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Abstract. Nanocrystalline Li0.5Fe2.5O4 was prepared by a starch-based soft-chemistry 

synthesis. Calcining of the (LiFe)-gel between 350 and 1000 °C results in Li0.5Fe2.5O4 

powders with crystallite sizes from 13 to 141 nm and specific surface areas between 35 and 

7.1 m
2
 g

1
. XRD investigations reveal the formation of ordered Li0.5Fe2.5O4. Sintering 

between 1050 and 1250 °C leads to ceramics with relative densities of 6795 % consisting of 

grains between 0.3 and 54 µm. As the sintering temperature increases a rising weight loss of 

the ceramic samples was observed due to the loss of Li2O. Temperature-dependent magnetic 

measurements indicate a superparamagnetic behaviour for the nano-sized samples. Field-

dependent measurements at 3 K of ceramics sintered between 1050 and 1200 °C show 

increasing saturation magnetization values (Ms) of 70.0 to 73.0 emu g
1

 most likely due to the 

formation of lithium vacancies and a decrease of the inversion parameter. The magnetization 

drops down to 67.7 emu g
1

 after sintering at 1250 °C caused by the formation of hematite. 

Diffuse reflectance spectra reveal an indirect allowed band gap decreasing from 1.93 to 1.60 

eV depending on thermal treatment. DSC measurements of the order  disorder phase 

transition on nano-sized powders and bulk ceramics exhibit transition temperatures between 
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734 and 755 °C and enthalpy changes (trsH) ranging from 5.0 to 13.5 J g
1

. The linear 

thermal expansion coefficient was found to be 11.410
6

 K
1

. 
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1. Introduction 

Li0.5Fe2.5O4 (LiFe5O8) has interesting technological applications such as microwave, optical 

isolator, and memory devices because of its high saturation magnetization and Curie 

temperature [1,2,3]. Lithium ferrite can be also used as electrode material in lithium ion 

batteries [4,5]. In addition, Li0.5Fe2.5O4 act as catalyst for the synthesis of biodiesel and -

amino ketones as well as photocatalyst for the decomposition of organic compounds and for 

water splitting [69]. Furthermore, Rezlescu et al. [10] reported on lithium ferrite for gas 

sensing applications. Moreover, a magnetoelectric effect was found in Li0.5Fe2.5O4 as well as 

in BaTiO3Li0.5Fe2.5O4 composites [11,12].  

Li0.5Fe2.5O4 crystallizes in the inverse spinel structure and occurs in an ordered form (-form, 

SG: P4332) and a disordered one (-form, SG: Fd3̅m) [13]. The reversible ordered  

disordered phase transition in bulk material take place at about 750 °C and a Curie 

temperature of about 630 °C was found [14]. The disordered form (-Li0.5Fe2.5O4) can be 

obtained by rapid quenching of samples from high temperatures to room temperature, whereas 

the ordered spinel phase forms upon slow cooling. At high temperatures, Li0.5Fe2.5O4 loses 

lithium and oxygen which influences the magnetic and electrical properties [15,16]. 

Polycrystalline Li0.5Fe2.5O4 samples are commonly synthesized by the conventional mixed-

oxide method which requires high calcining temperatures leading to large particles and high 

sintering temperatures [17]. Whereas, soft-chemistry syntheses require low reaction 

temperatures to synthesize nano-sized samples. Various soft-chemical syntheses have been 

reported, such as hydrothermal [18], solvothermal [19], sol-gel [20,21], combustion [22,23] 

and precursor routes [24]. Closer inspection shows, that various synthesis routes lead to 

Li0.5Fe2.5O4 with traces of hematite [2528]. In order to avoid the formation of iron-rich 

secondary phases an excess of lithium was used [2931]. The formation of -Li0.5Fe2.5O4 at 

low temperatures was reported for some soft-chemical syntheses [18,32,33]. 

The aim of this paper is to describe a facile synthesis route using starch to prepare 

nanocrystalline Li0.5Fe2.5O4 powders and ceramic bodies obtained from these powders. Phase 

evolution during calcination and sintering were monitored by XRD. Furthermore, magnetic 

measurements between 3 and 300 K were carried out both on calcined powders and ceramic 
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bodies. Moreover, we determined the order  disorder phase transition temperature and 

enthalpy change depending on particle size as well as the linear thermal expansion coefficient 

of Li0.5Fe2.5O4. 

