
ON THE NUMBER OF INTERSECTIONS OF TUBES

Abstract. In this article we will always assume that the number of δ-tubes
is N = δ1−n. Moreover, we will assume that if any two δ-tubes intersect, then

they intersect in the unit ball. We will show that the number of their intersec-

tions of order µ is bounded by
|B(0,1+δ)|
|B(0,1)| (1 + 2δ)2n−1|Bn−1(0, 1)|N

n/(n−1)

µ
.

After making a dyadic decomposition and summing the orders together we
will find that the number of tube intersections of N tubes is bounded by
|B(0,1+N−1/(n−1))|

|B(0,1)| 2n−1(1+2N−1/(n−1))|Bn−1(0, 1)|Nn/(n−1). Moreover, we

will prove a generalized lemma of Córdoba and we will prove the Kakeya sets

have greater dimension than n− 1.

1. Introduction

In Rn a joint is formed by the intersection of n lines whose tangent vectors are
linearly independent. It‘s a fact that the number of joints formed by N lines are
bounded by CnN

n/(n−1). This fact has quite an elementary proof [3]. In our paper
we control tube intersections in all scales. Our bound for the total more than δ-
spaced line intersections is essentially sharp. An extremal example is a standard
grid of N lines. A line li is defined as

li := {y ∈ Rn|∃a, x ∈ Rn and t ∈ R s.t y = a+ xt}

We define the δ-tubes as δ neighbourhoods of lines:

T δi := {x ∈ Rn||x− y| ≤ δ, y ∈ li}.

The order of intersection is defined as the number of tubes (lines) intersecting.
We use P δµ as the set of δ-tube intersections of order µ and Pµ as the set of line

intersections of order Pµ. Moreover, P δ and P mean the set of δ-tube intersections
and the set of line line intersections, respectively. If µ > 1 then

P δµ :=

Mδ
µ⋃

j=1

µ⋂
i=1

T δij

We define

#(P δµ) = Mδ
µ

and the total number of intersections is

#(P δ) =
∑
µ

Mδ
µ.

In a same way we define #(Pµ) and #(P ). Our main theorem is the following:
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Theorem 1.1. Let N = δ1−n. Let there be N δ-tubes. Assume that if two tubes
intersect, then they intersect in the unit ball. It holds for the number of order µ > 1
intersections that

(1.1) #(P δµ) ≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)2n−1|Bn−1(0, 1)|N
n/(n−1)

µ
.

Corollary 1.2. Let N = δ1−n. Let there be N δ-tubes. Assume that if two tubes
intersect, then they intersect in the unit ball. It holds for the number of intersections
that

(1.2) #(P δ) ≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)2n−1|Bn−1(0, 1)|Nn/(n−1).

We consider also a special case.

Theorem 1.3. Let N = δ1−n. Let there be N δ-tubes. Assume that if two tubes
intersect, then their central lines intersect in the unit ball. Then it holds for the
number of order µ > 1 intersections that

(1.3) #(P δµ) ≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)|Bn−1(0, 1)|N
n/(n−1)

µ
.

Corollary 1.4. Let N = δ1−n. Let there be N δ-tubes. Assume that if two tubes
intersect, then their central lines intersect in the unit ball. Then it holds for the
number intersections that

(1.4) #(P δ) ≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)|Bn−1(0, 1)|Nn/(n−1).

For lines we have the following.

Corollary 1.5. Let there be N lines. Let for any four lines l1, l2, l3 and l4 hold
that ||l1 ∩ l2 − l3 ∩ l4|| ≥ N−1/(n−1). Then it holds for the number of intersections
of order µ that

(1.5) #(Pµ) ≤ |B(0, 1 +N−1/(n−1))|
|B(0, 1)|

(1 + 2N−1/(n−1))|Bn−1(0, 1)|N
n/(n−1)

µ
.

