declines back to ‘weak’
performance. Since academic and applied research are clearly complex tasks, the impli-
cation is clear: be careful not to apply too much pressure.

3 How to minimise the risk of accidents with self-driving
vehicles

“In the early versions of Google’s [driverless] car, ... the problem was that
every day, Google found themselves adding new rules. Perhaps they would
go into a traffic circle ... and there would be a little girl riding her bicycle
the wrong way around the traffic circle. They didn’t have a rule for that
circumstance. So, then they have to add a new one, and so on, and so on.”
Stuart J. Russell [3, p. 47].

“... the principal reason [for pessimism about the early introduction of driver-
less cars for all situations is] that if you’re talking about driving in a very
heavy metropolitan location like Manhattan or Mumbai, then the AI will face
a lot of unpredictability. It’s one thing to have a driverless car in Phoenix,
where the weather is good and the population is a lot less densely packed.
The problem in Manhattan is that anything goes at any moment, nobody is
particularly well-behaved and everybody is aggressive, the chance of having
unpredictable things occur is much higher.” Gary Marcus [3, p. 321].

A näıve approach to the avoidance of accidents with driverless cars would be to
specify stimulus-response pairs, where the stimulus would be a picture of the road in
front (perhaps including sounds), and the response would be a set of actions with the
steering wheel, brakes, and so on. Of course, driving is far too complex for anything like
that to be adequate.

It seems that, for any kind of driver, either human or artificial, some kind of gen-
eralisation from experience is essential [36, Section 5]. In that connection, people will
have the benefit of all their visual experience prior to their driving lessons, but the same
principles apply.
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If a person or a driverless car has learned to apply the brakes when a child runs out
in front, that learning should be indifferent to the multitude of images that may be seen:
the child may be fat or thin; tall or short; running, skipping, or jumping; in a skirt or
wearing trousers; facing towards the car or away from it; seen through rain or not; lit
by street lights or by the sun; and so on.

There may be some assistance from ‘generalisation via perception’ [36, Section 5.2]
but that in itself is unlikely to be sufficient. It seems that something like ‘generalisation
via unsupervised learning’ [36, Section 5.1] is also needed.

With those two kinds of generalisation, it seems possible that, with reasonable
amounts of driving experience across a range of driving conditions, the risk of accidents
may be minimised.

As with human drivers, there would still be errors made by the artificial driver—
because the generalisations would be probabilistic. But there is potential for the artificial
driver to do substantially better than most human drivers—by inheriting the experience
of many other artificial drivers, by not suffering from such things as falling asleep at the
wheel, and by not being tempted to consume alcohol before driving.

4 The need for strong compositionality in the structure of
knowledge

“By the end of the ’90s and through the early 2000s, neural networks were not
trendy, and very few groups were involved with them. I had a strong intuition
that by throwing out neural networks, we were throwing out something really
important.

“Part of that was because of something that we now call compositionality:
The ability of these systems to represent very rich information about the
data in a compositional way, where you compose many building blocks that
correspond to the neurons and the layers.” Yoshua Bengio [3, p. 25].

The neurons and layers of a DNN may be seen as building blocks for a concept, and
may thus be seen as an example of compositionality. But it seems that any such view
of the layers in a DNN is ‘weak’, with many exceptions to any strict compositionality.
In general, DNNs fail to capture the way in which we conceptualise a complex thing
like a car in terms of smaller things (engine, wheels, etc), and these in terms of still
smaller things (pistons, valves, etc), and so on. This kind of hierarchical representation
of concepts, which is prominent in the way people conceptualise things, we may call
‘strong’ compositionality.

It appears that in this connection, the SP System has a striking advantage compared
with DNNs. Any SP-pattern may contain SP-symbols that serve as references to other
SP-patterns, a mechanism which allows hierarchical structures to be built up through
as many levels as are required (([23, Section 9,1], [21, Section 6.4])).

This can be seen in Figure 3, where the SP-pattern ‘D Dp 4 t w o #D’ (which rep-
resents a word), and this connects with the SP-pattern ‘NP NPp D Dp #D N Np #N #NP’
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which which represents a noun phrase, and that connects with the SP-pattern ‘VP VPp

Vr #Vr #VP’ which represents a verb phrase, and that connects with the SP-pattern ‘S
Num ; NP #NP VP #VP #S’ which represents a sentence.

Apart from part-whole hierarchies, the SP System also lends itself to the represen-
tation and processing of class-inclusion hierarchies, as can be seen in [23, Figure 16,
Section 9.1].

5 The challenges of commonsense reasoning and common-
sense knowledge

“We don’t know how to build machines that have human-like common sense.
We can build machines that can have knowledge and information within
domains, but we don’t know how to do the kind of common sense we all take
for granted.” Cynthia Breazeal [3, p. 456].

“We still don’t have any real AI in the sense of the original vision of the
founders of the field, of what I think you might refer to as AGI—machines
that have that same kind of flexible, general-purpose, common sense intel-
ligence that every human uses to solve problems for themselves.” Joshua
Tenenbaum [3, p. 472].

“To achieve human-level performance in domains such as natural language
processing, vision, and robotics, basic knowledge of the commonsense world—
time, space, physical interactions, people, and so on—will be necessary.

“Although a few forms of commonsense reasoning, such as taxonomic rea-
soning and temporal reasoning are well understood, progress has been slow.”
[2, Key insights].

Although ‘commonsense reasoning’ (CSR) is a kind of reasoning, it is discussed here,
with ‘commonsense knowledge’ (CSK), in a section that is separate from [36, Section
11] (about the strengths and potential of the SP Computer Model for several kinds
of probabilistic reasoning) because of the way CSR and CSK (which, together, may be
referred to as ‘CSRK’) have been developing as a discrete subfield of AI (see, for example,
[2]).