 

2. Experimental 

2.1. Material preparation 

Fe(NO3)39H2O (0.024 mol, Alfa Aesar, ACS reagent), Li2CO3 (0.0024 mol, UCB Belgium,  

99 %) and NH4NO3 (0.036 mol, Fluka < 99 %) were dissolved in 10 ml deionized water. 

After addition of 0.0123 mol soluble starch (M = 342.30 g mol
1

, Sigma-Aldrich, ACS 

reagent) the turbid solution was stirred at room temperature until it turned to a highly viscous 

red gel. This (LiFe)-gel was calcined for 2 h in static air at various temperatures (heating-

/cooling rate 5 K min
1

) leading to Li0.5Fe2.5O4 nano powders. To obtain ceramic bodies, the 

(LiFe)-gel was calcined at 350 °C for 2 h. Then, the resulting powder was mixed with 10 wt% 

of a saturated aqueous polyvinyl alcohol (PVA) solution as a pressing aid and uniaxially 

pressed at about 85 MPa into pellets (green density 1.5 g cm
3

). These pellets were placed on 

a ZrO2 fibre mat and sintered to ceramic bodies.  

 

2.2. Characterization 

X-ray powder diffraction patterns were recorded at room temperature on a Bruker D8-

Advance diffractometer, equipped with a one-dimensional silicon strip detector (LynxEye) 

using Cu-K radiation and a counting time of 1 s per data point. Crystallite size and the strain 

parameter were calculated from XRD line broadening (integral peak breadth) using the 

Scherrer and Wilson equations (software suite WinXPOW [34]). Dilatometric measurements 

were carried out in flowing synthetic air (50 ml min
1

) with a rate of 5 K min
1

 and a contact 

force of 0.2 N in a Netzsch TMA 402F3 dilatometer. Simultaneous thermogravimetric (TG) 

and differential thermoanalytic (DSC) investigations in flowing synthetic air (50 ml min
1

) 

were performed using a Netzsch STA 449F5 system. To study the phase transitions in 

Li0.5Fe2.5O4, the ceramic bodies were crushed to powders and the DSC curves were performed 

with a rate of 20 K min
1

. The specific surface area (BET) was determined using nitrogen 

five-point gasphysisorption (Nova touch 2LX, Quantachrome Corporation). The equivalent 

BET particle diameter was calculated assuming a spherical or cubic particle shape. Scanning 

electron microscope images were recorded with a Phenom ProX SEM in the backscattered 

electron mode (BSE). Diffuse reflectance spectra were recorded at room temperature using a 

Perkin Elmer UVVis spectrometer Lambda 19 with BaSO4 as white standard. Magnetic 
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measurements were carried out using a Quantum Design PPMS9. Hysteresis loops were taken 

with magnetic field cycling between 90 and + 90 kOe. In addition, the temperature 

dependent magnetizations were measured between 3300 K using field-cooled (FC) and zero-

field cooled (ZFC) conditions. The samples were enclosed in gel capsules whose very small 

contribution to the measured magnetic moment was subtracted before data evaluation. 

 

3. Results and discussion 

3.1. Synthesis and powder characterization 

The formation of Li0.5Fe2.5O4 was examined by thermal decomposition of the (LiFe)-gel in a 

muffle furnace in static air (heating rate 5 K min
1

, soaking time 2 h). The prepared red 

(LiFe)-gel is X-ray amorphous (Fig. S1, supporting information). Heating the gel at 300 °C 

leads to a brown powder. The XRD pattern (Graph 1a) only shows reflections which can be 

assigned to Li0.5Fe2.5O4. Measurements with a prolonged counting time (see insets in Fig. 1) 

show the formation of the (210) and (211) superstructure reflections proofing the formation of 

the ordered Li0.5Fe2.5O4 phase (JCPDS #01-082-1436). Thermoanalytic measurements of the 

sample calcined at 300 °C show a strong exothermic weight loss of about 17 % up to 800 °C 

suggesting the presence of undecomposed amorphous compounds. Calcining at 350 °C results 

in a full decomposition and the formation of ordered lithium ferrite with a light-brown colour 

