
Joint introduction to Gaussian Processes and Relevance
Vector Machines with Connections to Kalman filtering and

other Kernel Smoothers

Luca Martino? and Jesse Read>
? Dept. of Statistical Signal Processing, Universidad Rey Juan Carlos, Madrid (Spain)

> LIX, Ecole Polytechnique, Institut Polytechnique de Paris, France.

Abstract

The expressive power of Bayesian kernel-based methods has led them to become an
important tool across many different facets of artificial intelligence, and useful to a plethora
of modern application domains, providing both power and interpretability via uncertainty
analysis. This article introduces and discusses two methods which straddle the areas of
probabilistic Bayesian schemes and kernel methods for regression: Gaussian Processes and
Relevance Vector Machines. Our focus is on developing a common framework with which to
view these methods, via intermediate methods a probabilistic version of the well-known kernel
ridge regression, and drawing connections among them, via dual formulations, and discussion
of their application in the context of major tasks: regression, smoothing, interpolation, and
filtering. Overall, we provide understanding of the mathematical concepts behind these
models, and we summarize and discuss in depth different interpretations and highlight the
relationship to other methods, such as linear kernel smoothers, Kalman filtering and Fourier
approximations. Throughout, we provide numerous figures to promote understanding, and
we make numerous recommendations to practitioners. Benefits and drawbacks of the different
techniques are highlighted. To our knowledge, this is the most in-depth study of its kind to
date focused on these two methods, and will be relevant to theoretical understanding and
practitioners throughout the domains of data-science, signal processing, machine learning,
and artificial intelligence in general.

Keywords: Gaussian processes, Relevance Vector Machines, Bayesian Learning, Bayesian
Ridge, Kernel Smoothing, Kalman Filtering

1 Introduction

This work details and discusses techniques and methods lying on the intersection of two
areas: probabilistic Bayesian schemes and kernel methods; in a regression framework. Such
techniques have become increasingly popular in statistics, signal processing, and machine learning
[1, 2, 3, 4, 5]. The expressive power of these methods increases with the number of data points

observed, and they can be effective for dealing with structured (non-tabular) sources such as
sequential data. Indeed, despite the soaring popularity of deep neural network architectures in
recent decades, the methods we approach in this work are still relevant to a plethora of modern
application domains; and an understanding of the mathematical concepts behind them is still of
fundamental importance across science and mathematics under the general umbrella of modern
artificial intelligence.

More specifically, we look at Gaussian Processes (GPs) [6, 3] and Relevance Vector Machines
(RVMs) for regression [7, 8] – both Bayesian nonparametric approaches which have yielded
convincing results in recent years and attracted a correspondingly significant interest [9, 10, 11,
12, 13, 14]. The main scope of this manuscript encompasses a unified introduction to GPs, RVMs.
We link these two methods via Kernel Ridge Regression – which we refer to as quasi GP in the
probabilistic sense (often known elsewhere as Bayesian Ridge Regression); covering important
material presented in the literature, which deserves to be properly highlighted [15, 16, 7, 17, 18].
We allow a correct comparison between these techniques and perform a detailed analysis of
uncertainty estimation. Moreover, we leverage the opportunity to connect these methods to a
number of other important methods in neighboring areas, including splines, kernel smoothers,
k-Nearest Neighbor (kNN) schemes and a Fourier interpolation [1, 19], and particularly exploring
the connection between GPs and Kalman filtering which has not been completely elaborated in the
literature (although recent work remarked upon this link [20, 21, 5] we propose a gentle explanation
with examples in discrete time, that is not specifically discussed in those works). We considering
different possible scenarios in the framework of regression models, including prediction, filtering,
smoothing and interpolation, providing the specific solutions in each one of these cases.

We will see that the main benefit of the RVM approach is the flexibility in the choice of
the basis functions, whereas the main advantage of the GP approach is the good behavior of
the predictive variance. And we will discuss the implication thereof. We will also discuss the
interpretability of the chosen bases/kernel functions, the uncertainty analysis with each techniques
and the generation of random functions from (direct or induced) priors and/or posteriors over the
underlying function. Furthermore, several related concepts well-known in signal processing (e.g.,
the Fourier upsampling in Section 9.2.4, and the linear digital filters in Section 9.2.5) are described
and connected to the rest of techniques. In this sense, this work builds bridges among different
concepts in statistics, machine learning and signal processing.

The paper is structured as follows:

• In Section 2, we introduce the problem statement, the notation and provides a joint
introduction of the RVM and GP methods (considering joint formulas and properties).

• The derivation of the RVM solution is given in Section 3.

• The probabilistic version of KRR is described in Section 4.

• The GP derivation is provided in Section 5.

• Section 6 describes the dual representation of RVM as a GP.

2

• An initial summary with important considerations and remarks is provided in Section 7;
then

• Section 8 provides a discussion regarding the uncertainty analysis with GPs.

• Section 9 shows that RVM and GP can be seen as linear kernel smoothers and describes
other well-known examples in the literature.

• In Section 10, we describes the connections between Kalman filtering (and smoothing) with
the GP solution.

• A final discussion and concluding summary is provided in Section 11.

2 Problem Statement and Common Framework

In this section, we introduce the main notation and the problem statement. Moreover, we provide
a joint introduction of GPs and RVMs in the form of a common framework, elaborating all the
equations shared by both models. Namely, we introduce the analytic form of the regression
function f̂(x), the observation model and the likelihood function (all shared by both methods),
as well as the design matrix and the interpolation case (where both schemes provide the same
solution). The main notation of the work is summarized in Table 1.

Table 1: Main notation of the work.

x ∈ RdX a dX-dimensional input observation

y ∈ R a scalar output

y y = [y1, . . . , yN]>, vector of outputs/observations

e, e Gaussian noise perturbation e ∼ N (µe, σ
2
e), e ∼ N (µe,Σe)

D Dataset: D = {xi, yi}Ni=1 or D = {X,y}, of N points

f(x) underlying/hidden function (unknown) f evaluated at x

f̂(x) regression function f̂ , est./approx. of f , evaluated at x

f or f(x) vector [f1(x), . . . , f(x)N]>, ≡ f(X)

f̂ or f̂(x) vector [f̂(x)1, . . . , f̂(x)N]>, ≡ f̂(X)

θ vector of (hyper-)parameters of the model θ = [θ1, . . . , θdθ]
>

ψi(x,xi) nonlinear basis, localized around xi

ϕ(x) ϕ = [ψ1(x,x1), ..., ψN(x,xN)]>, the N × 1 design vector.

Ψ = [ψ1(x1), ...,ψN(xN)]>, the N ×N design matrix.

ρ̂ vector of estimated coefficients, or ρ̂(y) if determined by y

ϕ(x) vector of smoothing kernels, ϕ = [ϕ1(x|x1), . . . , ϕN(x|xN)]

Observation model. We have a dataset consisting of N data points, D = {xi, yi}Ni=1, where

3

each i-th input xi = [xi,1, xi,2, . . . , xi,dX]> ∈ X ⊆ RdX is associated with scalar output yi ∈ R.1

To simplify notation we consider E[yi] = 0 for all i = 1, . . . , N , without loss of generality. This
assumption can be easily relaxed adding a bias to the probabilistic models. Namely, the goal is to
approximate an unknown underlying function f(x) : RdX → R, which we assume has generated
our training points, in the form

yi = f(xi) + ei, (1)

where ei is a Gaussian perturbation with zero mean and variance σ2
e , i.e., ei ∼ N (e|0, σ2

e). That

is to say, ideally, we want to learn some model f̂ (let us call it the regression function) such that

f̂ ≈ f . We emphasise that this sample pair x, y do not necessarily belong to the training set,
which means that in fact y may not be observed at all. In prediction, we want to generalize to
new test points. Note that, y, f(x) are random variables, whereas the inputs x play the role
of (non-random) parameters. More specifically, for each x ∈ X , then f(x) represents a different
random variable.

Regression function. In this work, we describe theory and properties of different methods
where the regression function can be expressed as a linear combination of N non-linear functions,
i.e.,

f̂(x) =
N∑

i=1

ρ̂iψi(x,xi), (2)

where the non-linear functions ψi(x, z) : X × X → R have been selected in advance by the
user, according to the problem domain, i.e., encoding some prior knowledge about the underlying
function f(x). The coefficients ρ̂n ∈ R, n = 1, . . . , N , are analytically obtained according to
the chosen probabilistic derivation, e.g., either RVM or GP as covered in this article. Note that
non-linearity ψi is indexed by i, since, in RVM, these functions can differ among inputs i. In a GP
model, we will consider the simpler notation ψi(x,xi) = ψ(x,xi), precisely as we need to impose
that the analytical form of ψ does not vary with i.

Remark 1. The number of components in Eq. (2) is exactly the number of data, i.e., N . Therefore,
the flexibility of the model increases as the number of data N grows. The regression methods,
represented by Eq. (2), are non-parametric models.

Remark 2. The RVM and GP solutions differ for the choice of the coefficients ρ̂n. This different
choice is due to the probabilistic approach employed by each method.

Defining also the N × 1 design vector ψ(x) = [ψ1(x,x1), . . . , ψN(x,xN)]>, the approximating
function (of all the methods derived in this work) can be also written in a vectorial form,

f̂(x) = ψ(x)>ρ̂. (3)

Note that the the coefficients will be determined considering the vector of outputs y =
[y1, . . . , yN]>, hence a more complete notation will be ρ̂ = ρ̂(y). Let us also define the N × N

1In this work, we consider single-output regression problems. For multi-output approaches, see [22, 23].