Corollary 1.6. Let there be N lines. Let for any four lines l1, l2, l3 and l4 hold
that ||l1 ∩ l2 − l3 ∩ l4|| ≥ N−1/(n−1). Then it holds for the number of intersections

(1.6) #(P ) ≤ |B(0, 1 +N−1/(n−1))|
|B(0, 1)|

(1 + 2N−1/(n−1))|Bn−1(0, 1)|Nn/(n−1),

Our other result is the following: a generalization of a lemma of Corbóda.

Lemma 1.7. [A generalization of a lemma of Corbóda] For tube intersections of
order 2k > 1 it holds that

|
2k⋂
i=1

Ti| . δn−12−k/(n−1).

It‘s not hard to check that the above bound is essentially tight. Moreover, let
f ∈ L1

loc(Rn). For each tube in B(0, 2) define a as it‘s center of mass. Define the
Kakeya maximal function
f∗δ : Sn−1 → R via

f∗δ (ω) = sup
a∈Rn

1

T δω(a) ∩B(0, 2)

∫
T δω(a)∩B(0,2)

|f(y)|dy.
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In this paper any constant can depend on dimension n. In study of the Kakeya
maximal function conjecture we are aiming at the following bounds

(1.7) ||f∗δ ||p ≤ Cεδ−n/p+1−ε,

for all ε > 0. Remarkably, a bound of the form (1.7) follows from a bound of the
form

(1.8) ||
∑
ω∈Ω

1Tω(aω)||p/(p−1) ≤ Cεδ−n/p+1−ε,

for all ε > 0, and for any set of δ-separated of δ-tubes. See for example [4] or [2].
We will prove that

Theorem 1.8. For a maximal set of δ-separated δ-tubes we have

||
∑
ω∈Ω

1Tω(aω)||n/(n−1) . (ln
1

δ
)(n−1)/nδ(n−1)/n,

It follows that, see for example [2], that

Corollary 1.9. Any Kakeya set has Hausdorff dimension at least n− 1.

2. Previously known results

We will use the following bound for the pairwise intersections of δ-tubes:

Lemma 2.1 (Corbòda). For any pair of directions ωi, ωj ∈ Sn−1 and any pair of
points a, b ∈ Rn ∩B(0, 2), we have

|T δωi(a) ∩ T δωj (b)| .
δn

|ωi − ωj |
.

A proof can be found for example in [2].
For any (spherical) cap Ω ⊂ Sn−1, |Ω| & δn−1, δ > 0, define its δ-entropy Nδ(Ω)

as the maximum possible cardinality for an δ-separated subset of Ω.

Lemma 2.2. In the notation just defined

Nδ(Ω) ∼ |Ω|
δn−1

.

Again, a proof can essentially be found in [2].

3. A proof of the generalization of the lemma of Corbóda

Let us define

E2k := {x ∈ Rn|2k ≤
N∑
i=1

1Ti(x)1B(0,2)(x) ≤ 2k+1}.

Let us suppose that 2k = δ−β , 0 < β ≤ n − 1, and let‘s suppose that tube Tω′

intersecting Tω∩E2k has it‘s direction outside of a cap of size ∼ δn−1−β on the unit
sphere. Then the angle between Tω and Tω′ is greater than ∼ δ1−β/(n−1). Thus by
lemma 2.1 the intersection

(3.1) |
2k⋂
i=1

Ti| ≤ |Tω ∩ Tω′ ∩ E2k | ≤ |Tω ∩ Tω′ | . δn−1+β/(n−1) = δn−12−k/(n−1).
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Thus, we can suppose that the directions in the intersection E2k ∩ Tω ∩ Tω′ belong
to a cap of size ∼ δn−1+β . If we δ - separate the cap via lemma 2.2 we get that
the cap can contain at most ∼ 2k tube-directions. Thus, for any tube Tω in the
intersection there exists a tube Tω′ , such that the angle between Tω and Tω′ is
∼ δ1−β/(n−1) and the inequality (3.1) is valid. Thus we proved the lemma 1.7.