(Graph 1b). At 600 °C the superstructure reflections of the ordered phase can be even more 

clearly seen (Graph 1d). Up to a calcination temperature of 1000 °C no secondary phases 

appear (Graph 1e). The crystallite size of the calcined Li0.5Fe2.5O4 powders increases from 

13(1) nm after thermal treatment at 350 °C to 20(2) nm at 600 °C and to 142(11) nm at 1000 

°C (Fig. 2). Likewise, the specific surface area decreases from 35(3) to 7.1(6) m
2
 g

1
 with 

rising calcining temperature as shown in right scale of Fig. 2. 

The presented synthesis led to a significant reduction of the reaction temperature to 350 °C 

for phase pure ordered Li0.5Fe2.5O4 with a stoichiometric initial Li/Fe ratio of 0.2, compared to 

the conventional mixed-oxide method and to other wet-chemical syntheses [11,2527]. The 

low intensity of the superstructure reflections up to 600 °C is caused by the low degree of 

order of lithium and iron ions at octahedral sites. 
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Fig. 1. Room-temperature XRD patterns of the (LiFe)-gel after calcination for 2 h at different 

temperatures (heating rate 5 K/min): a) 300 °C, b) 350 °C, c) 500 °C, d) 600 °C, and e) 1000 

°C. The insets show a magnification of XRD patterns recorded with a prolonged counting 

time of 10 s and 40 s per data point, respectively. The reflections marked by an asterisk are 

superstructure reflections. 

 



6 

 

Fig. 2. Evolution of the crystallite size with the calcining temperature. The right scale shows 

the development of the specific surface area. 

 

3.2. Sintering behaviour and microstructure of ceramic bodies 

Prior to investigation of the sintering behaviour, the (LiFe)-gel was calcined at 350 °C for 2 h. 

As mentioned above, this calcination process leads to a light-brown nanocrystalline 

Li0.5Fe2.5O4 powder with a volume-weighted average crystallite size of 13(1) nm. The specific 

surface area of that powder was determined as 35(3) m
2
 g

1
 corresponding to a calculated 

equivalent particle size of 36(3) nm. The difference between the crystallite size and the 

particle size from BET data can be explained by an agglomeration leading to surface areas 

unavailable for nitrogen adsorption.  

This nanocrystalline powder was pressed to pellets and isothermal sintered for 1 h in static air 

at different temperatures (heating-/ cooling rate: 5 K min
1

). The final bulk densities (Fig. 3) 

of the black-brown ceramic bodies were calculated from their weight and geometric 

dimensions and related to the single crystal density of 4.72 g cm
3

 [13]. Sintering at 1000 and 

1050 °C results in a poor densification with relative densities of 67(1) and 79(1) %, 

respectively. Firing at 1100 °C leads to bodies with 90(1) % relative density which increases 

to 93(1) and 95(1) % at 1150 and 1250 °C, respectively. SEM images of ceramics bodies are 

shown in Fig. 4. Ceramics sintered at 1050 °C and 1100 °C show irregular grains with a 
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bimodal type grain size distribution between 0.36.5 µm and 0.520 µm, respectively (Fig. 

4a,b). After firing at 1150 °C the grain sizes range between 1.5 and 36 µm and the average 

grain size is 6.6(5) µm as determined by the lineal intercept method [35]. The grains grow to 

2.545 µm (li = 11(1) µm) and 2.554 µm (li = 13(1) µm) at 1200 and 1250 °C, 

respectively (Fig. 4c,d).  

 

Fig. 3. Bulk densities of ceramic bodies after sintering at various temperatures (soaking time 

1 h, heating rate 5 K min
1

). Error bars correspond to the size of the symbols. 
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Fig. 4. SEM-BSE images of ceramic bodies sintered for 1 h at (a) 1100 °C, (b)1150 °C, (c) 

1200 °C, and (d) 1250 °C. 