4

design matrix Ψ = [ψ(x1),,ψ(xN)]>, i.e.,

Ψ =

ψ1(x1,x1) ψ1(x1,x2) . . . ψ1(x1,xN)
ψ2(x2,x1) ψ2(x2,x2) . . . ψ2(x2,xN)

...
ψN(xN ,x1) ψN(xN ,x2) . . . ψN(xN ,xN)

 . (4)

In the GP case, we will require that Ψ be symmetric, but for RVMs it could be a non-symmetric
matrix. We will show below that the vectors of coefficients for RVMs and GPs are given by the
formulas

RVM: ρ̂ = ΣρΨ
> (ΨΣρΨ

> + σ2
eIN
)−1

y,

GP: ρ̂ =
(
Ψ + σ2

eIN
)−1

y, (5)

where Σρ is a N ×N matrix decided by the user. By substituting expressions (5) into Eq. (3), we
obtain the following regression functions:

RVM: f̂(x) = ψ(x)>ΣρΨ
> (ΨΣρΨ

> + σ2
eIN
)−1

y,

GP: f̂(x) = ψ(x)>
(
Ψ + σ2

eIN
)−1

y. (6)

The relationships among of the solution f̂(x) of the main methods described in this work, RVM,
GP and Quasi-GP (Q-GP) is graphically summarized in Figure 1. Furthermore, Figure 2 provides

some examples of the solution f̂(x) with N = 3 data points.

bf(x) =

NX

n=1

b⇢n n(x,xn) = (x)> b⇢
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b⇢ = ⌃⇢
> � ⌃⇢

> + �2
eIN

��1
y

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

RVM
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> GP

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌃⇢ = �1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Q-GP
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b⇢ =
�
 + �2

eIN

��1
y

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b⇢ =
�
 + �2

eIN

��1
y

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 1: Graphical representation of the relationships among of the solution f̂(x) of the main
methods described in this work, RVM, GP and Quasi-GP (Q-GP). Note that the estimated

function f̂(x) coincides in GP and Q-GP.

5

-2 0 2 4

-2

-1

0

1

2

3

data
RVM
GP
(x,xi)

(a)

-2 0 2 4

-2

-1

0

1

2

3

data
RVM
GP
(x,xi)

(b)

Figure 2: Examples of RVM and GP solutions f̂(x) with (a) Laplacian and (b) Gaussian bases
(depicted with solid lines). The N = 3 data points as shown with red dots. The GP solutions are
depicted with dashed lines, whereas the RVM solutions are shown with dotted lines.

Remark 3. RVMs and GPs provide a complete description of the posterior-predictive distribution
over the underlying function f(x). In both case, this posterior density is Gaussian. The expected

value of the posterior-predictive distribution is f̂(x) in Eq. (2).

Localized nonlinearities.
In this work, we denote the nonlinearities localized “around” the inputs with the notation

ψn(x,xn), with n = 1, . . . , N (since they are localized around xn, we need exactly N functions
ψn). In some scenarios, we have the same functions translated in different regions of the space,
i.e., ψn(x,xn) = ψ(x,xn). As an example of localized function, consider for instance the constant
basis

ψ(x,xn) =

{
1 ||x− xn||p ≤ ε,

0 ||x− xn||p > ε,
(7)

where ε > 0 and ||z||p =
(∑dX

i=1 |zi|p
)1/p

represents the Lp vector norm. Other example of localized

function is the following radial exponential function,

ψ(x,xn) = exp

(
−||x− xn||p

λ

)
. (8)

For simplicity, we have removed the subindex n in ψ, however in RVM we can employ different
types of nonlinear functions, for instance, combining constant basis at some inputs and radial
exponential functions at other inputs. The bases in Eqs. (7)-(8) are also isotropic (or homogeneous)
since they depend only on the Lp distance r = ||x − xn||p, that is a scalar value [6, Chapter 4].
They are also stationary kernels/bases. A kernel function is stationary if satisfies the condition
ψ(x,xn) = ψ(x − xn), i.e., it depends only on the difference vector d = x − xn, but not on

6

the values of the inputs, x and xn, themselves. Generally, a stationary kernel is an anisotropic
kernel, since it depends on both the direction and the length of the difference vector d. Clearly,
an isotropic kernel is always a stationary kernel.

Remark 4. The spline models are special cases of GPs, where the support of the bases is bounded
(with a support smaller of the domain X). In this scenario, the matrix Ψ is sparse and, in some
scenarios, is a band matrix [6, Chapter 6], [24].

2.1 Posterior-predictive distribution

We consider two different probabilistic approaches which provide different regression models. In
the standard Bayesian derivation, the nonlinearities ψn(x,xn) play the role of basis functions. In
the Gaussian process (GP) approach, the nonlinearities ψn(x,xn) play the role of kernel functions
specifying the correlation among different pairs of inputs. A prior density over the underlying
function p(f(x)) is assumed (explicitly or implicitly) in both cases. Thus, in both cases, we obtain
a complete description of a Gaussian posterior distribution of the hidden function in a generic test
input x, i.e.,

p(f(x)|y) =
1

p(y)
p(y|f(x))p(f(x)), (9)

where p(y|f(x)) is the likelihood function (which is induced by Eq. (1)), p(f(x)) represents the
prior density over f(x) (which is given by the specific probabilistic approach), and p(y) is the
so-called marginal likelihood, useful for model selection (e.g., hyperparameter tuning). It is given
by the expression p(y) =

∫
X p(y|f(x))p(f(x))df(x). Below, we will derive the marginal likelihood

for the different techniques (see also Section 7.4).

In the RVM and GP schemes, the posterior density is in both cases Gaussian, i.e.,

p(f(x)|y) = N (x|f̂(x), σ2
f |y(x)). (10)

where the mean is the function f̂(x), i.e., µf |y(x) = f̂(x) in Eqs. (2) and (6). The final expressions
of the coefficient vector ρ̂ and of the variance σ2(x) depend on the probabilistic derivation
employed.2 We will derive the variance for both techniques, obtaining

RVM: σ2
f |y(x) = ψ(x)>

(
1

σ2
e

Ψ>Ψ + Σ−1ρ

)−1
ψ(x),

GP: σ2
f |y(x) = ψ(x,x)−ψ(x)>(Ψ + σ2

eIN)−1ψ(x). (11)

Remark 5. The RVM and GP models consider the same likelihood function, since they assume
the same observation model in Eq. (1).

The likelihood function is described below.
2Note that a complete notation should be p(f(x)|y,x1:N ,M), i.e., we consider all the training input points

x1:N = {xn}Nn=1 given and fixed, and with M we denote the bases ψn and all the parameters of the model. In the
rest of the work, for simplicity, we keep the simpler notation p(f(x)|y) = p(f(x)|y,x1:N ,M).

7

2.1.1 Likelihood function

Given the observation model in Eq. (1), the induced likelihood function is given by

p(yi|f(xi)) = N (yi|f(xi), σ
2
e). (12)

Furthermore, defining f = [f(x1), . . . , f(xN)]> and considering conditional independence for the
observations yi, we also have

p(y|f) =
N∏

i=1

p(yi|f(xi)) = N (y|f , σ2
eIN), (13)

where IN is an N × N identity matrix. Depending on the employed probabilistic approach (see
below), one can assume that f(x) has exactly the form in Eq. (2) or Eq. (3), i.e., f(x) = ψ(xi)

>ρ,
so that the observation model can be written as

yi = ψ(xi)
>ρ+ ei. (14)

Considering that the nonlinearities are known and chosen by the user, the likelihood of a single
observations with respect to the weights is

p(yi|ρ) = N (yi|ψ(xi)
>ρ, σ2

e). (15)

The complete likelihood function with respect to the coefficients is

p(y|ρ) =
N∏

i=1

p(yi|ρ) = N (y|Ψρ, σ2
eIN), (16)

and can be obtained from Eq. (13) setting f = Ψρ.

2.2 Smoothing and prediction

Smoothing. We refer to smoothing problem when one is interested only to obtain the estimation
values f̂(x1), . . . , f̂(xN), i.e., to know the estimations only at the training inputs, x1:N = {xn}Nn=1.
In this scenario, Eq. (1) can be expressed in the following vectorial form

y = f + e = Ψρ+ e, (17)

where f = [f(x1), . . . , f(xN)]> and e = [e1, . . . , eN]> ∼ N (0, σ2
eIN) with IN is an N × N unit

matrix. The goal of the smoothing problem is to obtain a vector f̂ that approximates f . This is
also known as denoising.

Prediction. We refer to a prediction problem if we consider the approximation of the underlying
function f(x) at some x which is not contained in {xn}Nn=1. Namely, the goal in prediction is
to infer the value f(x∗) at some test point x∗ that is not contained in the training set, i.e.,
x∗ /∈ {x1, . . . ,xN}. This is also referred as extrapolation. Some regression methods can differ
in prediction but provide the same results in smoothing, for instance. We show some examples
below. Figure 3-(a) provides a graphical representation of the differences between smoothing and
prediction problems.

8

Remark 6. The regression problem can be considered the union of the two important sub-problems,
smoothing and prediction.

x1 x2 x3 x

y

x4

y1

y2

y3

y4

bf(x)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

smoothing (denoising)

prediction

prediction

prediction

(a)

-2 0 2 4

-2

-1

0

1

2

3

(b)

Figure 3: (a) Graphical representation of the differences between smoothing and prediction
problems. The red crosses represent the solutions of the smoothing problem. The solid blue
line represents the prediction at different inputs x∗ which may not belong to the training set.
Prediction and smoothing jointly form a complete regression problem. (b) Examples of RVM and

GP solutions f̂(x) for interpolation (with N = 3 data points).