4. On the number of intersections of given order

Define the following set

(4.1) Eµ := {x ∈ Rn|
N∑
i=1

1T δi (x) = µ}.

So that

(4.2)
µ|Eµ| =

∫
[−1,1]n∩E

2k

N∑
i=1

1T δi (x) =

N∑
i=1

∫
B(0,1)∩E

2k

1T δi (x)

≤ δn−1|Bn−1(0, 1)||B(0, 1)|N,

where Bn−1(0, 1) is the n− 1-dimensional unit ball. We define an intersection Ijµ
of order µ > 1 as

Ijµ :=

µ⋂
i=1

T δij .

So that

Eµ =
⋃
Ijµ

and

|Eµ| =
Mµ∑
j=1

|Ijµ|.

Because the central lines of tubes intersect, it holds that Ijµ ∩B(0, 1 + δ) contains
a δ-ball. So that

(4.3) δn|B(0, 1)| ≤ |Ijµ|.
It follows from above (4.3) and from (4.2) that

µδn|B(0, 1)|#(P δµ) ≤ µ
Mµ∑
j=1

|Ijµ| ≤ µ|Eµ|

≤ (1 + 2δ)|Bn−1(0, 1)||B(0, 1 + δ)|N
n/(n−1)

µ
δn−1N,

where we replaced the length of the tube with 1 + 2δ. Thus,

µδn#(P δµ) ≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)|Bn−1(0, 1)|δn−1N,

which is equivalent to

(4.4) δ#(P δµ) ≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)|Bn−1(0, 1)|N
µ
.

We assumed in our theorem 1.3 that

N = δ1−n,
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so that

(4.5) N−1/(1−n) = δ

Thus, it follows from (4.4) and (4.5) that

(4.6) N−1/(n−1)#(Pµ) ≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)|Bn−1(0, 1)|N
µ
.

which is equivalent to

#(Pµ) ≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)|Bn−1(0, 1)|N
n/(n−1)

µ
.

The above implies our theorem 1.3. If we have N lines that intersect on B(0, R)
then we can scale Rn s.t if the lines intersect they intersect in B(0, 1). Then we
choose δ1−n = N and form the tubes. If each tube intersection contains only one
central line intersection, then the corollary 1.5 follows. This is the case if and only
if the central line intersections are spaced by strictly more than δ. On the other way
the implication is trivial. To see the if part, assume that we have the lines l1, l2, l3
and L4 and intersections l1∩L2 and l3∩l4 are spaced by ||l1∩l2−L3∩L4|| > δ. Then
it follows that T δ1 ∩ T δ2 ∩ T δ3 ∩ T δ4 = ∅. Otherwise, we have two tubes intersecting
without their central lines intersecting, because the central line intersections are
unique. In order to prove 1.4 we will take µ dyadically. So that we have

E2k := {x ∈ Rn|2k ≤
N∑
i=1

1Ti < 2k+1}.

The set of intersections are now defined as

P δ2k :=

Mδ

2k⋃
j=1

∼2k⋂
i=1

Tij ,

#(pδ2k) = M2k , and

|E2k | =
∑
j

|Ij2k |.

So we have
2kδn|B(0, 1)|#(P δ2k) ≤ 2k

∑
j

|Ij2k | = 2k|E2k |

≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)|Bn−1(0, 1)|δn−1N.

Thus, like before it follows that

#(P δ2k) ≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)|Bn−1(0, 1)|N
n/(n−1)

2k
.