 

As reported elsewhere, heating of Li0.5Fe2.5O4 leads to a sublimation of Li2O [36,37]. To 

estimate the weight loss during thermal treatment, several powder compacts were fast 

preheated to 800 °C to burn out the organic binder (PVA) and thermogravimetric 

measurements were carried out on these compacts. Fig. 5 shows a non-isothermal 

thermogravimetric measurement in flowing air up to 1250 °C (rate 5 K min
1

). A very slight 

weight loss starts at 750 °C, whereas a strong increase of the weight loss rate was observed 

above about 1130 °C. After one hour sintering at 1050, 1100, 1150, 1200, 1250 °C, the 

lithium loss was calculated as 4, 6, 8, 12, and 15 mol% assuming the total weight loss is 

caused by the loss of Li2O (inset in Fig. 5). A possible partial reduction of Fe
3+

 to Fe
2+

 was 

neglected because sintering was carried out in air with low cooling and heating rates [36,37]. 

XRD patterns of ceramic bodies sintered between 1050 and 1250 °C are shown in Fig. 6. To 

detect small amounts of secondary phases, the XRD patterns were recorded with a prolonged 

counting time of 10 s per data point. After one hour sintering up to 1200 °C the XRD patterns 

do not show any indications of secondary phases, i.e. only reflections of ordered Li0.5Fe2.5O4 
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can be seen. On the other hand, firing at 1250 °C leads to the formation of very small amounts 

of Fe2O3 (hematite, JCPDS #01-073-2234).  

 

Fig. 5. Thermogravimetric measurement (rate 5 K min
1

) of a Li0.5Fe2.5O4 compact in flowing 

air. The inset shows the total weight loss and the calculated lithium loss after 1 h sintering. 
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Fig. 6. Room temperature XRD patterns of powdered Li0.5Fe2.5O4 ceramics fired for 1 h at (a) 

1050 °C, (b) 1200 °C, and (c) 1250 °C. The patterns were recorded with a counting time of 10 

s per data point. The inset shows magnifications of graphs (a) and (c) including the K2 

reflections. 

 

 

3.3 Magnetic, thermoanalytic, and optical investigations 

Fig. 7 shows the temperature-dependent magnetization under ZFC and FC conditions with an 

applied field (HDC) of 1 kOe for powders calcined between 350 and 800 °C. Up to a calcining 

temperature of 600 °C the FC curve decreases with rising temperature while the ZFC curve 

increases up to a maximum. Above this maximum, the so-called blocking temperature (TB), 

the ZFC curve decreases. The blocking temperature increases with the crystallite size from 

120(3) K (dcryst = 13 nm) to 155(3) K (dcryst = 16 nm), and to 160(3) K (dcryst = 20 nm) after 

calcining at 350, 500, and 600 °C, respectively. Additionally, TB decreases with increasing 

applied field as demonstrated in Fig. S2 (supporting information). The formation of a 

maximum in the ZFC curve and the increasing of the FC curve at low temperatures indicate a 

superparamagnetic behaviour of the samples [38,39]. Furthermore, field-dependent 

magnetization measurements show very small coercivity values at 300 K which considerable 

increase below the blocking temperature suggesting that most of the particles are in the 
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superparamagnetic state. Calcining at 800 °C (dcryst. = 83 nm) does not result in any deviation 

between the FC and ZFC curve and thus no superparamagnetic behaviour. Fig. 8 shows the 

field-dependent magnetic measurements at 300 K of Li0.5Fe2.5O4 powders depending on 

calcining temperature and thus on the crystallite size. The saturation magnetization (Ms) was 

determined by extrapolating of the magnetization at high field to H
1 
 0 [40]. After 

calcining at 350 °C (dcryst. = 13 nm) the Ms value of 47.0(5) emu g
1

 is significantly lower than 

the reported bulk value of about 63  65 emu g
1

 at 300 K [41,42]. The Ms values rise with 

increasing calcining temperature and thus crystallite size up to 62.2(1) emu g
1

 after thermal 

treatment at 1000 °C (dcryst. = 142 nm) (inset in Fig. 8). The reduction of Ms with decreasing 

crystallite size is due to the increasing in surface-to-volume ratio. At the surface, the collinear 

spin arrangement found in bulk Li0.5Fe2.5O4 is disturbed because of the incomplete 

coordination environment of surface ions resulting in a reduced total magnetization [43]. 