Judging by the nature of DNNs and the paucity of research on how they might be
applied in the CSRK area [17], it seems that DNNs are not well suited to this aspect of
AI. But preliminary studies suggest that the SP System has potential in this area.

� It may prove useful with CSRK [33, Section 3], and more so when ‘unfinished busi-
ness’ in the development of the SP Computer Model has been completed (Appendix
A.13).

� Aspects of CSRK may be modelled with the SP Computer Model [33, Sections 4 to
6]: how to interpret a noun phrase like “water bird”; how, under various scenarios,
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to assess the strength of evidence that a given person committed a murder; how
to interpret the horse’s head scene in The Godfather film.

A fourth problem—how to model the process of cracking an egg into a bowl—is
beyond what can be done with the SP System as it is now [33, Section 9], but fixing
the problems mentioned under the previous bullet point may make it feasible.

� With the SP Computer Model, it is possible to determine the referent of an am-
biguous pronoun in a ‘Winograd schema’ type of sentence [32], where a Winograd
schema is a pair of sentences like The city councilmen refused the demonstrators
a permit because they feared violence and The city councilmen refused the demon-
strators a permit because they advocated revolution, and the ambiguous pronoun in
each sentence is “they” [7].

6 Establishing the key importance of information compres-
sion in AI research

There is little about information compression in Architects of Intelligence, except for
some brief remarks about autoencoders by Yoshua Bengio in [3, p. 26]:

“Autoencoders have changed quite a bit since [the] original vision. Now,
we think of them in terms of taking raw information, like an image, and
transforming it into a more abstract space where the important, semantic
aspect of it will be easier to read. That’s the encoder part. The decoder
works backwards, taking those high-level quantities—that you don’t have to
define by hand—and transforming them into an image. That was the early
deep learning work.

Now it seems that interest in autoencoders has waned: “... a few years later, we
discovered that we didn’t need these approaches to train deep networks, we could just
change the nonlinearity.” Yoshua Bengio [3, p. 26].

This fairly relaxed view of IC in AI research, as described by a leading researcher in
AI, contrasts with the view in the SP programme of research that IC is fundamental in
HLPC [34], in mathematics [35], and in the design of the SP System [23, 21].

It seems that there is a need for communication and discussion about this important
issue.

7 Establishing the importance of a biological perspective
in AI research

With regard to the importance of biology in AI research:

“Deep learning will do some things, but biological systems rely on hundreds
of algorithms, not just one algorithm. [AI researchers] will need hundreds
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more algorithms before we can make that progress, and we cannot predict
when they will pop.” Rodney Brooks [3, p. 427].

What Rodney Brooks describes here is much like Marvin Minsky’s concept of diverse
agents [12] as the basis for AI. It seems that both of them are unfalsifiable theories
because, for every attempt to prove the theory wrong, a new algorithm may be added
to plug the gap. And that is likely to mean a theory with ever-decreasing merit in terms
of Ockham’s razor.

Here is some evidence relating to the importance of biology in AI research:

� The paper [34, Section 4] describes powerful reasons in terms of natural selection
why we should expect to find IC in brains and nervous systems of all animals
including people.

� The rest of the paper [34] describes quite a lot of other evidence from people and
other animals for the importance of IC in natural intelligence and other aspects of
neural functioning.

� In his book Kluge [9], Marcus provides compelling arguments, with evidence, why
the haphazard nature of natural selection should have produced kluges, meaning
clumsy makeshift solutions that nevertheless work.

In this report, and other writings in the SP programme of research, the main emphasis
has been on the importance of IC in HLPC. But this is mainly for the sake of clarity,
and because little attention has so far been given to the possibility of kluges from the
haphazard nature of natural selection.

It seems that IC may be seen as a unifying principle in the structure and workings
of brains and nervous systems, and, at the same time, that natural selection is indeed a
haphazard process that can yield kluges as Marcus describes in [9].

8 Whether knowledge in the brain is represented in ‘dis-
tributed’ or ‘localist’ form

“In a hologram, information about the scene is distributed across the whole
hologram, which is very different from what we’re used to. It’s very different
from a photograph, where if you cut out a piece of a photograph you lose the
information about what was in that piece of the photograph, it doesn’t just
make the whole photograph go fuzzier.” Geoffrey Hinton [3, p. 79].

A persistent issue in AI and theories of HLPC is whether knowledge in the brain is
represented in a ‘distributed’ or ‘localist’ form.

In DNNs, knowledge is distributed in the sense that it is encoded in the strengths
of connections between many neurons across several layers of each DNN. Since DNNs
provide the most fully developed examples of distributed knowledge, it is assumed in
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present discussion that they are representative for that kind of system for representing
knowledge.

In SP-Neural, a ‘neural’ version of the SP System (Appendix A.9), knowledge is
localised in the sense that there may be a single neuron, or more likely a small cluster of
neurons, representing any one concept such as ‘my house’, but such a concept is likely
to have links to many other concepts in other places such as ‘roof’, ‘window’, ‘doors’,
and so on.

This issue is essentially the much-debated issue of whether the concept of ‘my grand-
mother’ is represented in one place in one’s brain or whether the concept may be repre-
sented via a diffuse collection of neurons throughout the brain.

Although the following conclusion will not be free from controversy, it seems that
the weight of evidence now favours a localist view, and the SP System is in keeping with
that conclusion:

� The SP System, in both its abstract form (Appendix A) and as SP-Neural (Ap-
pendix A.9), is unambiguously localist. To the extent that the SP System provides
a plausible framework for the development of AGI, it provides evidence in support
of localist forms for knowledge.

