
ON THE NUMBER OF INTERSECTIONS OF TUBES

Abstract. In this article we will prove that if the number of δ-tubes is N =
δ1−n and if the δ-tubes intersect on the unit cube, then the number of their

intersections of order µ is bounded by Cn
Nn/(n−1)

µ
. This implies that the

number of (central) line intersections of order µ is bounded by Cn
Nn/(n−1)

µ
.

After making a dyadic decomposition and summing the orders together we

will find that the number of (central) line intersections of N lines is bounded

by CnN
n/(n−1). Given a finite number of lines we can always assume that

they intersect on the unit cube, so we have a essentially sharp bound for the

number of line intersections. An extremal case is the standard gris in R
n.

Previously this has been studied for special kind of line intersections called

joints. Moreover, we will prove a generalized lemma of Córdoba.

1. Introduction

In Rn a joint is formed by the intersection of n lines whose tangent vectors are
linearly independent. It‘s a fact that the number of joints formed by N lines are
bounded by CnN

n/(n−1). This fact has quite an elementary proof [3]. In our paper
we control all line or tube intersections in all scales. Our bound for the total line
intersections is essentially sharp. An extremal example is a standard grid of N
lines. A line li is defined as

li := {y ∈ Rn|∃a, x ∈ Rn and t ∈ R s.t y = a+ xt}

We define the δ-tubes as δ neighbourhoods of lines:

Ti := {x ∈ Rn||x− y| ≤ δ, y ∈ li}.

The order of intersection is defined as the number of tubes (lines) intersecting.
We use P δ

µ as the set of δ-tube intersections of order µ and Pµ as the set of line

intersections of order Pµ. Moreover, P δ and P mean the set of δ-tube intersections
and the set of line line intersections, respectively. If µ > 1 then

P δ
µ :=

Mδ
µ⋃

j=1

µ⋂
i=1

Tij

We define

#(P δ
µ) = M δ

µ

and the total number of intersections is

#(P δ) =
∑
µ

M δ
µ.

In a same way we define #(Pµ) and #(P ). Our main theorem is the following:
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Theorem 1.1. Let N = δ1−n. Given N δ-tubes that intersect on the unit cube, it
holds for the number of order µ > 1 intersections that

(1.1) #(P δ
µ) ≤ Cn

Nn/(n−1)

µ
.

Corollary 1.2. Let N = δ1−n. Given N δ-tubes that intersect on the unit cube,
it holds for the number intersections that

(1.2) #(P δ) ≤ CnN
n/(n−1).

Corollary 1.3. Given N lines it holds for the number of intersections of order µ

that

(1.3) #(Pµ) ≤ Cn
Nn/(n−1)

µ
.

Corollary 1.4. Given N lines it holds for the number of intersections that

(1.4) #(P ) ≤ CnN
n/(n−1),

Our other result is the following: a generalization of a lemma of Corbóda.

Lemma 1.5. [A generalization of a lemma of Corbóda] For tube intersections of
order 2k it holds that

|

2k⋂
i=1

Ti| . δn−12−k/(n−1).

It‘s not hard to check that the above bound is essentially tight.

2. Previously known results

We will use the following bound for the pairwise intersections of δ-tubes:

Lemma 2.1 (Corbòda). For any pair of directions ωi, ωj ∈ Sn−1 and any pair of
points a, b ∈ R

n, we have

|T δ
ωi
(a) ∩ T δ

ωj
(b)| .

δn

|ωi − ωj |
.

A proof can be found for example in [2].
For any (spherical) cap Ω ⊂ Sn−1, |Ω| & δn−1, δ > 0, define its δ-entropy Nδ(Ω)

as the maximum possible cardinality for an δ-separated subset of Ω.

Lemma 2.2. In the notation just defined

Nδ(Ω) ∼
|Ω|

δn−1
.

Again, a proof can essentially be found in [2].

3. A proof of the generalization of the lemma of Corbóda

Let us define

E2k := {x ∈ Rn|2k ≤

N∑
i=1

1Ti ≤ 2k+1}.