Additionally, higher calcining temperatures lead to an improved crystallinity and thus to a 

reduction of defects [44,45]. The root-mean-square strain parameter, calculated from the XRD 

line broadening, reflects the number of crystal lattice defects and decreases from 5(1)·10
3

 to 

0.3(1)·10
3

 with increasing calcining temperature to 1000 °C.  
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Fig. 7. Temperature dependence of the magnetization under zero-field-cooled (ZFC) and 

field-cooled (FC) conditions in the range of 3–300 K for powders calcined for 2 h at (a) 350 

°C, (b) 600 °C, and (c) 800 °C. 

 

 

Fig. 8. Magnetization (M) versus applied field (HDC) at 300 K of Li0.5Fe2.5O4 powders 

calcined at the indicated temperatures for 2 h. The inset shows the saturation magnetization 

(Ms) at 300 K depending on the calcining temperature. The uncertainties of Ms ( 0.5 emu g
1

) 

are smaller than the symbol sizes. 

 

 

For the sintered ceramic bodies the courses of the magnetization (M) depending on the 

applied field (HDC) recorded at 3 K are demonstrated in Fig. 9. The ceramics show 

ferrimagnetic behaviour. The saturation magnetization increases slightly from 70.0(1) to 

73.0(1) emu g
1

 with rising sintering temperature up to 1200 °C (inset in Fig. 9). Increasing 

Ms values with rising heat treatment were already reported in literature [37,46,47]. Pointon 

and Saull [15] and Ridgley et al. [37] assumed that an increasing of the saturation 

magnetization above the value for an ideal invers spinel structure (Ms = 2.5 µB f.u.
1

 = 67.4 

emu g
1

) is caused by the formation of Fe3O4 (Ms
(bulk)

 = 4.1 µB f.u.
1

 [48]) or maghemite 
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(Ms
(bulk)

 = 3.3 µB f.u.
1

 (Fe8/3O4) [49]), due to the loss of lithium and the partial formation of 

Fe
2+

. If the increasing magnetizations were caused by the formation of magnetite or 

maghemite the fractions in the ceramic sintered at 1200 °C should be at least 18 and 29 wt%, 

respectively [50] according to the Ms values at 3 K. However, the measured weight losses 

after sintering indicate that the fraction of formed magnetite and maghemite can only be 6 and 

12 wt%. Additionally, maghemite is unstable at high temperatures [51] and the presence of 

any iron oxide phases could not be detected in the ceramic samples as aforementioned. 

Therefore, the observed rising saturation magnetizations cannot be explained by the formation 

of magnetite or maghemite. We assume that the cause of the change in Ms lies in differences 

in the cationic ordering. Lithium ferrite is an inverse spinel and can be written with the 

general formula 
T
[FexLi0.5x/2]

O
[Fe2.5xLix/2]O4. The inversion parameter x reflects the Fe

3+
 

cations occupying the tetrahedral site with x = 1 for a full invers structure. Considering the 

measured lithium losses, the Ms values correspond to 2.592(6)  2.695(6) µB f.u.
1 

(Li0.5Fe2.5O4) after sintering from 1050 to 1200 °C. It can be supposed, that the observed 

rising Ms values are primarily due to a decrease of the inversion parameter. The loss of 

lithium during sintering leaves vacancies in the spinel structure which most likely influence 

the cation distribution between the tetrahedral and octahedral sites. From the Ms values at 3 K, 

the inversion parameters (x) were calculated as 0.9908(6), 0.9887(6), 0.9864(6), and 

0.9805(6) for ceramics sintered at 1050, 1100, 1150, and 1200 °C for 1 h, respectively. 

