ON THE NUMBER OF INTERSECTIONS OF TUBES Johan Aspegren

Abstract. In this article we will prove that if the number of δ-tubes is $N=$ δ^{1-n} and if the δ-tubes intersect on the unit cube, then the number of their intersections of order μ is bounded by $C_{n} \frac{N^{n /(n-1)}}{\mu}$. This implies that the number of (central) line intersections of order μ is bounded by $C_{n} \frac{N^{n /(n-1)}}{\mu}$. After making a dyadic decomposition and summing the orders together we will find that the number of (central) line intersections of N lines is bounded by $C_{n} N^{n /(n-1)}$. Given a finite number of lines we can always assume that they intersect on the unit cube, so we have a essentially sharp bound for the number of line intersections. An extremal case is the standard gris in \mathbf{R}^{n}. Previously this has been studied for special kind of line intersections called joints. Moreover, we will prove a generalized lemma of Córdoba.

1. Introduction

In \mathbf{R}^{n} a joint is formed by the intersection of n lines whose tangent vectors are linearly independent. It's a fact that the number of joints formed by N lines are bounded by $C_{n} N^{n /(n-1)}$. This fact has quite an elementary proof [3]. In our paper we control all line or tube intersections in all scales. Our bound for the total line intersections is essentially sharp. An extremal example is a standard grid of N lines. A line l_{i} is defined as

$$
l_{i}:=\left\{y \in \mathbf{R}^{n} \mid \exists a, x \in \mathbf{R}^{n} \quad \text { and } \quad t \in \mathbf{R} \quad \text { s.t } \quad y=a+x t\right\}
$$

We define the δ-tubes as δ neighbourhoods of lines:

$$
T_{i}:=\left\{x \in \mathbf{R}^{n}| | x-y \mid \leq \delta, \quad y \in l_{i}\right\} .
$$

The order of intersection is defined as the number of tubes (lines) intersecting. We use P_{μ}^{δ} as the set of δ-tube intersections of order μ and P_{μ} as the set of line intersections of order P_{μ}. Moreover, P^{δ} and P mean the set of δ-tube intersections and the set of line line intersections, respectively. If $\mu>1$ then

$$
P_{\mu}^{\delta}:=\bigcup_{j=1}^{M_{\mu}^{\delta}} \bigcap_{i=1}^{\mu} T_{i j}
$$

We define

$$
\#\left(P_{\mu}^{\delta}\right)=M_{\mu}^{\delta}
$$

and the total number of intersections is

$$
\#\left(P^{\delta}\right)=\sum_{\mu} M_{\mu}^{\delta}
$$

In a same way we define $\#\left(P_{\mu}\right)$ and $\#(P)$. Our main theorem is the following:

[^0]Theorem 1.1. Let $N=\delta^{1-n}$. Given $N \delta$-tubes that intersect on the unit cube, it holds for the number of order $\mu>1$ intersections that

$$
\begin{equation*}
\#\left(P_{\mu}^{\delta}\right) \leq C_{n} \frac{N^{n /(n-1)}}{\mu} \tag{1.1}
\end{equation*}
$$

Corollary 1.2. Let $N=\delta^{1-n}$. Given $N \delta$-tubes that intersect on the unit cube, it holds for the number intersections that

$$
\begin{equation*}
\#\left(P^{\delta}\right) \leq C_{n} N^{n /(n-1)} \tag{1.2}
\end{equation*}
$$

Corollary 1.3. Given N lines it holds for the number of intersections of order μ that

$$
\begin{equation*}
\#\left(P_{\mu}\right) \leq C_{n} \frac{N^{n /(n-1)}}{\mu} \tag{1.3}
\end{equation*}
$$

Corollary 1.4. Given N lines it holds for the number of intersections that

$$
\begin{equation*}
\#(P) \leq C_{n} N^{n /(n-1)} \tag{1.4}
\end{equation*}
$$

Our other result is the following: a generalization of a lemma of Corbóda.
Lemma 1.5. [A generalization of a lemma of Corbóda] For tube intersections of order 2^{k} it holds that

$$
\left|\bigcap_{i=1}^{2^{k}} T_{i}\right| \lesssim \delta^{n-1} 2^{-k /(n-1)}
$$

It's not hard to check that the above bound is essentially tight.