2.3 Interpolation

If we force the conditions f̂(xn) = yn as shown in Figure 3-(b) (i.e., perfect fitting with the data,
a.k.a., interpolation), RVMs and GPs provide the same solution in terms of mean of the posterior

f̂(x) (but different predictive variances). Let us consider an interpolating function of the form

f̂(x) =
N∑

i=1

ρ̂iψn(x,xi) = ψ(x)>ρ̂, (18)

i.e., a linear combination of the nonlinearities ψi(x,xi). We would like that f̂(xn) = yn for all
n = 1, . . . , N . Therefore, in order to obtain the proper coefficients ρ̂i, we can write a N ×N linear
system of N conditions of passing through the points (xn, yn),

ρ̂1ψ1(x1,x1) + ρ̂2ψ2(x1,x2) ++ ρ̂NψN(x1,xN) = y1,

ρ̂1ψ1(x2,x1) + ρ̂2ψ2(x2,x2) ++ ρ̂NψN(x2,xN) = y2,

...

ρ̂1ψ1(xN ,x1) + ρ̂2ψ2(xN ,x2) ++ ρ̂NψN(xN ,xN) = yN ,

(19)

9

i.e., in matrix form Ψρ̂ = y. If Ψ is invertible, then we get

ρ̂ = [ρ1, . . . , ρN]> = Ψ−1y. (20)

Thus, the interpolative function of both methods can be expressed as

f̂(x) = ψ(x)>ρ̂ = ψ(x)>Ψ−1y. (21)

Therefore, by definition we have f̂(xn) = yn (i.e., f̂(x) is an interpolator).

3 Relevance Vector Machine (RVM)

Following a standard Bayesian approach, we consider a Gaussian prior density over the weights
ρ = [ρ1, . . . , ρN]>, i.e.,

p(ρ) = N (ρ|0,Σρ), (22)

where Σρ is an N × N matrix. Thus, observing Eq. (17), i.e., y = Ψρ + e, we can see that the
vector y is the sum of two independent multivariate Gaussian variables, one with zero mean and
covariance matrix ΨΣρΨ

> and the other one with zero mean and covariance matrix σ2
eIN . The

sum of two independent Gaussian variables is itself a Gaussian variable with mean the sum of the
means, and covariance matrix the sum of the covariance matrices, i.e., the marginal likelihood is

p(y) = N (y|0,ΨΣρΨ
> + σ2

eIN). (23)

3.1 Posterior and induced prior distributions of RVM

As we have done with the likelihood functions in Section 2.1.1, in this section we describe posterior
distributions of ρ and f(x). Moreover, we derive the induced prior density over f(x).

3.1.1 Posterior of the weights ρ

Recalling that the likelihood p(y|ρ) = N (y|Ψρ, σ2
eIN) is Gaussian, the posterior density of the

weights is thus proportional to the product of two Gaussians, p(ρ|y) ∝ p(y|ρ)p(ρ), and therefore
it is also Gaussian:

p(ρ|y) =
1

p(y)
p(y|ρ)p(ρ) = N (ρ|µρ|y,Σρ|y), (24)

After some algebra, the mean of the posterior µρ|y = ρ̂ can be expressed in different ways,

µρ|y = ρ̂ =
1

σ2
e

(
1

σ2
e

Ψ>Ψ + Σ−1ρ

)−1
Ψ>y, (25)

=
(
Ψ>Ψ + σ2

eΣ
−1
ρ

)−1
Ψ>y, (26)

= ΣρΨ
> (ΨΣρΨ

> + σ2
eIN
)−1

y, (27)

10

and likewise, the covariance matrix can be written variously as

Σρ|y =

(
1

σ2
e

Ψ>Ψ + Σ−1ρ

)−1
, (28)

= σ2
e

(
Ψ>Ψ + σ2

eΣ
−1
ρ

)−1
, (29)

= Σρ −ΣρΨ
> (ΨΣρΨ

> + σ2
eIN
)−1

ΨΣρ. (30)

See [6, 1] and Appendix A for additional details regarding the last equality. Note also that we may
substitute S−1 = σ2

eΣ
−1
ρ into (26). where S can be interpreted as an inverse of a “signal-to-noise

ratio” (SNR), where σ2
e is the noise power and the covariance of the prior Σρ plays the role of

“power of the signal”.

3.1.2 Posterior of the function: predictive distribution

The posterior of f(x) in a generic x ∈ X , is also Gaussian,

p(f(x)|y) = N
(
f(x) | µf |y(x), σ2

f |y(x)
)
,

with

µf |y(x) = f̂(x) = ψ(x)>ρ̂

= ψ(x)>
(
Ψ>Ψ + σ2

eΣ
−1
ρ

)−1
Ψ>y,

= ψ(x)>ΣρΨ
> (ΨΣρΨ

> + σ2
eIN
)−1

y,

(31)

where have replaced the two possible expressions of ρ̂ in Eqs. (26)–(27), and

σ2
f |y(x) = ψ(x)>Σρ|yψ(x) = ψ(x)>

(
1

σ2
e

Ψ>Ψ + Σ−1ρ

)−1
ψ(x), (32)

= ψ(x)>Σρψ(x)−ψ(x)>ΣρΨ
> (ΨΣρΨ

> + σ2
eIN
)−1

ΨΣρψ(x).

where we recall that ψ(x) is an N × 1 dimensional vector. For the last equality, see Appendix A.

3.1.3 Interpolation with RVM

Considering (26), if we have noisy-free observations σ2
e = 0, we obtain the following expression

ρ̂ =
(
Ψ>Ψ

)−1
Ψ>y,

= Ψ−1y, (33)

and the resulting mean function

f̂(x) = ψ(x)>ρ̂ = ψ(x)>Ψ−1y,

is an interpolant, satisfying the passing conditions f̂(xn) = yn, for all n = 1, . . . , N , as described in
Section 2.3 and the linear system given in Eqs. (19). Let us begin with the simple case Σρ = σ2

ρIN .

Then, we can define SNR =
σ2
ρ

σ2
e

and S = SNR ·IN . Note that if SNR =∞, i.e., if we have noise-free

observations σ2
e = 0 or an uninformative prior σ2

ρ =∞, in both cases we obtain Eq. (33).

11

Remark 7. With RVM, we can obtain the interpolative solution ρ̂ = Ψ−1y in Section 2.3, either
with σ2

e = 0 (and a finite σ2
ρ) or using an uninformative prior over the weights, σ2

ρ = ∞ (and
σ2
e 6= 0).

In the opposite scenario, with SNR = 0 (if σ2
e = ∞ or σ2

ρ = 0), we have ρ̂ = 0. Regarding the
predictive variance σ2

f |y(x), when σ2
e = 0 we obtain

σ2
f |y(x) = ψ(x)>Σρψ(x)−ψ(x)>ΣρΨ

> (ΨΣρΨ
>)−1 ΨΣρψ(x).

= ψ(x)>Σρψ(x)−ψ(x)>Σρψ(x) = 0, (34)

where we have used
(
ΨΣρΨ

>)−1 =
(
Ψ>
)−1

(ΨΣρ)
−1. Namely, in the interpolation scenario, the

predictive variance of RVM is zero, i.e., σ2
f |y(x) = 0, for all x ∈ X .

3.1.4 Posterior density for the smoothing problem

Considering the smoothing problem, the posterior of the vector f = Ψρ is a multivariate Gaussian
pdf, p(f |y) = N (f |µf |y,Σf |y), where the mean vector is

µf |y = f̂ = Ψµρ|y

= Ψ
(
Ψ>Ψ + σ2

eΣ
−1
ρ

)−1
Ψ>y

= ΨΣρΨ
> (ΨΣρΨ

> + σ2
eIN
)−1

y, (35)

and covariance matrix is given by

Σf |y = ΨΣρ|yΨ
>,

= Ψ

(
1

σ2
e

Ψ>Ψ + Σ−1ρ

)−1
Ψ>,

=
[(

ΨΣρΨ
>)−1 +

(
σ2
eIN
)−1]−1

,

= ΨΣρΨ
> −ΨΣρΨ

> (σ2
eIN + ΨΣρΨ

>)−1 ΨΣρΨ
>. (36)

For more details, see Appendix A.

3.1.5 Induced prior density over the underlying function

Given a test input x and the vector ψ(x) (choosing and fixing the bases) and considering the
random variable f(x) = ψ(x)>ρ (a scalar value), we can observe that

p(f(x)) = N (f(x)|µf (x), σ2
f (x)), with µf (x) = 0, σ2

f (x) = ψ(x)>Σρψ(x). (37)

Therefore, in this probabilistic approach, we directly impose a prior over the weights ρ, and we
also induce a prior density over the function f(x). Clearly, if we consider the N×1 vector f = Ψρ,
we have that

p(f) = N (f |µf ,Σf), with µf = 0, Σf = ΨΣρΨ
>. (38)

12

3.1.6 Why it is called a Releveance Vector Machine

Let us consider a prior covariance matrix over the weights of type

Σρ =

1/α1 0 0 0
0 1/α2 0 . . . 0
0 0 1/α3 . . . 0
.
0 0 0 . . . 1/αN

(39)

i.e., Σρ is diagonal with elements [1/α1, 1/α2, . . . , 1/αN] in its diagonal. The idea is to use a
hierarchical approach considering that also the hyper-parameters αi are unknown coefficients to
be learned. As an example of learning procedure, we can maximize the marginal likelihood with
respect to these hyper-parameters. It is possible to show that a significant proportion of the {αi}
diverge to infinity. As a consequence, the mean of the posterior in Eq. (26) of the weights {ρi}
corresponding to these “divergent” {αi} is close to zero (with negligible variance). Hence, the

basis functions ψi associated with these weights ρi are virtually pruned out, and the function f̂(x)
depends only on a few bases. Then, the result is a sparse model. As the bases are localized around
particular training inputs xi, this learning procedure can be also interpreted as a way of selecting
relevant inputs. Therefore, RVM can be considered a Bayesian sparse kernel technique.