� Since DNNs are vulnerable to the problem of catastrophic forgetting [36, Section
12], this seems to be a problem more generally for the distributed representation
of knowledge. With knowledge stored in the strengths of connections between
neurons, there seems to be, at least, to be a risk that two or more concepts will
interfere with each other.

� It is true that if knowledge of one’s grandmother is contained within a single
neuron, death of that neuron would destroy one’s knowledge of one’s grandmother.
But:

– As Barlow points out [1, pp. 389–390], a small amount of replication will give
considerable protection against this kind of catastrophe.

– Any person who has suffered a stroke, or is suffering from dementia, may
indeed lose the ability to recognise close relatives.

� Is it conceivable that, with a localist representation, there are enough neurons in the
human brain to store the knowledge that a typical person, or, more to the point,
an exceptionally knowledgeable person, may have? Arguments and calculations
relating to this issue suggest that it is indeed possible for us to store what we
know in localist form, and with substantial room to spare for multiple copies [21,
Section 11.4.9]. A summary of the arguments and calculations is in [29, Section
4.4].

� In support of the conclusion in the preceding point, the key importance of IC in
the organisation and workings of the SP System (Appendix A.8) provides a good
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reason for supposing that, in a mature SP Machine [16], knowledge acquired via
unsupervised learning will be stored in a highly compressed form.

� Mike Page [15, pp. 461–463] discusses several studies that provide direct or indirect
evidence in support of localist encoding of knowledge in the brain.

9 The limited scope for adaptation in deep neural net-
works

“What’s missing from AI today—and likely to stay missing, until and unless
the field takes a fresh approach—is broad (or ‘general’) intelligence. AI
needs to be able to deal not only with specific situations for which there is
an enormous amount of cheaply obtained relevant data, but also problems
that are novel, and variations that have not been seen before.

“Broad intelligence, where progress has been much slower, is about being
able to adapt flexibly to a world that is fundamentally open-ended—which
is the one thing humans have, in spades, that machines haven’t yet touched.
But that’s where the field needs to go, if we are to take AI to the next level.”
Gary Marcus and Ernest Davis [10, p. 15].

A problem which is closely related to catastrophic forgetting [36, Section 12] and
also to the distinction between ‘broad’ and ‘narrow’ AI [36, Section 13] is that any one
DNN is really only designed to learn a single concept. It is true that one could provide
multiple DNNs for the learning of multiple concepts but, since a DNN has multiple layers
and multiple connections between layers (which is what makes it ‘deep’), the provision
of a DNN for each of the many concepts that people can learn would be expensive in
terms of neural structures and neural functioning.

In the SP System, the concept of SPMA, with the concept of SP-pattern, provides
much greater scope for modelling the world than the relatively constrained framework
of DNNs. This is because each concept is represented by one SP-pattern, there is no
limit to the number of SP-patterns that may be formed (apart from the memory that
is available in the host computer), and there is no limit to the number of ways in which
a given SP-pattern may be connected to other SP-patterns within the framework of
SPMAs (in much the same way that there is no limit to the number of ways in which a
given web page may be connected to other web pages).

By contrast, the layers in a DNN, and the potential connections amongst them, are
finite and pre-defined [36, Section 12]. It is true that the connections can vary in strength
but only within pre-defined limits.

10 Motivations and emotions

“How much prior structure do we need to build into those systems for them
to actually work appropriately and be stable, and for them to have intrinsic
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motivations so that they behave properly around humans? There’s a whole
lot of problems that will absolutely pop up, so AGI might take 50 years, it
might take 100 years, I’m not too sure.” Yann LeCun [3, p. 130].

“Machine learning needs a lot of data, and so I borrowed [a] dataset [from
Cambridge Autism Research Center] to train the algorithms I was creat-
ing, on how to read different emotions, something that showed some really
promising results. This data opened up an opportunity to focus not just on
the happy/sad emotions, but also on the many nuanced emotions that we
see in everyday life, such as confusion, interest, anxiety or boredom.” Rana
el Kaliouby [3, p. 209].

“[A] subtle question is that of relating emotionally to other beings. I’m not
sure that’s even well defined, because as a human you can fake it. There are
people who fake an emotional connection to others. So, the question is, if
you can get a computer to fake it well enough, how do you know that’s not
real?” Daphne Koller [3, p. 394].

“If you look at human intelligence we have all these different kinds of intelli-
gences, and social and emotional intelligence are a profoundly important, and
of course underlies how we collaborate and how we live in social groups and
how we coexist, empathize, and harmonize.” Cynthia Breazeal [3, p. 450].

“... why are we assuming the same evolutionary forces that drove the cre-
ation of our motivations and drives would be anything like those of [a] super
intelligence?” Cynthia Breazeal [3, p. 457].

In developing AGI, motivations and emotions are clearly important, not least because
of the possibility that super-intelligent AIs might come to regard people as dispensable.
But, in the SP programme of research, there has, so far, been no attempt to give the SP
Computer Model any kind of motivation (except the motivation ‘compress information’),
or any kind of emotion. This is because of the belief that, in relation to the SP concepts
and their development, it would be trying to run before we can walk. When the SP
System is more mature, there will likely be a case for exploring how it may be applied
to the complexities of motivations and emotions.

11 Conclusion

This report, with the paper [36], describes problems in AI research and how the SP
System may help solve them.

Here, the expression SP System means the SP Theory of Intelligence and its reali-
sation in the SP Computer Model. There is an outline description of the SP System in
Appendix A, with pointers to where fuller information may be found.

Many of the problems in AI research considered in this report are described by leading
researchers in AI in interviews with science writer Martin Ford, and presented by him
in his book Architects of Intelligence [3].
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Since information compression (IC) is a unifying theme in this report, in [34] and
[35] referenced in [36], and in that paper, they demonstrate some of the potential of IC
as a unifying principle in AI, and they demonstrate the potential of IC as a means of
making sense of complexity in some of its manifestations.