2. Previously known results

We will use the following bound for the pairwise intersections of δ-tubes:
Lemma 2.1 (Corbòda). For any pair of directions $\omega_{i}, \omega_{j} \in S^{n-1}$ and any pair of points $a, b \in \mathbb{R}^{n}$, we have

$$
\left|T_{\omega_{i}}^{\delta}(a) \cap T_{\omega_{j}}^{\delta}(b)\right| \lesssim \frac{\delta^{n}}{\left|\omega_{i}-\omega_{j}\right|}
$$

A proof can be found for example in [2].
For any (spherical) cap $\Omega \subset S^{n-1},|\Omega| \gtrsim \delta^{n-1}, \delta>0$, define its δ-entropy $N_{\delta}(\Omega)$ as the maximum possible cardinality for an δ-separated subset of Ω.

Lemma 2.2. In the notation just defined

$$
N_{\delta}(\Omega) \sim \frac{|\Omega|}{\delta^{n-1}} .
$$

Again, a proof can essentially be found in [2].
3. A proof of the generalization of the lemma of Corbóda

Let us define

$$
E_{2^{k}}:=\left\{x \in \mathbf{R}^{n} \mid 2^{k} \leq \sum_{i=1}^{N} 1_{T_{i}} \leq 2^{k+1}\right\} .
$$

Let us suppose that $2^{k}=\delta^{-\beta}, 0<\beta \leq n-1$, and let's suppose that tube $T_{\omega^{\prime}}$ intersecting $T_{\omega} \cap E_{2^{k}}$ has it's direction outside of a cap of size $\sim \delta^{n-1-\beta}$ on the unit
sphere. Then the angle between T_{ω} and $T_{\omega^{\prime}}$ is greater than $\sim \delta^{1-\beta /(n-1)}$. Thus by lemma 2.1 the intersection

$$
\begin{equation*}
\left|\bigcap_{i=1}^{2^{k}} T_{i}\right| \leq\left|T_{\omega} \cap T_{\omega^{\prime}} \cap E_{2^{k}}\right| \leq\left|T_{\omega} \cap T_{\omega^{\prime}}\right| \lesssim \delta^{n-1+\beta /(n-1)}=\delta^{n-1} 2^{-k /(n-1)} \tag{3.1}
\end{equation*}
$$

Thus, we can suppose that the directions in the intersection $E_{2^{k}} \cap T_{\omega} \cap T_{\omega^{\prime}}$ belong to a cap of size $\sim \delta^{n-1+\beta}$. If we δ - separate the cap via lemma 2.2 we get that the cap can contain at most $\sim 2^{k}$ tube-directions. Thus, for any tube T_{ω} in the intersection there exists a tube $T_{\omega^{\prime}}$, such that the angle between T_{ω} and $T_{\omega^{\prime}}$ is $\sim \delta^{1-\beta /(n-1)}$ and the inequality (3.1) is valid. Thus we proved the lemma 1.5.

4. On the number of intersections of given order

Define the following set

$$
\begin{equation*}
E_{\mu}:=\left\{x \in \mathbf{R}^{n} \mid \sum_{i=1}^{N} 1_{T_{i}}=\mu\right\} . \tag{4.1}
\end{equation*}
$$

So that

$$
\begin{align*}
\mu\left|E_{\mu}\right| & =\int_{[-1,1]^{n} \cap E_{2^{k}}} \sum_{i=1}^{N} 1_{T_{i}}=\sum_{i=1}^{N} \int_{[-1,1]^{n} \cap E_{2^{k}}} 1_{T_{i}} \tag{4.2}\\
& \leq 2^{n} \delta^{n-1} N|B(1,0)|=\delta^{n-1} C_{n} N .
\end{align*}
$$

We define an intersection $I_{j k}$ of order $\mu>1$ as

$$
I_{k j}:=\bigcap_{i=1}^{\mu} T_{i j} .
$$

So that

$$
E_{\mu}=\bigcup I_{j \mu}
$$

and

$$
\left|E_{\mu}\right|=\sum_{j=1}^{M_{\mu}}\left|I_{j \mu}\right|
$$

Now, let us scale δ to 2δ. Define the scaled versions $I_{j \mu}$ and E_{μ} as $I_{j \mu}^{\prime}$ and E_{μ}^{\prime}, respectively. It holds that $I_{j \mu}^{\prime} \cap[-1,1]^{n}$ contains a δ-ball. So that

$$
\begin{equation*}
\delta^{n}|B(0,1)| \leq\left|I_{j \mu}^{\prime}\right| \tag{4.3}
\end{equation*}
$$

We define M_{u}^{\prime} as the number of intersection of order μ of 2δ-tubes. Clearly

$$
\begin{equation*}
\#\left(P_{\mu}^{\delta}\right)=M_{u} \leq M_{u^{\prime}}=\#\left(P_{\mu}^{\delta \prime}\right) \tag{4.4}
\end{equation*}
$$