3.2 Random functions according to RVM models

Note that (also in this approach) random functions can be generated from the prior and posterior
densities. Indeed, we show different generating procedures in order to draw from the prior and
posterior pdf f(x).

Draw functions from the prior. Let us consider the following procedure for generating S
random functions from the prior pdf:
For s = 1, . . . , S:

1. Draw a vector ρ(s) = [ρ
(s)
1 , . . . , ρ

(s)
N]> ∼ N (ρ|0,Σρ).

2. Then, set

f (s)(x) =
N∑

n=1

ρ(s)n ψn(x,xn), ∀x ∈ X . (40)

Note that the procedure above takes into account the correlation (among different x) induced
by the model assumptions. See below and Section 6.1 for further details regarding the induced
correlation.

Draw functions from the posterior. In order to draw functions from the posterior pdf,
we can use the following steps:
For s = 1, . . . , S:

13

1. Draw a vector ρ(s) = [ρ
(s)
1 , . . . , ρ

(s)
N]> ∼ N (ρ|µρ|y,Σρ|y) where mean and variance are given

in Eqs. (26)–(28).

2. Then, set

f (s)(x) =
N∑

n=1

ρ(s)n ψn(x,xn), ∀x ∈ X . (41)

Thus, the generation of random function from the prior and posterior density is also possible in
RVMs. Hence, this possibility is not only a prerogative of the Gaussian Process (GP) approach in
Section 5, as is often hinted in the literature. See Figure 4 for some example of random functions
drawn from a RVM model.

Alternative sampling schemes. We describe two alternative procedures from drawing from the
RVM prior and posterior equivalent to the procedures above. For instance, in order to draw from
the RVM prior, we can consider the Eqs. (37)-(38). Let us consider P test points x(1), . . . ,x(P).
Then, the following procedure generates S random functions from a RVM prior:

1. Compute the N × P matrix V = [ψ(x(1)),,ψ(x(P))]. Recall that ψ(x) =
[ψ1(x,x1), . . . , ψN(x,xN)]> is the N × 1 design vector.

2. Compute the P × P covariance matrix of the vector fP = [f(x(1)), . . . , f(x(P))]>,

C = VΣρV
>.

3. Draw S vectors f
(s)
P = [f (s)(x(1)), . . . , f (s)(x(P))]> from a multivariate Gaussian, i.e.,

f
(s)
P ∼ N (fP |0,C), s = 1, . . . , S,

where 0 is a P × 1 null vector and C is given above.

In the same fashion, considering again P test inputs x(1), . . . ,x(P) and the Eqs. (31)–(32) and
Eqs. (35)–(36), we can consider the following procedure for sampling from the RVM posterior:

1. Compute the N × P matrix V = [ψ(x(1)),,ψ(x(P))]. Recall that ψ(x) =
[ψ1(x,x1), . . . , ψN(x,xN)]> is the N × 1 design vector.

2. Compute the P × P covariance matrix of the vector fP = [f(x(1)), . . . , f(x(P))]>,

C = VΣρV
>.

3. Draw S vectors f
(s)
P = [f (s)(x(1)), . . . , f (s)(x(P))]> from a multivariate Gaussian, i.e.,

f
(s)
P ∼ N (fP |µ,Σ), s = 1, . . . , S,

where

µ = VΣρΨ
> (ΨΣρΨ

> + σ2
eIN
)−1

y, is a P × 1 vector and,

Σ = C−VΣρΨ
> (σ2

eIN + ΨΣρΨ
>)−1 ΨΣρV

>, is a P × P covariance matrix.

14

-2 0 2 4
-4

-2

0

2

4

(a)

-2 0 2 4
-4

-2

0

2

4

(b) (c)

Figure 4: Random functions f̂ (s)(x) with s = 1, . . . , 10 (a) from a RVM prior over f(x) and (b)
from a RVM posterior (after knowing the N = 3 data points), with N = 3 Gaussian bases with
the mean location depicted by the dashed lines (and bandwidth λ = 2). We have considered a
diagonal covariance matrix Σρ with all the elements in the diagonal equal to 2.25. (c) Example of
RVM mean and variance with N = 8 data points and S = 5 random functions from the posterior
depicted with dashed lines (σe = 0.5, λ = 4, Σρ diagonal all the elements equal to 1). The

black solid line shows the mean µf |y(x) = f̂(x) and the boundary of the grey area corresponds to

f̂(x)± 2σ2
f |y(x) (i.e., ≈ 95% of the probability).

4 Probabilistic Kernel Ridge Regression: the Quasi GP

model

Quasi Gaussian Process (Q-GP) model is an intermediate model between RVM and GP, which
can be also useful for achieving a better understanding of both. The Q-GP model represents
the probabilistic version of the so-called Kernel Ridge Regression [1, 19]. Therefore, Q-GP is a
probabilistic version of the Kernel Ridge regression, sometimes called Bayesian Ridge Regression.
Q-GP is also related to the so-called regularization networks in the literature [18]. We highlight
in advance the connections with RVM for helping the reader.

Remark 8. Q-GP is a special case of RVM with a specific choice of Σρ = Ψ−1 (i.e., the covariance
prior over ρ). Note that, we need Ψ = Ψ>, unlike in RVM.

Remark 9. In the smoothing problem, Q-GP can be also derived with a specific choice of Ψ as
covariance prior over f .

4.1 Q-GP solution for regression

We consider the same classical Bayesian approach used for RVMs. Namely, the observation model
is again yi = ψ(xi)

>ρ + ei, as in Eq. (14). However, in this case, we assume the following prior

15

over the vector of weights,

p(ρ) = N (ρ|0,Ψ−1) ∝ exp(−ρ>Ψρ), (42)

i.e., Σρ = Ψ−1. This is possible just if Ψ−1 is a covariance matrix, so that it must be positive
definite and symmetric, hence Ψ = Ψ>. The rest of formulas can be obtained replacing Σρ = Ψ−1

and Ψ = Ψ>, in the RVM expressions. For instance, replacing Σρ = Ψ−1 in Eq.(27), we have
p(ρ|y) = N (ρ|µρ|y,Σρ|y), where

ρ̂ = µρ|y =
(
Ψ + σ2

eIN
)−1

y

Σρ|y = Ψ−1 −
(
Ψ + σ2

eIN
)−1

, (43)

The marginal likelihood is p(y) = N (y|0,Ψ+σ2
eIN), and the posterior of f(x) in a generic x ∈ X ,

is also Gaussian,
p(f(x)|y) = N

(
f(x)|µf |y(x), σ2

f |y(x)
)
,

with

µf |y(x) = f̂(x) = ψ(x)>
(
Ψ + σ2

eIN
)−1

y, (44)

and

σ2
f |y(x) = ψ(x)>Ψ−1ψ(x)−ψ(x)>

(
Ψ + σ2

eIN
)−1

ψ(x). (45)

Remark 10. We will see, that the mean solution f̂(x) of Q-GP coincides perfectly with the
standard GP solution, that we will describe later. However, Q-GP and GP differ for the expression
of variance σ2

f |y(x), for a generic x (as we will show later). For further details, see below and [25].

4.2 Q-GP for smoothing

For obtaining the expressions for the smoothing scenario, we can replace the vector ψ(x)> with
the matrix Ψ in the formulas above. However, in the smoothing case, Q-GP can be directly
derived assuming a particular prior over f(x). Although the formulas of the Q-GP for smoothing
can be obtained as particular case of the expressions above, we repeat the derivation since it can
be useful for understanding the classical GP derivation (in the next section). We will use again
the previous standard Bayesian approach, but now we focus on removing noise of the observations
yn at the inputs xn obtaining f̂ , and we will consider a specific covariance prior over f . More
specifically, we consider a Gaussian prior over the vector f (i.e., a prior over the hidden function),

f ∼ N (f |0,Ψ) ∝ exp(−f>Ψ−1f), (46)

where Ψ is exactly the design matrix in Eq. (4). This is possible only if Ψ can represent a
covariance matrix, then Ψ must be positive definite and symmetric, Ψ = Ψ>. Therefore, we need
that ψn(x|z) = ψn(z|x). Recall that the observation model has the form

y = f + e.

16

We are interesting in inferring f given y under the assumption e ∼ N (e|0, σ2
eIN). Then, the

likelihood is
p(y|f) = N (e|f , σ2

eIN). (47)

Hence, the marginal likelihood is

p(y) =

∫

RN
p(y|f)p(f)df = N (y|0,Ψ + σ2

eIN). (48)

The posterior of the vector f is

p(f |y) =
1

p(y)
p(y|f)p(f) ∝ p(y|f)p(f) (49)

= N (f |µf |y,Σf |y), (50)

where the vector mean µf |y = f̂ and covariance matrix are

µf |y = f̂ = Ψ(Ψ + σ2
eIN)−1y, and (51)

Σf |y =
[
(Ψ)−1 +

(
σ2
eIN
)−1]−1

= Ψ−Ψ
(
Ψ + σ2

eIN
)−1

Ψ. (52)

Remark 11. The solution above of Q-GP for smoothing, represented by Eqs. (51)–(52), coincides
perfectly with the standard GP solution for smoothing, that we will describe below. See Eqs. (67)–
(68).

5 Gaussian Processes (GPs)

5.1 Definition

For simplicity, let us consider ψn(x,xn) = ψ(x,xn). Moreover, let us assume that the nonlinearity
ψ is chosen such that (a) ψ(x,x) > 0, (b) the design matrix Ψ = Ψ> (symmetric) and (c) Ψ is a
positive-definite matrix. In this case, we can interpret the design matrix Ψ as a covariance matrix
(as we have assumed in Section 4.1). As in Section 4.2, we can consider a Gaussian prior over the
vector f = [f(x1), . . . , f(xN)]>, e.g.,

f ∼ N (f |0,Ψ) ∝ exp(−f>Ψ−1f), (53)

assuming a zero mean vector for the sake of simplicity. We can generalize the idea above, for
two generic inputs x and z, which are not (necessarily) in the input dataset {x1, . . . ,xN}. Let
consider that the function ψ is symmetric, i.e., ψ(x, z) = ψ(z,x) for all x, z ∈ X and represents a
covariance function [6, 1] (see below).