Whereas, sintering at 900 °C (weight loss < 0.06 wt%) leads to a Ms value of 67.8(1) emu g
1

 

corresponding to an inversion parameter of 0.9987(6), i.e. very close to the theoretical value 

of 1. On the other hand, further increasing of the sintering temperature to 1250 °C results in a 

reduced saturation magnetization of 67.7(1) emu g
1

 due to the formation of antiferromagnetic 

Fe2O3 (hematite) [52], detected by XRD (see Fig. 6), as a result of the considerable loss of 

lithium.  
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Fig. 9. Magnetization (M) versus applied field (HDC) at 3 K of ceramic bodies sintered at the 

indicated temperatures for 1 h. The inset shows the saturation magnetizations (Ms) at 3 K 

depending on the sintering temperature. The uncertainty of Ms (0.1 emu g
1

) is smaller than 

the symbol size. 

 

 

DSC measurements up to 900 °C reveal both the transition from the ordered to the disordered 

structure (~ 750 °C) and the ferrimagnetic  paramagnetic (~ 630 °C) transition (Fig. 10) 

[5355]. The ordered  disordered phase transition temperature (Ttrs) was determined from 

the onset of the DSC signal and was found to be Ttrs = 755(1) °C with trsH = 13.5(4) J g
1

 for 

ceramics sintered between 1050 and 1150 °C. Higher sintering temperatures of 1200 and 1250 

°C lead to a slightly reduced transition temperature of 751(1) °C and a decreasing enthalpy of 

13.1(4) and 11.8(4) J g
1

, respectively. The significant reduction of trsH after sintering at 

1250 °C is primarily caused by the formation of hematite. Reported values for Li0.5Fe2.5O4 are 

between Ttrs = 745768 °C and trsH = 1118 J g
1

 [14,31,56,57]. DSC investigations on 

Li0.5Fe2.5O4 powders calcined at 350, 500, 600, 800, and 1000 °C (dcryst. = 13142 nm) show 

ordered  disordered transition temperatures of 734(2), 734(2), 739(2), 750(2), and 751(1) 

°C, respectively. The corresponding enthalpy changes were calculated as 5.0(6), 6.4(6), 
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8.5(6), 11.9(4), and 12.4(4) J g
1

 (Fig. 11). The DSC investigations of the ordered  

disordered phase transition show that a reduction of the particle size leads to a significant 

smaller enthalpy change and to lower transition temperatures mainly due to a surface effect in 

small particles [58,59]. The thermoanalytical behaviour of Li0.5Fe2.5O4 powders calcined at 

800 °C and higher (crystallite size >> 20 nm) are close to the bulk specimens. 

The magnetic transition (ferrimagnetic  paramagnetic) is clearly seen in DSC curves of the 

sintered ceramics as a weak broad peak (inset in Fig. 10). The Curie temperature (onset 

temperature) for all sintered ceramics could be estimated as 625(5) °C, whereas the broad 

magnetic transition peak becomes weaker after sintering at 1250 °C. The nanocrystalline 

powders calcined at 800 and 1000 °C reveal only a very weak hump between 610 and 640 °C, 

whereas nano-powders calcined below 800 °C do not show any significant DSC signal 

because of the very low enthalpy change. 

 

 

Fig. 10. DSC measurements in flowing air (heating rate 20 K min
1

) on powders calcined at 

(a) 350 °C, (b) 500 °C, (c) 600 °C, (d) 800 °C, (e) 1000 °C and ceramics sintered at (f) 1050 

°C, and (g) 1250 °C. The inset shows a magnification of the magnetic transition peak of curve 

(f). 
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Fig. 11. Dependence of the enthalpy change (trsH) of the order  disorder phase transition 

on the thermal treatment. The inset shows the phase transition temperature versus thermal 

treatment.  

 

 

Fig. 12 shows the cooling curve of the dilatometric measurement of a ceramic body sintered 

at 1100 °C. The ordered  disordered phase-transition caused a sudden length change 

pointing to a first-order transition. The phase transition temperature of 755(1) °C was 

determined at the point of inflection. From the dilatometric data, the linear thermal expansion 

coefficient (dil) of the bulk ceramic was determined according to Eq. (1) [60]: 

dil = 
TL

L





0

  (1) 

(L0  length of the ceramic body at RT, L  length change in the temperature range T). 

Calculations up to 700 °C (below the phase transition) reveal a linear thermal expansion 

coefficient of dil = 11.4(7)10
6

 K
1

 in good agreement with the value found by Kato [56].  
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Fig. 12. Dilatometric measurement in flowing air of a ceramic body sintered at 1100 °C 

during the order  disorder phase transition (cooling curve, rate 5 K min
1

). 