But if we sum above over k we have

#(P δ) =
∑
k 6=0

#(P δ2k) ≤
∑
k 6=0

|B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)|Bn−1(0, 1)|N
n/(n−1)

2k

≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)|Bn−1(0, 1)|N
n/(n−1)

µ
Nn/(n−1)

∞∑
k=1

1

2k

=
|B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)|Bn−1(0, 1)|Nn/(n−1).
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This proves 1.5. And again if we have N lines that intersect on B(0, R) then we
can scale Rn s.t the lines intersect in B(0, 1). Then we choose δ1−n = N and put
the lines as central lines of the tubes, and if each tube intersection contains only
one central line intersection, then the corollary 1.6 follows from 1.5. This is the
case when the line intersections are spaced by more than δ.
Now, let us scale δ to 2δ. Define the scaled versions Ijµ and Eµ as I ′jµ and E′µ,
respectively. It holds that I ′jµ ∩ B(0, 1 + δ) contains a δ-ball, even if the central
lines of the tubes never meet. So that

δn|B(0, 1)| ≤ |I ′jµ|.

We define M ′u as the number of intersection of order µ of 2δ-tubes. Clearly

#(P δµ) ≤ #(P 2δ),

because each intersection in Eµ is an intersection in
⋃
µ>1E

′
µ. Just like before it

follows that

µδn|B(0, 1)|#(P δµ) ≤
∫
Eµ∩B(0,1+δ)

N∑
i=1

1T δi ≤
∫
⋃
µ>1 E

′
µ∩B(0,1+δ)

N∑
i=1

1T 2δ
i

≤ (1 + 2N−1/(n−1))2n−1|Bn−1(0, 1)||B(0, 1 + δ)|δn−1N,

where we replaced the length of the tube with 1 + 2δ. Because N = δ1−n it follows
that

N−1/(n−1)#(Pµ) ≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)2n−1|Bn−1(0, 1)|N
µ
.

which is equivalent to

#(Pµ) ≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)2n−1|Bn−1(0, 1)|N
n/(n−1)

µ
.

The above implies our main theorem 1.1.
In order to prove 1.2 we will again take µ dyadically. So that we have

E2k := {x ∈ Rn|2k ≤
N∑
i=1

1Ti ≤ 2k+1}.

The set of intersections are now defined as

P δ2k :=

Mδ

2k⋃
j=1

∼2k⋂
i=1

Tij ,

#(pδ2k) = M2k , and

|E′2k | =
∑
j

|I ′j2k |.

So we have

2kδn|B(0, 1)|#(P δ2k) ≤
∫
E

2k
∩B(0,1+δ)

N∑
i=1

1T δi ≤
∫
⋃
k>0 E

′
2k
∩B(0,1+δ)

N∑
i=1

1T 2δ
i

≤ (1 + 2N−1/(n−1))2n−1|Bn−1(0, 1)||B(0, 1 + δ)|δn−1N
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where I ′j2k and E′2k are scaled versions of Ij2k and E2k , respectively. Thus, like

before it follows that

#(P δ2k) ≤ |B(0, 1 + δ)|
|B(0, 1)|

2n−1(1 + 2δ)2n−1|Bn−1(0, 1)|N
n/(n−1)

2k
.

But if we sum above over k we have

#(P δ) =
∑
k 6=0

#(P δ2k) ≤
∑
k 6=0

|B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)2n−1|Bn−1(0, 1)|N
n/(n−1)

2k

≤ |B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)2n−1|Bn−1(0, 1)|N
n/(n−1)

µ
Nn/(n−1)

∞∑
k=1

1

2k

=
|B(0, 1 + δ)|
|B(0, 1)|

(1 + 2δ)2n−1|Bn−1(0, 1)|Nn/(n−1).

This proves 1.2.

5. The δ(n−1)/n bound for the Kakeya maximal function

We notice that the dyadic decomposition contains about logarithmic many terms
2k. We have from (1.8), from generalize lemma of Córdoba and from the theorem
1.1 that

||
∑
ω∈Ω

1Tω(aω)||
n/(n−1)
n/(n−1) ∼

∑
k

2kn/(n−1)|E2k | .
∑
k

2kn/(n−1)Nδn−12−k/(n−1) . ln
1

n
δ−1.

The above is equivalent to our theorem 1.8.
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