On the strength of evidence presented in [36] with this report, there is clear potential
for the SP System to help solve all the problems which are the subjects of the two
documents. Since there is no other system with anything close to that potential, it is
good evidence that the SP System provides a relatively promising foundation for the
development of artificial general intelligence.

The problems discussed in this report, each one with a brief summary of how the SP
System may help to solve it, are summarised as follows:

� The need to rebalance research towards top-down strategies (Section 2). Unlike
most research in AI today, the SP System has been developed via a top-down
strategy, aiming for simplification and integration across AI, mainstream comput-
ing, mathematics, and HLPC.

� Minimising the risk of accidents with driverless cars (Section 3). The complexities
of driving a car seem to require human-like abilities in generalising its knowledge,
with the correction of over- and under-generalisations. With the SP System, this
may be done both via unsupervised learning ([36, Section 5.1], Appendix A.6), and
also via processes of perception, parsing and the like ([36, Section 5.2], Appendix
A.4).

� The need for strong compositionality (Section 4). Although DNNs appear to pro-
vide some approximations of the idea of one concept being composed of smaller
elements, this idea is much more strongly developed in the SP System where it is
entirely feasible to create class-inclusion hierarchies and part-whole hierarchies of
any depth, and without the vagueness and ambiguity of DNN approximations of
compositionality.

� The challenges of commonsense reasoning and commonsense knowledge (Section
5). Because commonsense reasoning and commonsense knowledge (CSRK) have
developed as a distinct field within AI, it is discussed in a separate section, although
the SP System’s strengths in probabilistic reasoning [36, Section 11] are part of its
potential with CSRK. Other strengths of the SP System in that area are described.

� Establishing the key importance of IC in AI research (Section 6). The SP System
appears to be unique in employing IC as the basis for all aspects of intelligence
and the representation of knowledge. There is much evidence for the importance
of IC in HLPC [34].

� Biological validity (Section 7). Arguably, the SP System, with SP-Neural, has
greater validity in terms of biology than DNNs, both in its organisation and in the
central role of IC in how it works.
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� Is knowledge in the brain represented in ‘distributed’ or ‘localist’ form? (Section
8). In contrast to DNNs, the SP System stores knowledge in an unambiguously
‘localist’ form, meaning that each concept is represented by a small cluster of
neurons in one location. In this respect it conforms to what appears to be the
balance of evidence in favour of localist kinds of representation.

� Scope for adaptation (Section 9). The representation of knowledge with SP-patterns,
with the SPMA construct, provides for much greater scope for adaptation than the
layers of a DNN.

� Motivations and emotions. Despite the importance for people of motivations and
emotions (Section 10), no attempt has yet been made to study them in the SP
programme of research.
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A Outline of the SP Theory of Intelligence and its reali-
sation in the SP Computer Model

The SP System—meaning the SP Theory of Intelligence and its realisation in the SP
Computer Model is the product of a lengthy programme of research, from about 1987
to now with a break between early 2006 and late 2012. This programme of research
has included the creation and testing of many versions of the SP Computer Model. A
major discovery has been the concept of SP-multiple-alignment and its versatility in
many aspects of intelligence (Appendix A.4).

A.1 Aiming for a favourable combination of conceptual Simplicity with
descriptive or explanatory Power

The overarching goal of the SP programme of research is to simplify and integrate ob-
servations and concepts across AI, mainstream computing, mathematics, and HLPC. In
effect, this means developing concepts that combine conceptual Simplicity with high lev-
els of descriptive or explanatory Power. This in turn means the same as IC by increasing
the simplicity of a body of information I, by the removal of redundancy from I, whilst
retaining as much as possible of its non-redundant, expressive power.

As readers may guess, the Simplicity and Power concepts, which apply to both the
aims of the research and the workings of the SP Computer Model, are the reasons for
the name ‘SP’.

Despite its ambition, the simplicity-with-power objective has been largely met. This
is because the SP System, which is largely the simple but powerful concept of SPMA
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(Appendix A.4), with relatively simple processes for unsupervised learning (Appendix
A.6), has strengths and potential across diverse aspects of intelligence and the represen-
tation of diverse kinds of knowledge (Appendix A.11).

A.2 High level view of the SP System

The SP System is described in outline here, in more detail in [23], and much more
fully in [21]. Distinctive features and advantages of the SP System are described in
[30]. Other papers in this programme of research are detailed, with download links, on
www.cognitionresearch.org/sp.htm.

In broad terms, the SP System is a brain-like system that takes in New information
through its senses and stores some or all of it as Old information that is compressed, as
shown schematically in Figure 1.

Old
(compressed)

New
(not compressed)

Figure 1: Schematic representation of the SP System from an ‘input’ perspective. Re-
produced, with permission, from Figure 1 in [23].

In the SP System, all kinds of knowledge are represented with SP-patterns, where
each such SP-pattern is an array of atomic SP-symbols in one or two dimensions. An
SP-symbol is simply a ‘mark’ that can be matched with any other symbol to determine
whether it is the same or different.

At present, the SP Computer Model works only with one-dimensional SP-patterns
but it is envisaged that it will be generalised to work with two-dimensional SP-patterns
as well.
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A.3 Information compression via the matching and unification of pat-
terns

A central idea in the SP System is that all kinds of processing would be achieved via IC.
Evidence for the importance of IC in HLPC is described in [34].

In the development of the SP System, it has proved useful to understand IC as a
process of searching for patterns that match each other and the merging or ‘unifying’
patterns that are the same. The expression ‘information compression via the matching
and unification of patterns’ may be abbreviated as ‘ICMUP’.