Remark 12. We are assuming that function ψ(x, z) represents the covariance function between
the random variables f(x) and f(z), at two generic inputs x and z. Namely,

ψ(x, z) = E[(f(x)− µ(x))(f(z)− µ(z))], (54)

17

where we have assumed for simplicity µ(x) = 0, µ(z) = 0. Thus, ψ(x,x) = E[(f(x) − µ(x))2] is
the variance the random variable f(x), i.e, p(f(x)) ∼ N (0, ψ(x,x)).

Thus, we can assume that the two random variables f(x) and f(z) are jointly Gaussian, with
mean [0, 0]> and 2× 2 covariance matrix

C(f(x), f(z)) =

[
ψ(x,x) ψ(z,x)
ψ(x, z) ψ(z, z)

]
. (55)

Considering 3 generic inputs x, z, t ∈ X , we have the following covariance matrix

C(f(x), f(z), f(t)) =

ψ(x,x) ψ(z,x) ψ(t,x)
ψ(x, z) ψ(z, z) ψ(t, z)
ψ(x, t) ψ(z, t) ψ(t, t)

 . (56)

Moreover, considering all the input dataset {xn}Nn=1, we have that

C(x1,x2, . . . ,xN) = Ψ.

Marginal Likelihood. Recalling that y = f + e, then the marginal likelihood is again

p(y) = N (y|0,Ψ + σ2
eIN). (57)

where we have the sum of two independent multivariate Gaussian random variables f ∼ N (f |0,Ψ)
in Eq. (53) and e ∼ N (e|0, σ2

eIN).

Remark 13. If the kernel function is stationary ψ(x, z) = ψ(||x − z||), we are converting the
distance between the inputs x and z, into an priori covariance/correlation information. Often, we
associate small correlation to high distances and high correlation to small distances.

Definition. “A Gaussian process (GP) is a collection of random variables, any finite number of
which have a joint Gaussian distribution” [6]. A GP is completely specified by its mean function
m(x) : X → R (that we have assumed m(x) = 0, for simplicity) and its covariance function
ψ(x, z) : X × X → R.

A graphical representation of a GP prior considering a vector of dimension N = 4 is given in
Figure 5.

5.2 Posterior density of a GP in regression

Let us continue the derivation of the main GP formulas for regression, considering the joint
probability p(y, f(x)) where x ∈ X is a generic input and y = f + e (recall that f =
[f(x1), . . . , f(xN)]>). By the GP definition,

p(y, f(x)) = N ([y, f(x)]>|µjoint,Cjoint) (58)

18

x1 x2 x3 xx4

f1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

f2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

f3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

f4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 (x2,x3)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 (x2,x4)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 (x3,x4)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> (x1,x3)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 (x1,x2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 (xj ,xk) = (xk,xj)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇠ N (f |0,)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 (x1,x4)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 5: Graphical representation of a GP prior idea with N = 4 and Ψ = C(x1,x2,x3,x4).

where µjoint = [0, . . . , 0]> is a null vector of dimension (N + 1), and

Cjoint = C(y, f(x)) =

[
Ψ + σ2

eIN ψ(x)
ψ(x)> ψ(x,x)

]
, (59)

is a (N + 1)× (N + 1) covariance matrix. We recall that

ψ(x) = [ψ(x,x1), . . . , ψ(x,xN)]>,

is the N×1 design vector. The first bock in the diagonal of Cjoint is the covariance N×N matrix
of y i.e., C(y,y) = Ψ + σ2

eIN , and the last element in the diagonal is var[f(x)] = ψ(x,x). The
covariance of each element yn of the vector y = [y1, . . . , yN]>, and the random variable f(x) is
ψ(xn,x) = ψ(x,xn). All those N covariances are contained in the vector ψ(x). We will use the
following property of the Gaussian distributions,

p(a,b) ∼ N
(

[a,b]>
∣∣∣[µa,µb]>,

[
Ca Λ
Λ Cb

]
,

)
(60)

then the conditional pdf p(b|a) = N (b|µb|a,Cb|a) has the following mean and variance,

µb|a = µb + Λ>C−1a (a− µa), Cb|a = Cb −Λ>C−1a Λ. (61)

Hence, given the joint probability in (58), now we can obtain the mean and variance of posterior
pdf

p(f(x)|y) = N
(
f(x)|µf |y(x), σ2

f |y(x)
)
.

Thus, in this case, we have a = y, µa, µb are zero, Ca = Ψ + σ2
eIN , Λ = ψ(x) and Cb = ψ(x|x)

(i.e., a scalar in this case),

µf |y(x) = f̂(x) = ψ(x)>(Ψ + σ2
eIN)−1y, (62)

σ2
f |y(x) = ψ(x,x)−ψ(x)>(Ψ + σ2

eIN)−1ψ(x). (63)

19

Remark 14. Note that, also in this case, f̂(x) can be expressed as Eq. (3), i.e., f̂(x) = ψ(x)>ρ̂
where

ρ̂ = (Ψ + σ2
eIN)−1y. (64)

Remark 15. Also in the GP formulation, with noise-free data σ2
e = 0 (interpolation), we come

back to ρ̂ = Ψ−1y, as expected.

Posterior of several test points. The formulas (62)–(63) can be easily generalized when
we consider the posterior distribution of the hidden function in P different generic test points

f(x(1)), f(x(2)), . . . , f(x(P)).

In this case, we have to replace above the N × 1 vector ψ(x) with the N × P matrix V =
[ψ(x(1)),,ψ(x(P))], and the scalar value ψ(x|x) with the P × P covariance matrix

C = C(f(x(1)), . . . , f(x(P))) =

ψ(x(1),x(1)) · · · ψ(x(P),x(1))
ψ(x(1),x(2)) · · · ψ(x(P),x(2))

... · · · ...
ψ(x(1),x(P)) · · · ψ(x(P),x(P))

 .

Then, the posterior pdf is a multivariate Gaussian with the following P×1 mean vector and P×P
covariance matrix

µf |y = V>(Ψ + σ2
eIN)−1y, (65)

Σf |y = C−V>(Ψ + σ2
eIN)−1V. (66)

where µf |y = [f̂(x(1)), . . . , f̂(x(P))]>.

Smoothing case. If we consider the training inputs x1, . . . ,xN , then

C(f(x1), . . . , f(xN)) = Ψ.

The posterior of the vector f is
p(f |y) = N (f |µf |y,Σf |y),

where

µf |y = f̂ = Ψ(Ψ + σ2
eIN)−1y, (67)

Σf |y = Ψ−Ψ(Ψ + σ2
eIN)−1Ψ. (68)

Note that we have used Ψ = Ψ>.

Remark 16. The expressions (67)–(68) are exactly the same as in Eqs. (51)–(52) of the Q-GP.

20

5.3 Generation of random functions according to GP models

Drawing functions from the GP prior. Let us consider that we desire to know (and then, e.g.,
to plot) a random function f(x) in the input points x(1), . . . ,x(P). Then, the following procedure
generates S random “functions” (represented as random vectors) from a GP prior with kernel
function ψ(x, z):

1. Compute the P × P covariance matrix

C = C(f(x(1)), . . . , f(x(P))) =

ψ(x(1),x(1))

... ψ(x(P),x(1))
...

. . .
...

ψ(x(1),x(P)) · · · ψ(x(P),x(P))

 .

Recall that, for simplicity, we are assuming µ = [µ(x(1)), . . . , µ(x(P))]> = [0, . . . , 0]>.

2. Draw S vectors f
(s)
P = [f (s)(x(1)), . . . , f (s)(x(P))]> from a multivariate Gaussian with zero

mean and covariance matrix C above, i.e.,

f
(s)
P ∼ N (fP |0,C), s = 1, . . . , S.

Drawing functions from the GP posterior. Let us consider the test points x(1), . . . ,x(P).
Then, the following procedure generates S random “functions” (that actually are random vectors)
from a GP prior with kernel function ψ(x, z):

1. Compute the N × P matrix V = [ψ(x(1)), . . . ,ψ(x(P))]. Recall that ψ(x) =
[ψ1(x,x1), . . . , ψN(x,xN)]> is the N × 1 design vector.

2. Compute the P × P covariance matrix

C = C(f(x(1)), . . . , f(x(P))) =

ψ(x(1),x(1)) · · · ψ(x(P),x(1))
ψ(x(1),x(2)) · · · ψ(x(P),x(2))

...
...

...
ψ(x(1),x(P)) · · · ψ(x(P),x(P))

 .

3. Draw S vectors f
(s)
P = [f (s)(x(1)), . . . , f (s)(x(P))]> from a multivariate Gaussian, i.e.,

f
(s)
P ∼ N (fP |µ,Σ), s = 1, . . . , S,

where

µ = V>(Ψ + σ2
eIN)−1y is a P × 1 mean vector, and

Σ = C−V>(Ψ + σ2
eIN)−1V is a P × P covariance matrix.

Figure 6 shows some examples of random functions, predictive mean and variance of GP model
with a Gaussian kernel function.

21

-2 0 2 4
-4

-2

0

2

4

(a)

-2 0 2 4
-4

-2

0

2

4

(b) (c)

Figure 6: Random functions f̂ (s)(x) with x = x ∈ R scalar, and s = 1, . . . , 10 (a) from a GP
prior over f(x) and (b) from a GP posterior (after knowing the N = 3 data points), with N = 3
Gaussian kernels and bandwidth λ = 2, σe = 0.5. (c) Example of GP mean and variance with
N = 8 data points and S = 5 random functions from the posterior depicted with dashed lines
(σe = 0.5, λ = 4). The black solid line shows the mean µf |y(x) = f̂(x) and the boundary of the

grey area corresponds to f̂(x)± 2σ2
f |y(x) (i.e., ≈ 95% of the probability).