Let us suppose that 2k = δ−β , 0 < β ≤ n − 1, and let‘s suppose that tube Tω′

intersecting Tω∩E2k has it‘s direction outside of a cap of size ∼ δn−1−β on the unit
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sphere. Then the angle between Tω and Tω′ is greater than ∼ δ1−β/(n−1). Thus by
lemma 2.1 the intersection

(3.1) |

2k⋂
i=1

Ti| ≤ |Tω ∩ Tω′ ∩ E2k | ≤ |Tω ∩ Tω′ | . δn−1+β/(n−1) = δn−12−k/(n−1).

Thus, we can suppose that the directions in the intersection E2k ∩ Tω ∩ Tω′ belong
to a cap of size ∼ δn−1+β . If we δ - separate the cap via lemma 2.2 we get that
the cap can contain at most ∼ 2k tube-directions. Thus, for any tube Tω in the
intersection there exists a tube Tω′ , such that the angle between Tω and Tω′ is
∼ δ1−β/(n−1) and the inequality (3.1) is valid. Thus we proved the lemma 1.5.

4. On the number of intersections of given order

Define the following set

(4.1) Eµ := {x ∈ Rn|

N∑
i=1

1Ti = µ}.

So that

(4.2)
µ|Eµ| =

∫
[−1,1]n∩E

2k

N∑
i=1

1Ti =

N∑
i=1

∫
[−1,1]n∩E

2k

1Ti

≤ 2nδn−1N |B(1, 0)| = δn−1CnN.

We define an intersection Ijk of order µ > 1 as

Ikj :=

µ⋂
i=1

Tij .

So that
Eµ =

⋃
Ijµ

and

|Eµ| =

Mµ∑
j=1

|Ijµ|.

Now, let us scale δ to 2δ. Define the scaled versions Ijµ and Eµ as I ′jµ and E′
µ,

respectively. It holds that I ′jµ ∩ [−1, 1]n contains a δ-ball. So that

(4.3) δn|B(0, 1)| ≤ |I ′jµ|

We define M ′
u as the number of intersection of order µ of 2δ-tubes. Clearly

(4.4) #(P δ
µ) = Mu ≤ Mu′ = #(P δ

µ
′).

It follows from above (4.3), (4.4) and from (4.2) that

µδn|B(0, 1)||P δ
µ | ≤ µ

M ′

µ∑
j=1

|I ′jµ| ≤ µ|E′
µ| ≤ δn−12nN.

Thus,
µδn|P δ

µ | ≤ δn−1CnN,

which is equivalent to

(4.5) δ|P δ
µ | ≤ Cn

N

µ
.
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We assumed in our theorem 1.1 that

N = δ1−n,

so that

(4.6) N−1/(1−n) = δ

Thus, it follows from (4.5) and (4.6) that

N−1/(n−1)|Pµ| ≤ Cn
N

µ
.

which is equivalent to

|Pµ| ≤ Cn
Nn/(n−1)

µ
.

The above implies our main theorem 1.1.
If we have N lines that intersect on [−R,R]n then we can scale Rn s.t the lines
intersect in [−1, 1]n. Then we choose δ1−n = N. Now, the number of central line
intersections is less than the number of tube intersections. So from 1.1 it follows
1.3.
In order to prove 1.2 we will take µ dyadically. So that we have

(4.7) E2k := {x ∈ Rn|2k ≤
N∑
i=1

1Ti ≤ 2k+1}.

The set of intersections are now defined as

P δ
2k :=

Mδ

2k⋃
j=1

µ⋂
i=1

Tij ,

#(pδ2k) = M2k , and

|E2k | =
∑
j

|Ij2k |.

So we have

2kδn|B(0, 1)||P δ
2k | ≤ 2k

∑
j

|I ′j2k | ≤ 2k|E′
2k | ≤ δn−1|CnN,

where I ′j2k and E′
2k are scaled versions of Ij2k and E2k , respectively. Thus, like

before it follows that

|P δ
2k | ≤ Cn

Nn/(n−1)

2k
.

But if we sum above over k we have

|P δ| =
∑
k 6=0

|P δ
2k | ≤

∑
k 6=0

Cn
Nn/(n−1)

2k
≤ CnN

n/(n−1)
∞∑
k=1

1

2k
= CnN

n/(n−1).

This proves 1.3. And again if we have N lines that intersect on [−R,R]n then we
can scale Rn s.t the lines intersect in [−1, 1]n. Then we choose δ1−n = N and put
the lines as central lines of the tubes. So 1.4 follows from 1.3.
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