More specifically IC in the SP System is achieved largely via the creation of SPMAs
(Appendix A.4) and, via unsupervised learning (with SPMAs playing an important role),
the creation of SP-grammars (Appendix A.6).

In terms of theory, the emphasis on IC in the SP System accords with research in
the tradition of Minimum Length Encoding (see, for example, [8]), with the qualification
that most research relating to MLE assumes that the concept of a universal Turing
machine provides the foundation for theorising, whereas the SP System is itself a theory
of computing [30, Section II-C] founded on concepts of ICMUP and SPMA.

A.4 SP-multiple-alignment

A central idea in the SP System, is the simple but powerful concept of SPMA, borrowed
and adapted from the concept of ‘multiple sequence alignment’ in bioinformatics.

SPMA is the last of seven variants of ICMUP described in [35, Section 5]. It may be
seen to be a generalisation of the other six variants [35, Section 5.7].

Within the SP System, the SPMA concept is largely responsible for the strengths
and potential of the SP System as outlined in Appendix A.11. The versatility of
the SP System may also be seen in its several potential areas of application de-
scribed in [27] and several other papers that are detailed with download links on
www.cognitionresearch.org/sp.htm.

Bearing in mind that it is just as bad to underplay the strengths and potential of
a system as it is to oversell its strengths and potential, it seems fair to say that the
concept of SP-multiple-alignment may prove to be as significant for an understanding of
‘intelligence’ as is DNA for biological sciences. It may prove to be the ‘double helix’ of
intelligence.

Probably the best way to explain the idea is by way of examples. Figure 2 shows
an example of multiple sequence alignment in bioinformatics. Here, there are five DNA
sequences which have been arranged alongside each other, and then, by judicious ‘stretch-
ing’ of one or more of the sequences in a computer, symbols that match each other across
two or more sequences have been brought into line.

A ‘good’ multiple sequence alignment, like the one shown, is one with a relatively
large number of matching symbols from row to row. The process of discovering a good
multiple sequence alignment is normally too complex to be done by exhaustive search,
so heuristic methods are needed, building multiple sequence alignments in stages and,
at each stage, selecting the best partial structures for further processing.
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G G A G C A G G G A G G A T G G G G A

| | | | | | | | | | | | | | | | | | |

G G | G G C C C A G G G A G G A | G G C G G G A

| | | | | | | | | | | | | | | | | | | | |

A | G A C T G C C C A G G G | G G | G C T G G A | G A

| | | | | | | | | | | | | | | | | |

G G A A | A G G G A G G A | A G G G G A

| | | | | | | | | | | | | | | | |

G G C A C A G G G A G G C G G G G A

Figure 2: A ‘good’ multiple sequence alignment amongst five DNA sequences.

Some people may argue that the combinational explosion with this kind of problem,
and the corresponding computational complexity, is so large that there is no practi-
cal way of dealing with it. In answer to that objection, there are several multiple se-
quence alignment programs used in bioinformatics—such as ‘Clustal Omega’, ‘Kalign’,
and ‘MAFFT’1—which produce results that are good enough for practical purposes.

This relative success is achieved via the use of heuristic methods that conduct the
search for good structures in stages, discarding all but the best alignments at the end of
each stage. With these kinds of methods, reasonably good results may be achieved but
normally they cannot guarantee that the best possible result has been found.

Figure 3 shows an example of an SPMA, superficially similar to the one in Figure
2, except that the sequences are called SP-patterns, the SP-pattern in row 0 is New
information and the remaining SP-patterns, one per row, are Old SP-pattern, selected
from a relatively large pool of such SP-patterns. A ‘good’ SPMA is one which allows
the New SP-pattern to be encoded economically in terms of the Old SP-patterns.

0 t w o k i t t e n s p l a y 0

| | | | | | | | | | | | | |

1 | | | Nr 5 k i t t e n #Nr | | | | | 1

| | | | | | | | | |

2 | | | N Np Nr #Nr s #N | | | | 2

| | | | | | | | | |

3 D Dp 4 t w o #D | | | | | | | 3

| | | | | | | | | |

4 NP NPp D Dp #D N Np #N #NP | | | | 4

| | | | | | |

5 | | | Vr 1 p l a y #Vr 5

| | | | |

6 | | | VP VPp Vr #Vr #VP 6

| | | | | |

7 S Num ; NP | #NP VP | #VP #S 7

| | | |

8 Num PL ; NPp VPp 8

Figure 3: The best SPMA created by the SP Computer Model with a store of Old
SP-patterns like those in rows 1 to 8 (representing grammatical structures, including
words) and a New SP-pattern, ‘(t w o k i t t e n s p l a y)’, shown in row 0
(representing a sentence to be parsed). Adapted from Figure 1 in [22], with permission.

1Provided as online services by the European Bioinformatics Institute (see
https://www.ebi.ac.uk/Tools/msa/).
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In this example, the New SP-pattern (in row 0) is a sentence and each of the re-
maining SP-patterns represents a grammatical category, where ‘grammatical categories’
include words. The overall effect of the SPMA in this example is the parsing a sentence
(‘f o r t u n e f a v o u r s t h e b r a v e’) into its grammatical parts and
sub-parts.

Contrary to the impression that may be given by Figure 3, the SPMA concept is very
versatile and is largely responsible for the strengths and potential of the SP System, as
described in Appendix A.11.

As with multiple sequence alignments, it is almost always necessary to use heuristic
methods to achieve useful results without undue computational demands. The use of
heuristic methods helps to ensure that computational complexities in the SP System are
within reasonable bounds [21, Sections A.4, 3.10.6 and 9.3.1].

In the SP Computer Model, the size of the memory available for searching may be
varied, which means in effect that the scope for backtracking can be varied. When the
scope for backtracking is increased, the chance of the program getting stuck on a ‘local
peak’ (or ‘local minimum’) in the search space is reduced.