5.4 Interpretation of the hyper-parameters

The kernel hyper-parameters can be learned from data, maximizing the marginal likelihood or by
a cross-validation (CV) approach. In some cases, they are also interpretable in statistical terms
[26]. As an example, let x ∈ R and consider the following exponential kernel function

k(xi, xj) = a exp

(
−|xi − xj|

β

λ

)
+ v1 + v2 · δij (69)

where a, λ, v1, v2, β > 0. Moreover, δij = 1 when i = j and zero otherwise. The statistical
interpretation of each parameter is:

• a : a-priori signal variance, i.e., the prior variance that the random function f(x) has
following the user’s belief, without knowing any data. In regions where there are no data
points, the posterior/predictive variance will be a.

• λ : lengthscale. This parameter determines the oscillations that the solution has. The
optimal λ becomes usually smaller as the number of data points grows and becoming closer
and closer.

• β : roughness. This parameter determines the derivability and the smoothness of the
resulting solution.

• v1 : variance of bias.

• v2 : additional noise power. Since we consider the parameter σ2
e , we can avoid the use of v2.

22

5.5 Relevant GP special cases

For simplicity, let us assume again a scalar input, x ∈ R. Different well-known stochastic processes
are GPs [27, Chapter 6]. Table 2 provides some examples, clarifying the specific choice of the mean
µ(x) and covariance function ψ(x, z) of the GP prior. Recall that, in this work, we have always
considered µ(x) = 0 for the sake of simplicity. Figure 7 depicts ten realizations of a Wiener process
and of a standard Brownian bridge.

Table 2: Special cases of Gaussian processes.

Type Mean µ(x) Covariance function ψ(x, z)

Wiener process 0 min{x, z}
Standard Brownian

0 min{x, z} − xz
bridge

Ornstein-Uhlenbeck
e−θxµ0 + ν(1− e−θx) σ2

2θ
e−θ(x+z)

(
e2θmin{x,z} − 1

)
process

0 0.5 1

−2

−1

0

1

2

W
t

t
(a)

0 0.5 1−2

−1

0

1

2

X t

t
(b)

Figure 7: Ten independent realizations (a) of a Wiener process and (b) of a a standard Brownian
bridge.

6 Dual representation of RVM - Dual Gaussian Process

In this section, we show that RVM method can be seen also a GP model with a specific choice
of the kernel function. Namely, RVM is also a GP. However, the fact of choosing just indirectly
the kernel function can provides undesirable behavior in the predictive variance, as we discuss in
Section 7. Below, we obtain the covariance function (i.e., the kernel function) of RVM and related
vectors and matrices.

23

6.1 Covariance function of RVM

We can compute the covariance between the random variables f = f(x) and f ′ = f(x′). Indeed,
recalling that f(x) = ψ(x)>ρ, we can write

kdual(x,x
′) = E[f(x)− µf , f(x′)− µf]

= E[f(x), f(x′)]

= E[ψ(x)>ρ,ψ(x′)>ρ]

= ψ(x)>E[ρ,ρ]ψ(x′),

= ψ(x)>Σρψ(x′) : X × X → R. (70)

where we have also used the fact that E[ρ] = 0, hence E[ρ,ρ] = Σρ. The function kdual(x,x
′) is

called dual kernel function, and it is also symmetric, i.e.,

kdual(x,x
′) = ψ(x)>Σρψ(x′)

= ψ(x′)>Σρψ(x) = kdual(x
′,x).

Moreover, we define the vector

kdual(x) = [kdual(x,x1), kdual(x,x2), . . . , kdual(x,xN)]> : X → RN×1

= ψ(x)>ΣρΨ
>, (71)

where we have considered the training inputs {xn}Nn=1, and finally we introduce the N ×N matrix

Kdual = [kdual(x1),kdual(x2), . . . ,kdual(xN)]>,

= ΨΣρΨ
>. (72)

Therefore, the probabilistic model of RVM indirectly assumes correlation between two inputs x
and z,

corr(f(x), f(z)) =
ψ(x)>Σρψ(z)√

ψ(x)>Σρψ(x)
√
ψ(z)>Σρψ(z)

. (73)

where |corr(f(x), f(z))| ≤ 1 (i.e., it is a normalized covariance).

6.2 GP formulation of RVM - Dual Gaussian Process

Using the results above, the RVM formulas in Eqs. (31)–(32) can be rewritten in some way such
that they coincide with the corresponding GP solutions (dual GP formulation), when kdual(x,x

′)
in Eq. (70) is used as a kernel function (see Section 5). If we replace the expressions (70)–(71)–(72)
within the predictive-posterior RVM distribution

p(f(x)|y) = N (f(x)|µf |y, σ2
f |y),

24

i.e., in Eqs. (31)–(32), we obtain the following expressions for the corresponding mean and variance
functions,

µf |y = f̂(x) = kdual(x)
(
Kdual + σ2

eIN
)−1

y,

σ2
f |y = kdual(x,x)− kdual(x)

(
Kdual + σ2

eIN
)−1

kdual(x)>.
(74)

We can observe that these formulas coincide with the mathematical form the GP solutions
in Eqs. (62)–(63). Replacing the expressions (70)-(71)-(72) within the smoothing solution,
p(f |y) = N (f |µf |y,Σf |y), i.e., in Eqs. (35)–(36), we obtain

µf |y = f̂ = Kdual

(
Kdual + σ2

eIN
)−1

y,

Σf |y = Kdual −K>dual
(
Kdual + σ2

eIN
)−1

Kdual. (75)

Again, the formulas above coincide with the mathematical form of the GP solutions in Eqs. (67)–
(68). Then, a RVM can be interpreted as a GP using kdual(x,x

′) in Eq. (70) as kernel function.
However, this implicit choice of kdual(x,x

′) in general does not provide a good behavior of the
predictive variance, as we remark in Section 7.

Remark 17. Generally, the dual kernel function kdual(x,x
′) is not stationary. The choice of the

bases functions ψ(x,x′) such that kdual(x,x
′) be stationary is not straightforward.

Some examples of dual kernel functions are provided in Figure 8.

-5 0 5
0

1

2

3

4

5

(a) N = 5

-5 0 5
0

1

2

3

4

5

6

(b) N = 7

Figure 8: Examples of dual kernels kdual(x, xn) obtained as in Eq. (70), where (a) xn ∈
{−3,−2, 0, 2, 4}, (b) xn ∈ {−4.5,−3,−2, 0, 1, 2, 4} (shown with dots), and the bases ϕ(x, xn)
are Gaussian (with mean at xn and bandwidth λ = 5). We have considered a diagonal covariance
matrix Σρ with all the elements in the diagonal equal to 2.25.

25

7 Summary of Relationships among RVMs, Q-GPs, and

GPs

In all the considered methods, we have a complete characterization of posterior of the function
f(x) for all x. Moreover, in all the methods, we have shown the generation of random functions
from (direct or induced) priors and/or posteriors. In this section, we recall the connections among
all the methods. Below, we enumerate some important observations highlighted so far:

• Q-GP is a special case of RVM setting Σp = Ψ−1.

• The posterior mean of Q-GP coincides with the posterior mean of a standard GP.

• In the smoothing scenario, i.e., only considering only the data inputs {xn}Nn=1, Q-GP and GP
are perfectly equivalent, i.e., they have the same posterior/predictive distributions (Gaussian
with the same mean and variance).

• In Q-GP and GP, the design matrix Ψ must be symmetric, i.e., Ψ = Ψ>, and positive
definite. This is not required in RVM.

These relationships among the methods are graphically represented in Figure 9. Summaries of
the main formulas for regression, smoothing and interpolation are given also in Tables 3, 4 and 5,
respectively.

Table 3: Regression formulas. N.B. In Q-GP and GP, we have Ψ = Ψ>.

Method Mean f̂(x) Variance σ2f |y(x)

ψ(x)>Σρψ(x)−
RVM ψ(x)>ΣρΨ

> (ΨΣρΨ
> + σ2eIN

)−1
y ψ(x)>ΣρΨ

> (ΨΣρΨ
> + σ2eIN

)−1
ΨΣρψ(x)

Q-GP ψ(x)>(Ψ + σ2eIN)−1y ψ(x)>Ψ−1ψ(x)−ψ(x)>
(
Ψ + σ2eIN

)−1
ψ(x)

GP ψ(x)>(Ψ + σ2eIN)−1y ψ(x,x)−ψ(x)>(Ψ + σ2eIN)−1ψ(x)

7.1 Advantages and weaknesses

The advantage of RVM is that we have fewer restrictions in choosing the bases ψn, i.e., we have
more flexibility in this choice. With Q-GP and GP, we need some function ψ such that the
matrix Ψ be invertible and positive definite, since Ψ must be interpreted as a covariance matrix.
For instance, in RVM, we can employ directly N different bases ψn, each one with a different
analytical form and different parameters. In this scenario, with Q-GP and GP, first of all we
should be check it the resulting matrix Ψ is positive definite, for any possible values of the entries
and the parameters.

26

Table 4: Smoothing formulas. N.B. In Q-GP and GP, we have Ψ = Ψ>.