 

 

Diffuse reflectance spectra of calcined and sintered Li0.5Fe2.5O4 samples were recorded to 

determine the optical band gap using the KubelkaMunk theory [61,62] in which the optical 

band gap can be expressed by Eq. 2 [63]: 

 

F(R)h = k(h  Eg)
1/n

 (2) 

 

(F(R) – Kubelka–Munk function, k – energy-independent constant, Eg – optical band gap, n – 

exponent reflecting the type of transition: direct allowed n = 2, indirect allowed n = 1/2 and 

direct and indirect forbidden transitions n = 2/3 and 1/3). The optical band gap can be 

obtained by plotting of (𝐹(𝑅) · ℎ)𝑛 versus h  and extrapolating the slope to F(R)  0 

(inset in Fig. 13). Reported optical band gaps for Li0.5Fe2.5O4 are between 1.4 and 2.2 eV 

assuming direct allowed as well as indirect allowed transition mechanisms [8,9,27,64]. To 

verify the type of transition, the exponent n can be estimated by linearization of Eq. 2 as 

described in [62,65]. Briefly, d(ln(F(R)h)/d(h) vs. h thus shows a maximum, which can 
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be used as an approximated value for Eg. The exponent n can be obtained as an inverse slop in 

the plot of ln(F(R)h) vs. ln(h  Eg) (Fig. S3, supporting information). The exponent n was 

found to be  0.5 (indirect allowed transition) for both the calcined and the sintered samples. 

For the nano-sized powder calcined at 350 °C, the band gap was calculated as 1.93(2) eV 

which slightly decreases with increasing crystallite size to 1.81(5) eV at a calcination 

temperature of 1000 °C. After sintering at 1050 °C the band gap is 1.77(3) eV and decreases 

to 1.60(3) eV at 1250 °C (Fig. 13). The reduction of the band gap with rising sintering 

temperature is most likely due to the loss of lithium. Whereas, the higher band gap energy for 

the nano-sized samples compared to the sintered ones (bulk) is due to the well-known size 

effect [66,67].  

 

 

Fig. 13. Indirect-allowed band gap energies for samples calcined between 350 and 1000 °C 

and ceramics sintered between 1050 and 1250 °C. The inset shows (F(R)·h)
0.5

 versus h for 

a sample calcined at 1000 °C for 2 h. The uncertainties ( 0.05 eV) of the band gap values are 

smaller than the symbol sizes.  

 

 

4. Conclusion 
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Nanocrystalline Li0.5Fe2.5O4 powders were synthesized by a combustion-like soft-chemistry 

route using starch as gellant agent. Calcining at 350 °C leads to a light-brown powder with a 

specific surface area of 35(3) m
2
 g

1
 and a crystallite size of 13(1) nm. The nanocrystalline 

samples show a superparamagnetic behaviour which vanished above a calcination 

temperature of 600 °C (dcryst >> 20 nm). From the nanocrystalline powder ceramic bodies with 

variable microstructure are available. After 1 h sintering, dense ceramics (relative density  

90 %) can be obtained at 1100 °C. The calculated optical band gap for Li0.5Fe2.5O4 reveals an 

indirect allowed transition with values between 1.93(2) and 1.60(3) eV depending on the 

thermal treatment and particle size. The order  disorder phase transition for ceramic 

specimens (bulk) occurs at 755(1) °C with trsH = 13.5(4) kJ mol
1

. While for nanocrystalline 

powders the transition temperature and the enthalpy change decrease up to 734(2) °C and 

5.0(6) kJ mol
1

 because of an increase of the surface-to-volume ratio. The linear thermal 

expansion coefficient of bulk Li0.5Fe2.5O4 was determined as 11.4(7)10
6

 K
1

. Temperature-

dependent magnetization curves reveal a superparamagnetic behaviour with blocking 

temperatures between 120(3) and 160(3) K (HDC = 1 kOe) for nanocrystalline powders with 

crystallite sizes up to about 20 nm. The ceramic bodies show saturation magnetizations up to 