A.5 The SP System is quite different from a deep neural network

The several levels in an SPMA may give the impression that the SP System in its
structure and workings is simply a variant of the structure and workings of a DNN. This
is entirely false.

In DNNs, the layers are provided at the beginning of processing and do not change
except in the strengthening of links between neurons. By contrast, the SP System stores
its knowledge in the form of SP-patterns, and those SP-patterns become the rows in
each of a multitude of different SPMAs, each of which contains its own distinctive array
of SP-patterns, normally a unique set of SP-patterns but sometimes two or more sets the
same but with different alignments. Also, IC is of central importance in the SP System
by contrast with most DNNs in which IC has little or no role.

Distinctive features and advantages of the SP System are described more fully in
[30].

A.6 Unsupervised learning in the SP System

In the SP System, learning is ‘unsupervised’, deriving structures from incoming sensory
information without the need for any kind of ‘teacher’, or anything equivalent (cf. [4]).

Unsupervised learning in the SP System is quite unlike ‘Hebbian’ learning via the
gradual strengthening or weakening of neural connections ([36, Section 6]), variants of
which are the mainstay of learning in DNNs. In the SP System, unsupervised learning
incorporates the building of SPMAs but there are other processes as well.
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A.6.1 The creation of Old SP-patterns

In brief, the system creates Old SP-patterns from complete New SP-patterns and also
from partial matches between New and Old SP-patterns. All learning in the SP System
starts with the taking in of information from the environment:

� If that information is the same as one or more Old SP-patterns, then the frequency
of the one SP-pattern is increased, or frequencies of the two or more SP-patterns
are increased.

� If that information is entirely new, ‘ID’ SP-symbols2 are added at the beginning
and end of the pattern so that it becomes an SP-pattern. Then it is added directly
to the store of Old SP-patterns.

� If partial matches can be made between the newly-received information and one
or more of the stored Old SP-patterns, then each of the parts that match, and
each of the parts that don’t match, are made into SP-patterns by the addition of
ID SP-symbols at the beginning and end, and the newly-created SP-patterns are
added to the store of Old SP-patterns.

A.6.2 The creation of SP-grammars

With a given body of New SP-patterns, the system processes them as just sketched, and
then searches for one or two ‘good’ SP-grammars, where an SP-grammar is a collection
of Old SP-patterns, and it is ‘good’ if it is effective in the economical encoding of the
original set of New SP-patterns, where that economical encoding is achieved via SPMA.

As with the building of SPMAs, the process of creating good grammars is normally
too complex to be done by exhaustive search so heuristic methods are needed. This
means that the system builds SP-grammars incrementally and, at each stage, it discards
all but the best SP-grammars.

As with the building of SPMAs, the use of heuristic methods helps to ensure that
computational complexities in the SP System are within reasonable bounds [21, Sections
A.4, 3.10.6 and 9.3.1].

The SP Computer Model has already demonstrated an ability to learn generative
grammars from unsegmented samples of English-like artificial languages, including seg-
mental structures, classes of structure, and abstract patterns, and to do this in an
‘unsupervised’ manner ([23, Section 5], [21, Chapter 9]).

A.6.3 Shortcomings in unsupervised learning in the SP System

But there are (at least) two shortcomings in the system [23, Section 3.3]: it cannot learn
intermediate levels of structure or discontinuous dependencies in grammar, although the
SPMA framework can accommodate structures of those kinds. It appears that those two
problems may be overcome and that their solution would greatly enhance the capabilities
of the SP Computer Model in unsupervised learning.

2Appendix A.2
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A.7 The probabilistic nature of the SP System

Owing to the intimate relation that is known to exist between IC and concepts of proba-
bility [18, 19], and owing to the fundamental role of IC in the workings of the SP System,
the system is inherently probabilistic ([23, Section 4.4], [21, Section 3.7]).

That said, it appears to be possible to imitate the all-nothing-nature of conventional
computing systems via the use of data where all the probabilities yielded by the system
are at or close to 0 or 1.

Because of the probabilistic nature of the SP System, it lends itself to the modelling
of HLPC because of the prevalence of uncertainties in that domain. Also, the SP System
sits comfortably within AI because of the probabilistic nature of most systems in AI, at
least in more recent work in that area.

An advantage of the SP System in those areas is that it is relatively straightforward
to calculate absolute or conditional probabilities for results obtained in, for example,
different kinds of reasoning (Appendix A.11.2).

The very close connection that exists between IC and concepts of probability may
suggest that there is nothing to choose between them. But [35, Section 8.2] argues
that, in research on aspects of AI and HLPC, there are reasons to regard IC as more
fundamental than probability and a better starting point for theorising.

A.8 Two main mechanisms for information compression in the SP Sys-
tem, and their functions

The two main mechanisms for IC in the SP System are as follows, each one with details
of its function or functions:

1. The building of SP-multiple-alignments. The process of building SPMAs achieves
compression of New information. At the same time it may achieve any or all of
the following functions described in [21, Chapters 5 to 8] and [23, Sections 7 to
12], with potential for more:

(a) The parsing of natural language (which is quite well developed); and under-
standing of natural language (which is only at a preliminary stage of devel-
opment).

(b) Pattern recognition which is robust in the face of errors of omission, commis-
sion, or substitution; and pattern recognition at multiple levels of abstraction.

(c) Information retrieval which is robust in the face of errors of omission, com-
mission, or substitution.

(d) Several kinds of probabilistic reasoning, as summarised in Section A.11.2.

(e) Planning such as, for example, finding a flying route between London and
Beijing.

(f) Problem solving such as solving the kinds of puzzle that are popular in IQ
tests.
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The building of SPMAs is also part of the process of unsupervised learning, next.