It follows from above (4.3), (4.4) and from (4.2) that

$$
\mu \delta^{n}|B(0,1)|\left|P_{\mu}^{\delta}\right| \leq \mu \sum_{j=1}^{M_{\mu}^{\prime}}\left|I_{j \mu}^{\prime}\right| \leq \mu\left|E_{\mu}^{\prime}\right| \leq \delta^{n-1} 2^{n} N
$$

Thus,

$$
\mu \delta^{n}\left|P_{\mu}^{\delta}\right| \leq \delta^{n-1} C_{n} N
$$

which is equivalent to

$$
\begin{equation*}
\delta\left|P_{\mu}^{\delta}\right| \leq C_{n} \frac{N}{\mu} \tag{4.5}
\end{equation*}
$$

We assumed in our theorem 1.1 that

$$
N=\delta^{1-n}
$$

so that

$$
\begin{equation*}
N^{-1 /(1-n)}=\delta \tag{4.6}
\end{equation*}
$$

Thus, it follows from (4.5) and (4.6) that

$$
N^{-1 /(n-1)}\left|P_{\mu}\right| \leq C_{n} \frac{N}{\mu}
$$

which is equivalent to

$$
\left|P_{\mu}\right| \leq C_{n} \frac{N^{n /(n-1)}}{\mu}
$$

The above implies our main theorem 1.1.
If we have N lines that intersect on $[-R, R]^{n}$ then we can scale \mathbf{R}^{n} s.t the lines intersect in $[-1,1]^{n}$. Then we choose $\delta^{1-n}=N$. Now, the number of central line intersections is less than the number of tube intersections. So from 1.1 it follows 1.3 .

In order to prove 1.2 we will take μ dyadically. So that we have

$$
\begin{equation*}
E_{2^{k}}:=\left\{x \in \mathbf{R}^{n} \mid 2^{k} \leq \sum_{i=1}^{N} 1_{T_{i}} \leq 2^{k+1}\right\} \tag{4.7}
\end{equation*}
$$

The set of intersections are now defined as

$$
P_{2^{k}}^{\delta}:=\bigcup_{j=1}^{M_{2 k}^{\delta}} \bigcap_{i=1}^{\mu} T_{i j},
$$

$\#\left(p_{2^{k}}^{\delta}\right)=M_{2^{k}}$, and

$$
\left|E_{2^{k}}\right|=\sum_{j}\left|I_{j 2^{k}}\right|
$$

So we have

$$
2^{k} \delta^{n}|B(0,1)|\left|P_{2^{k}}^{\delta}\right| \leq 2^{k} \sum_{j}\left|I_{j 2^{k}}^{\prime}\right| \leq 2^{k}\left|E_{2^{k}}^{\prime}\right| \leq \delta^{n-1} \mid C_{n} N
$$

where $I_{j 2^{k}}^{\prime}$ and $E_{2^{k}}^{\prime}$ are scaled versions of $I_{j 2^{k}}$ and $E_{2^{k}}$, respectively. Thus, like before it follows that

$$
\left|P_{2^{k}}^{\delta}\right| \leq C_{n} \frac{N^{n /(n-1)}}{2^{k}}
$$

But if we sum above over k we have

$$
\left|P^{\delta}\right|=\sum_{k \neq 0}\left|P_{2^{k}}^{\delta}\right| \leq \sum_{k \neq 0} C_{n} \frac{N^{n /(n-1)}}{2^{k}} \leq C_{n} N^{n /(n-1)} \sum_{k=1}^{\infty} \frac{1}{2^{k}}=C_{n} N^{n /(n-1)}
$$

This proves 1.3. And again if we have N lines that intersect on $[-R, R]^{n}$ then we can scale \mathbf{R}^{n} s.t the lines intersect in $[-1,1]^{n}$. Then we choose $\delta^{1-n}=N$ and put the lines as central lines of the tubes. So 1.4 follows from 1.3.

References

[1] A. Còrdoba, The Kakeya Maximal Function and the Spherical Summation Multipliers, American Journal of Mathematics 99 (1977), 1-22.
[2] E.Kroc, The Kakeya problem, available at
http://ekroc.weebly.com/uploads/2/1/6/3/21633182/mscessay-final.pdf
[3] R. Quilodrán, The Joints Problem in \mathbb{R}^{n}, SIAM Journal on Discrete Mathematics 23(4)(2010),2211-2213.

[^0]: 2010 Mathematics Subject Classification. Primary 42B37; Secondary 28A75.
 Key words and phrases. Incidence geometry.