72.99(6) emu g
1

 at 3 K. Ms increases with rising sintering temperature most likely due to a 

change of the inversion parameter caused by the formation of vacancies as a result of the 

rising loss of lithium. The synthesis route described in this article leads to the formation of 

phase-pure Li0.5Fe2.5O4 at much lower calcining temperature compared to other soft-chemistry 

syntheses. Due to the large specific surface areas, the nanocrystalline powders are promising 

candidates for application as catalysts.  
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Captions 

Fig. 1 

Room-temperature XRD patterns of the (LiFe)-gel after calcination for 2 h at different 

temperatures (heating rate 5 K/min): a) 300 °C, b) 350 °C, c) 500 °C, d) 600 °C, and e) 1000 

°C. The insets show a magnification of XRD patterns recorded with a prolonged counting 

time of 10 s and 40 s per data point, respectively. The reflections marked by an asterisk are 

superstructure reflections. 

 

Fig. 2 

Evolution of the crystallite size with the calcining temperature. The right scale shows the 

development of the specific surface area. 

 

Fig. 3 

Bulk densities of ceramic bodies after sintering at various temperatures (soaking time 1 h, 

heating rate 5 K min
1

). Error bars correspond to the size of the symbols. 

  

Fig. 4 

SEM-BSE images of ceramic bodies sintered for 1 h at (a) 1100 °C, (b)1150 °C, (c) 1200 °C, 

and (d) 1250 °C. 

 

Fig. 5 

Thermogravimetric measurement (rate 5 K min
1

) of a Li0.5Fe2.5O4 compact in flowing air. 

The inset shows the total weight loss and the calculated lithium loss after 1 h sintering. 

 

Fig. 6 

Room temperature XRD patterns of powdered Li0.5Fe2.5O4 ceramics fired for 1 h at (a) 1050 

°C, (b) 1200 °C, and (c) 1250 °C. The patterns were recorded with a counting time of 10 s per 

data point. The inset shows magnifications of graphs (a) and (c) including the K2 reflections. 

 

Fig. 7 

Temperature dependence of the magnetization under zero-field-cooled (ZFC) and field-cooled 

(FC) conditions in the range of 3–300 K for powders calcined for 2 h at (a) 350 °C, (b) 600 

°C, and (c) 800 °C. 
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Fig. 8 

Magnetization (M) versus applied field (HDC) at 300 K of Li0.5Fe2.5O4 powders calcined at the 

indicated temperatures for 2 h. The inset shows the saturation magnetization (Ms) at 300 K 

depending on the calcining temperature. The uncertainties of Ms ( 0.5 emu g
1

) are smaller 

than the symbol sizes. 

 

Fig. 9 

Magnetization (M) versus applied field (HDC) at 3 K of ceramic bodies sintered at the 

indicated temperatures for 1 h. The inset shows the saturation magnetizations (Ms) at 3 K 

depending on the sintering temperature. The uncertainty of Ms (0.1 emu g
1

) is smaller than 

the symbol size. 

 

Fig. 10 

DSC measurements in flowing air (heating rate 20 K min
1

) on powders calcined at (a) 350 

°C, (b) 500 °C, (c) 600 °C, (d) 800 °C, (e) 1000 °C and ceramics sintered at (f) 1050 °C, and 

(g) 1250 °C. The inset shows a magnification of the magnetic transition peak of curve (f). 

 

Fig. 11 

Dependence of the enthalpy change (trsH) of the order  disorder phase transition on the 

thermal treatment. The inset shows the phase transition temperature versus thermal treatment.  

 

Fig. 12 

Dilatometric measurement in flowing air of a ceramic body sintered at 1100 °C during the 

order  disorder phase transition (cooling curve, rate 5 K min
1

). 

 

Fig. 13 

Indirect-allowed band gap energies for samples calcined between 350 and 1000 °C and 

ceramics sintered between 1050 and 1250 °C. The inset shows (F(R)·h)
0.5

 versus h for a 

sample calcined at 1000 °C for 2 h. The uncertainties ( 0.05 eV) of the band gap values are 

smaller than the symbol sizes.  
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