Method Mean vector f̂ = µf |y Covariance matrix Σf |y

RVM ΨΣρΨ
> (ΨΣρΨ

> + σ2eIN
)−1

y ΨΣρΨ
> −ΨΣρΨ

> (σ2eIN + ΨΣρΨ
>)−1 ΨΣρΨ

>

Q-GP Ψ(Ψ + σ2eIN)−1y Ψ−Ψ
(
Ψ + σ2eIN

)−1
Ψ

GP Ψ(Ψ + σ2eIN)−1y Ψ−Ψ
(
Ψ + σ2eIN

)−1
Ψ

Table 5: Interpolation formulas. N.B. In Q-GP and GP, we have Ψ = Ψ>.

Method Mean f̂(x) Variance σ2f |y(x)

RVM ψ(x)>Ψ−1y 0 for all x

Q-GP ψ(x)>Ψ−1y 0 for all x

GP ψ(x)>Ψ−1y ψ(x,x)−ψ(x)>Ψ−1ψ(x)

Standard Bayesian derivation

<latexit sha1_base64="VBtJrAWxhaElqQLdQZtfSCUsXKs=">AAACDHicbVC7SgNBFJ2NrxhfUUubwSBYhV0JqF3QxjKieUASwt3Zm2TI7OwyMxsMSz7Axl+xsVDE1g+w82+cPApNPDBwOOdc7tzjx4Jr47rfTmZldW19I7uZ29re2d3L7x/UdJQohlUWiUg1fNAouMSq4UZgI1YIoS+w7g+uJ359iErzSN6bUYztEHqSdzkDY6VOvtAK/eghvTMgA1ABvYIRag6SBqj4cBoa25RbdKegy8SbkwKZo9LJf7WCiCUhSsMEaN303Ni0U1CGM4HjXCvRGAMbQA+blkoIUbfT6TFjemKVgHYjZZ80dKr+nkgh1HoU+jYZgunrRW8i/uc1E9O9aKdcxolByWaLuomgJqKTZmjAFTIjRpYAU9z+lbI+KGDG9pezJXiLJy+T2lnRKxVLt6VC+XJeR5YckWNySjxyTsrkhlRIlTDySJ7JK3lznpwX5935mEUzznzmkPyB8/kDgROb4w==</latexit>

Gaussian Process derivation

<latexit sha1_base64="P5TX7eLCCrUT1KfD3hzXtJ/Xovw=">AAACC3icbVDLSgMxFM3UV62vUZduQovgqsxIQd0VXOiygn1AW0omvW1DM8mQZIpl6N6Nv+LGhSJu/QF3/o3pdBbaeiBwOOdcbu4JIs608bxvJ7e2vrG5ld8u7Ozu7R+4h0cNLWNFoU4ll6oVEA2cCagbZji0IgUkDDg0g/H13G9OQGkmxb2ZRtANyVCwAaPEWKnnFjthIB+SGxJrzYjANSUpaI37oNgkzcx6bskreynwKvEzUkIZaj33q9OXNA5BGMqJ1m3fi0w3IcowymFW6MQaIkLHZAhtSwUJQXeT9JYZPrVKHw+ksk8YnKq/JxISaj0NA5sMiRnpZW8u/ue1YzO47CZMRLEBQReLBjHHRuJ5MbjPFFDDp5YQqpj9K6Yjogg1tr6CLcFfPnmVNM7LfqVcuauUqldZHXl0goroDPnoAlXRLaqhOqLoET2jV/TmPDkvzrvzsYjmnGzmGP2B8/kD6wqblg==</latexit>

RVM

<latexit sha1_base64="FwMzAxEgFyuDihGybr/X9rgeolQ=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FvHgRopgHJkuYnUySIfNYZmbFsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7opgzY33/28utrK6tb+Q3C1vbO7t7xf2DhlGJJrROFFe6FWFDOZO0bpnltBVrikXEaTMaXU395iPVhil5b8cxDQUeSNZnBFsnPXREpJ7Su8bNpFss+WV/BrRMgoyUIEOtW/zq9BRJBJWWcGxMO/BjG6ZYW0Y4nRQ6iaExJiM8oG1HJRbUhOns4gk6cUoP9ZV2JS2aqb8nUiyMGYvIdQpsh2bRm4r/ee3E9i/ClMk4sVSS+aJ+wpFVaPo+6jFNieVjRzDRzN2KyBBrTKwLqeBCCBZfXiaNs3JQKVduK6XqZRZHHo7gGE4hgHOowjXUoA4EJDzDK7x5xnvx3r2PeWvOy2YO4Q+8zx+dOpDb</latexit>

Dual GP

<latexit sha1_base64="a8HLxM7E7mhwmu1FmZ5L1GhPI4M=">AAACInicbVDLSgMxFM34rPVVdekm2BZclRkpaBdCQUE3SgXbCm0pdzKphmaSIcmIdei3uPFX3LhQ1JXgx5i2s9DqgcDhnPvIPX7EmTau++nMzM7NLyxmlrLLK6tr67mNzYaWsSK0TiSX6soHTTkTtG6Y4fQqUhRCn9Om3z8a+c1bqjST4tIMItoJ4VqwHiNgrNTNVYrt0Jd3SeHs8LyAQQR4mE0lLglwdk8DPFqgh9mJfBwDxye1YTeXd0vuGPgv8VKSRylq3dx7O5AkDqkwhIPWLc+NTCcBZRjh1I6PNY2A9OGatiwVEFLdScYnDnHRKgHuSWWfMHis/uxIINR6EPq2MgRzo6e9kfif14pN76CTMBHFhgoyWdSLOTYSj/LCAVOUGD6wBIhi9q+Y3IACYmyqWRuCN33yX9LYK3nlUvminK9W0jgyaBvtoF3koX1URaeohuqIoAf0hF7Qq/PoPDtvzsekdMZJe7bQLzhf34lToxQ=</latexit>

equivalent

<latexit sha1_base64="mHdsbj6PE65fpuRra/6J6JAK+c0=">AAACNXicbVBNSwMxEM36bf2qevQSrIKnsisFvQiCgh5UKlgVaimz2akGs8maZMW69E958X940oMHRbz6F0zbRfwaCLx5M4+XeWEiuLG+/+QNDA4Nj4yOjRcmJqemZ4qzc8dGpZphjSmh9GkIBgWXWLPcCjxNNEIcCjwJL7e685Nr1IYreWTbCTZiOJe8xRlYRzWLe8tncahusqX9jYMlCjKinUJOCcVA8FuMaNfAfPHbKQi6U+0U+i1epfwaBErbaRZLftnvFf0LghyUSF7VZvHhLFIsjZ2YCTCmHviJbWSgLWcCnUNqMAF2CedYd1BCjKaR9a7u0GXHRLSltHvS0h77XZFBbEw7Dt1mDPbC/J51yf9m9dS21hsZl0lqUbK+USsV1CrajZBGXCOzou0AMM3dXym7AA3MuqALLoTg98l/wfFqOaiUK4eV0mYlj2OMLJBFskICskY2yS6pkhph5I48khfy6t17z96b995fHfByzTz5Ud7HJ1r4q0Q=</latexit>

bad behaviour

of the variance

as BBFM and RVM

<latexit sha1_base64="JIEKHpPAvQvmgyD/DQ8lcA71Hv8=">AAAChHicbVFNb9NAEF0bKMV8NIUjlxVpgQOKbAhqL62qgoBLUEAkrRRH0Xg9blZd77q764hg+Zfwr7jxb1gnpiotI6305r0ZzduZpBDc2DD87fm3bt/ZuLt5L7j/4OGjrc7247FRpWY4YkoofZqAQcEljiy3Ak8LjZAnAk+S83eNfrJAbbiS3+yywGkOZ5JnnIF11KzzczfOE/W92hkcfN6hIFNaBy0lFAPBf2BKmwHmkn9fgqAfh5c5XpR8AQKlrYPnayoB14RzWHDns6Zx/FdQGbVzpAvQHCTDqxIYenz8YbDy8HU8qINg1umGvXAV9CaIWtAlbQxnnV9xqliZOytMgDGTKCzstAJtORNYB3FpsAB2Dmc4cVBCjmZarZZY013HpDRT2j1p6Yq92lFBbswyT1xlDnZurmsN+T9tUtpsf1pxWZQWJVsPykpBraLNRWjKNTIrlg4A09x5pWwOGph1d2uWEF3/8k0wft2L+r3+l373qN+uY5M8Jc/ISxKRPXJEPpEhGRHmed4LL/Qif8N/5b/x365Lfa/teUL+Cf/wDwIuwBg=</latexit>

Q-GP

<latexit sha1_base64="vbJi77vvnT0pnqH3NjB9jacLUyk=">AAACg3icbZFda9swFIZlr9067yvdLncjmrYUyjK7BLZdFEoHa28y0rGkhSSEY/m4EZUlV5LDMuM/sp+1u/2byokp/dgBwcvznoNeHcW54MaG4T/Pf7K2/vTZxvPgxctXr9+0Nt8OjSo0wwFTQumLGAwKLnFguRV4kWuELBZ4Hl99rf3zOWrDlfxpFzlOMriUPOUMrEPT1p+dcRarX+V27/D7NgWZ0CpokFAMBP+NCa0vMFWwwmcfTvq3PXhd8DkIlNah3RWLwU3gDObchazoeHzrqJTaGdI5aA6S4T0PDD0+/tZbRvgx7FVBMG21w064LPpYRI1ok6b609bfcaJYkbk0TIAxoyjM7aQEbTkT6PIXBnNgV3CJIyclZGgm5XKHFd1xJKGp0u5IS5f07kQJmTGLLHadGdiZeejV8H/eqLDp50nJZV5YlGx1UVoIahWtP4QmXCOzYuEEMM1dVspmoIFZ9231EqKHT34shgedqNvpnnXbR1+adWyQ92SL7JGIfCJH5JT0yYAwj3i73kcv9Nf9ff/A765afa+ZeUfulX94A0TavzU=</latexit>