2. Unsupervised learning. Unsupervised learning, outlined in Appendix A.6, means
the creation of one or two SP-grammars which are collections of SP-patterns which
are effective in the economical encoding of a given set of New SP-patterns.

A.9 SP-Neural

A potentially useful feature of the SP System is that it is possible to see how abstract
constructs and processes in the system may be realised in terms of neurons and their
interconnections. This is the basis for SP-Neural, a ‘neural’ version of the SP System,
described in [29].

The concept of an SP-symbol may realised as a neural symbol comprising a single
neuron or, more likely, a small cluster of neurons. An SP-pattern maps quite well on
to the concept of a pattern assembly comprising a group of inter-connected SP-symbols.
And an SPMA may be realised in terms of pattern assemblies and their interconnections,
as illustrated in Figure 4.

In this connection, it is relevant to mention that the SP System, in both its abstract
and neural forms, is quite different from DNNs [17] and has substantial advantages
compared with such systems, as described in several sections in [36] and this report, and
in [30, Section V].

A.10 Generalising the SP System for two-dimensional SP-patterns,
both static and moving

This brief description of the SP System and how it works may have given the impression
that it is intended to work entirely with sequences of SP-symbols, like multiple sequence
alignments in bioinformatics. But it is envisaged that, in future development of the
system, two-dimensional SP-patterns will be introduced, with potential to represent and
process such things as photographs and diagrams, and structures in three dimensions as
described in [24, Section 6.1 and 6,2], and procedures that work in parallel as described
in [25, Sections V-G, V-H, and V-I, and C].

It is envisaged that, at some stage, the SP System will be generalised to work with
two-dimensional ‘frames’ from films or videos, and the sequencing needed to represent
motion, and eventually the information needed to represent 3D bodies in motion, as in
a 3D film.

A.11 Strengths and potential of the SP System in AI-related functions

The strengths and potential of the SP System are summarised in the subsections that
follow. Further information may be found in [23, Sections 5 to 12], [21, Chapters 5 to
9], [30], and in other sources referenced in the subsections that follow.

In view of the relative Simplicity of the SP System, the strengths and potential of
the system summarised here mean that the system combines relative Simplicity with
relatively high levels of descriptive and explanatory Power (Appendix A.1).
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Figure 4: A schematic representation of a partial SPMA in SP-Neural, as discussed in
[29, Section 4]. Each broken-line rectangle with rounded corners represents a pattern
assembly—corresponding to an SP-pattern in the main SP Theory of Intelligence; each
character or group of characters enclosed in a solid-line ellipse represents a neural symbol
corresponding to an SP-symbol in the main SP Theory of Intelligence; the lines between
pattern assemblies represent nerve fibres with arrows showing the direction in which
impulses travel; neural symbols are mainly symbols from linguistics such as ‘NP’ meaning
‘noun phrase, ‘D’ meaning a ‘determiner’, ‘#D’ meaning the end of a determiner, ‘#NP’
meaning the end of a noun phrase, and so on.
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A.11.1 Versatility in aspects of intelligence

The SP System has strengths and potential in the ‘unsupervised’ learning of new knowl-
edge. As noted in Appendix A.6, this is an aspect of intelligence in the SP System that
is different from others because it is not a by-product of the building of multiple align-
ments but is, instead, achieved via the creation of grammars, drawing on information
within SPMAs.

Other aspects of intelligence where the SP System has strengths or potential are
modelled via the building of SPMAs. These other aspects of intelligence include: the
analysis and production of natural language; pattern recognition that is robust in the
face of errors in data; pattern recognition at multiple levels of abstraction; computer
vision [24]; best-match and semantic kinds of information retrieval; several kinds of
reasoning (next subsection); planning; and problem solving.

A.11.2 Versatility in reasoning

Kinds of reasoning exhibited by the SP System include: one-step ‘deductive’ reason-
ing; chains of reasoning; abductive reasoning; reasoning with probabilistic networks and
trees; reasoning with ‘rules’; nonmonotonic reasoning and reasoning with default values;
Bayesian reasoning with ‘explaining away’; causal reasoning; reasoning that is not sup-
ported by evidence; the inheritance of attributes in class hierarchies; and inheritance of
contexts in part-whole hierarchies. Where it is appropriate, probabilities for inferences
may be calculated in a straightforward manner ([21, Section 3.7], [23, Section 4.4]).

There is also potential in the system for spatial reasoning [25, Section IV-F.1], and
for what-if reasoning [25, Section IV-F.2].

It seems unlikely that the features of intelligence mentioned above are the full extent
of the SP System’s potential to imitate what people can do. The close connection that is
known to exist between IC and concepts of probability (Appendix A.7), the central role
of IC in the SPMA framework, and the versatility of the SPMA framework in aspects
of intelligence suggest that there are more insights to come.

As noted in Appendix A.7, the probabilistic nature of the SP System makes it rela-
tively straightforward to calculate absolute or conditional probabilities for results from
the system, as for example in its several kinds of reasoning, most of which would natu-
rally be classed as probabilistic.

A.11.3 Versatility in the representation of knowledge

Although SP-patterns are not very expressive in themselves, they come to life in the
SPMA framework. Within that framework, they may serve in the representation of
several different kinds of knowledge, including: the syntax of natural languages; class-
inclusion hierarchies (with or without cross classification); part-whole hierarchies; dis-
crimination networks and trees; if-then rules; entity-relationship structures [22, Sections
3 and 4]; relational tuples (ibid., Section 3), and concepts in mathematics, logic, and
computing, such as ‘function’, ‘variable’, ‘value’, ‘set’, and ‘type definition’ ([21, Chapter
10], [27, Section 6.6.1], [31, Section 2]).
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As previously noted, the addition of two-dimensional SP patterns to the SP Computer
Model is likely to expand the representational repertoire of the SP System to structures
in two-dimensions and three-dimensions, and the representation of procedural knowledge
with parallel processing.

As with the SP System’s generality in aspects of intelligence, it seems likely that the
SP System is not constrained to represent only the forms of knowledge that have been
mentioned. The generality of IC as a means of representing knowledge in a succinct
manner, the central role of IC in the SPMA framework, and the versatility of that
framework in the representation of knowledge, suggest that the SP System may prove
to be a means of representing all the kinds of knowledge that people may work with.

A.11.4 The seamless integration of diverse aspects of intelligence, and di-
verse kinds of knowledge, in any combination

An important third feature of the SP System, alongside its versatility in aspects of
intelligence and its versatility in the representation of diverse kinds of knowledge, is that
there is clear potential for the SP System to provide SI. This is because diverse aspects of
intelligence and diverse kinds of knowledge all flow from a single coherent and relatively
simple source: the SPMA framework.

It appears that SI is essential in any artificial system that aspires to the fluidity,
versatility and adaptability of the human mind.

Figure 5 shows schematically how the SP System, with SPMA centre stage, exhibits
versatility and integration. The figure is intended to emphasise how development of the
SP System has been and is aiming for versatility and integration in the system.

A.12 Potential benefits and applications of the SP System

Apart from its strengths and potential in modelling AI-related functions (Appendix
A.11), it appears that, in more humdrum terms, the SP System has several potential
benefits and applications, several of them described in peer-reviewed papers. These
include:

� Big data. Somewhat unexpectedly, it has been discovered that the SP System
has potential to help solve nine significant problems associated with big data [26].
These are: overcoming the problem of variety in big data; the unsupervised learning
of structures and relationships in big data; interpretation of big data via pattern
recognition, natural language processing; the analysis of streaming data; compres-
sion of big data; model-based coding for the efficient transmission of big data;
potential gains in computational and energy efficiency in the analysis of big data;
managing errors and uncertainties in data; and visualisation of structure in big
data and providing an audit trail in the processing of big data.

� Autonomous robots. The SP System opens up a radically new approach to the
development of intelligence in autonomous robots [25];
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Figure 5: A schematic representation of versatility and integration in the SP System,
with SPMA centre stage.

� An intelligent database system. The SP System has potential in the development
of an intelligent database system with several advantages compared with tradi-
tional database systems [22]. In this connection, the SP System has potential to
add several kinds of reasoning and other aspects of intelligence to the ‘database’
represented by the World Wide Web, especially if the SP Machine were to be super-
charged by replacing the search mechanisms in the foundations of the SP Machine
with the high-parallel search mechanisms of any of the leading search engines.

� Medical diagnosis. The SP System may serve as a vehicle for medical knowledge
and to assist practitioners in medical diagnosis, with potential for the automatic
or semi-automatic learning of new knowledge [20];
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� Computer vision and natural vision. The SP System opens up a new approach
to the development of computer vision and its integration with other aspects of
intelligence. It also throws light on several aspects of natural vision [24];

� Neuroscience. As outlined in Appendix A.9, abstract concepts in the SP Theory of
Intelligence map quite well into concepts expressed in terms of neurons and their
interconnections in a version of the theory called SP-Neural ([29], [21, Chapter
11]). This has potential to illuminate aspects of neuroscience and to suggest new
avenues for investigation.

� Commonsense reasoning. In addition to the previously-described strengths of the
SP System in several kinds of reasoning, the SP System has strengths in the sur-
prisingly challenging area of “commonsense reasoning”, as described by Ernest
Davis and Gary Marcus [2]. How the SP System may meet the several challenges
in this area is described in [28].

� Other areas of application. The SP System has potential in several other areas of
application including [27]: the simplification and integration of computing systems;
best-match and semantic forms of information retrieval; software engineering [31];
the representation of knowledge, reasoning, and the semantic web; information
compression; bioinformatics; the detection of computer viruses; and data fusion.

� Mathematics. The concept of ICMUP provides an entirely novel interpretation of
mathematics [35]. This interpretation is quite unlike anything described in existing
writings about the philosophy of mathematics or its application in science. There
are potential benefits in science from this new interpretation of mathematics.

A.13 Unfinished business and the SP Machine

Like most theories, the SP Theory is not complete. Four pieces of ‘unfinished business’
are described in [23, Section 3.3]: 1) The SP Computer Model needs to be generalised
to include SP-patterns in two dimensions, with associated processing; 2) Research is
needed to discover whether or how the SP concepts may be applied to the identification
of low-level perceptual features in speech and images; 3) More work is needed on the
development of unsupervised learning in the SP Computer Model; 4) And although the
SP Theory has led to the proposal that much of mathematics, perhaps all of it, may be
understood as IC [35], research is needed to discover whether or how the SP concepts may
be applied in the representation of numbers. A better understanding is also needed of
how quantitative concepts such as time, speed, distance, and so on, may be represented
in the SP System.

It appears that these problems are soluble and it is anticipated that, with some
further research, they can be remedied.

More generally, a programme of research is envisaged, with one or more teams of
researchers, or individual researchers, to create a more mature SP Machine, based on
the SP Computer Model, and shown schematically in Figure 6. A roadmap for the
development of the SP Machine is described in [16].
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SP Theory and SP Computer Model

SP MACHINEHigh parallel
In the cloud

Open source
Good user interface

Representation of knowledge Natural language processing

Several kinds of reasoning Planning & problem solving

Information compression Unsupervised learning

Pattern recognition Information retrieval

MANY APPLICATIONS

Figure 6: Schematic representation of the development and application of the SP Ma-
chine. Reproduced from Figure 2 in [23], with permission.
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