GP

<latexit sha1_base64="qUEoeGIgE1hrOhPQXjlhH3TDSIA=">AAACgXicbVHRahNBFJ3dWq3bqml99GUwqeiDYbcEtJRCqaC+RGIxaSEJ4e7s3Wbo7Mx2ZjYYl/0Pv8s3f0acTZZiWy8MHM45l3vm3jgX3Ngw/O35Gw82Hz7aehxs7zx5+qy1uzcyqtAMh0wJpS9iMCi4xKHlVuBFrhGyWOB5fPWh1s8XqA1X8ptd5jjN4FLylDOwjpq1fu5Pslh9Lzv94y8dCjKhVdBQQjEQ/AcmtB5gqmBNfxrcOPC64AsQKK2jXq25GJwf57DgLmJFJ5MbRaXUzpEuQHOQDG9pYOjp6cf+KsDZqF8FwazVDrvhquh9EDWgTZoazFq/JoliRebSMAHGjKMwt9MStOVMoEtfGMyBXcEljh2UkKGZlqsNVnTfMQlNlXZPWrpi/+0oITNmmcXOmYGdm7taTf5PGxc2fT8tucwLi5KtB6WFoFbR+hw04RqZFUsHgGnuslI2Bw3MuqPVS4jufvk+GB10o16397XXPjls1rFFXpCX5DWJyDtyQj6TARkSRv54He+t1/U3/Dd+6B+srb7X9Dwnt8o/+gsSTr+i</latexit>

perfect match

setting

⌃⇢ = �1

<latexit sha1_base64="Eh8Pj4i3+ZAx7jgnGOOfXCsDKdM=">AAADBHicbVLLbtNAFB2bVzGvFJZsRiRFbKhiFAk2laoiAZug8EhaqQ7ReHwdjzoPd2YcESxv+QW2sGeH2PIfbPkSxo5T0ZQrjXR0zp1775w7cc6Zsf3+b8+/dPnK1Wtb14MbN2/dvtPZvjsxqtAUxlRxpY9iYoAzCWPLLIejXAMRMYfD+OR5rR8uQBum5Hu7zGEqyFyylFFiHTXb9oKdSMTqY9kb7r3uYSITXK0prijh7BMkuO5gzviXozNIlcg5WOBLDKcFWxAO0mImsRFK2YzJeRU8XKXmoFOgFgtiaVbhKFoLBqytExsKt9OUUSxw9I7NBalmkc7U3ooZGVZ9KB+HVc/N0BaIiZsQMrJgzpWmzFpRKbYZ4AXRjEgK5zRi8MHBi2Hz5LeTYRUEs063v9tvAl8EYQu6qI3RrPMnShQthHsz5cSY47Cf22lJtGWUQxVEhYGc0BMyh2MHJRFgpmWztArvOCbBqdLuOM8a9t8bJRHGLEXsMp1lmdnUavK/Wiw2Otv02bRkMi8sSLpqnBYcW4XrH4ETpt1e3AYTRqhmbnZMM6IJte7f1KaEmxZcBJMnu+Fgd/Bm0N0ftPZsofvoAXqEQvQU7aNXaITGiHqn3hfvq/fN/+x/93/4P1epvtfeuYfOhf/rL9Is8l8=</latexit>

as RVM

<latexit sha1_base64="GXvn2kLsoG0Hk6WuXM6tV6e3mDA=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9mVBT0WvHgRqtgPaJeSTbNtaDZZk2yxLP0dXjwo4tUf481/Y9ruQVsfDDzem2FmXphwpo3rfjuFtfWNza3idmlnd2//oHx41NQyVYQ2iORStUOsKWeCNgwznLYTRXEcctoKR9czvzWmSjMpHswkoUGMB4JFjGBjpaAbh/IpwxrdN2+nvXLFrbpzoFXi5aQCOeq98le3L0kaU2EIx1p3PDcxQYaVYYTTaambappgMsID2rFU4JjqIJsfPUVnVumjSCpbwqC5+nsiw7HWkzi0nTE2Q73szcT/vE5qoqsgYyJJDRVksShKOTISzRJAfaYoMXxiCSaK2VsRGWKFibE5lWwI3vLLq6R5UfX8qn/nV2p+HkcRTuAUzsGDS6jBDdShAQQe4Rle4c0ZOy/Ou/OxaC04+cwx/IHz+QOJO5Ho</latexit>

equivalence in the mean function

<latexit sha1_base64="TE/HCEvBRiCROABsv6LOYxJEDNk=">AAACl3icbVFda9swFJXdfXTeV7rtZexFLO3YU7BHYKUwWtrR9SUjHUtaSEK4lq8bUVlyJTksM/5L+zF727+Z7JiytrsgOJxzP4/iXHBjw/CP52/cu//g4eaj4PGTp8+ed7ZejI0qNMMRU0Lp8xgMCi5xZLkVeJ5rhCwWeBZfHtX62RK14Up+t6scZxlcSJ5yBtZR886vnWkWqx/l9uDT120KMqFV0FJCMRD8Jya0HmCu+S/DKlgjvCr4EgRKhpRLahdIMwRJ00Kyur0rebfOjMF1wQUsuVu8otPptaLSpm4JmoPrc0MDQw8PjwfNWt/GgyoI5p1u2AuboHdB1IIuaWM47/yeJooVGUrLBBgzicLczkrQljOB7pDCYA7sEi5w4qCEDM2sbHyt6I5jEpoq7Z60tGH/rSghM2aVxS4zA7swt7Wa/J82KWy6Oyu5zAvrzFsPSgtBraL1J9GEa2RWrBwAprnblbIFaGDWfWVtQnT75Ltg/KEX9Xv90373oN/asUnekLfkPYnIR3JATsiQjAjzXnl73pH32X/t7/vH/sk61ffampfkRvinfwFB7sdt</latexit>

completely equivalent in smoothing

<latexit sha1_base64="cx6Q0j2ni6FYFgX9w5EVZGb3gVE=">AAACmXicbVHbbtNAEF2bWzG3ABIvfVmRFvEUxSgSPIBUiigVUlC4JK2URNF4PY5X3YvZXUcEy//Et/DG37BOrIq2jLTS0TkzO2dmkkJw6/r9P0F47fqNm7d2bkd37t67/6Dz8NHE6tIwHDMttDlNwKLgCseOO4GnhUGQicCT5Oxdo5+s0Fiu1Te3LnAuYal4xhk4Ty06v/ZnMtE/qr3hm097FFRK66ilhGYg+E9MadPAnvMfRnW0RUzLQqBDsab4veQrEKgc5YpaqbXLuVr6omfb3AT8P5jDinvrNZ3NzhWdUZcjXYHhoBhe0MDSw8Oj4cbYl8mwjqJFp9vv9TdBr4K4BV3SxmjR+T1LNSult8YEWDuN+4WbV2AcZwL9KKXFAtgZLHHqoQKJdl5tNlvTfc+kNNPGPz/ahv23ogJp7VomPlOCy+1lrSH/p01Ll72aV1wVpUPFto2yUlCnaXMmmnKDzPnFphyY4d4rZTkYYM4fs1lCfHnkq2DyohcPeoPPg+7BoF3HDtklT8lzEpOX5IAckxEZExY8CV4H74OjcDd8Gx6HH7epYdDWPCYXIvz6F1eYyNs=</latexit>

Figure 9: Graphical representation of the relationships among the different methods.

In all cases, RVM, Q-GP and GP, the mean solution can be expressed as linear combination
of N nonlinearities. Hence, in both cases, the flexibility of the solution grows with the number of
data (i.e., N).

Remark 18. The main benefit of the RVM approach is that we have fewer restrictions in the
choice of the nonlinearities φn that can be also different for each data input xn, since we do not
need that Ψ be symmetric.

27

Remark 19. The main advantage of GP with respect to the other methods, is that we directly
decide the covariance function ensuring, for instance, stationary and other statistical properties
(when required). This has also another important consequence: the behavior of GP predictive
variance has a natural/intuitive behavior (as we shown below), unlike the predictive variances of
RVM and Q-GP [16, 18, 15, 17].

7.2 Variance behavior

A intuitive and natural behavior of the predictive variance is the following: it should be smaller
at x close to the data inputs xn, and greater far away from the data points. This usually happens
with a GP with a reasonable choice of the kernel function. With RVM (and Q-GP) and localized
bases, the behavior is arguably non-intuitive: the predictive variance is greater close to xn, and
smaller far away from the data inputs.

Comparison of Q-GP and GP variances. We know that Q-GP is a special case of RVM,
which coincides with GP in the mean of te posterior/predictive function. In order to provide a
comparison between Q-GP and GP, consider a one dimensional example, x ∈ R, with the following
basis/kernel

k(x, z) = a exp

(
−(x− z)2

λ

)
, (76)

with a = 0.7 and λ = 2. Given a set of data points, we have applied the Q-GP and GP methods,
considering σe = 0.5 (in Figure 10). In Figure 10(a), we show the data points and the posterior
means of Q-GP and GP. As expected, they perfectly coincide in both cases. Figure 10(b) depicts

the mean of Q-GP f̂(x) and f̂(x)± 2
√
σ2
f |y(x) with a shaded area. Figure 10(c) depicts the mean

f̂(x) of the standard GP and f̂(x)± 2
√
σ2
f |y(x) with a shaded area. The corresponding variances

σ2
f |y(x) as function of x are shown in Figure 10(d). We can observe that the the variance of the

GP is smaller closer to the data points (as expected). The opposite occurs with Q-GP. The two
variance functions coincide exactly in the data points {xn}Nn=1. Indeed, in the smoothing scenario,
Q-GP and GP are perfectly equivalent. Furthermore, observe that the variance of GP is always
greater than the variance of Q-GP. Finally, let us compare Figures 10(d) and 11, for instance.
Note that, when σe → 0, the variance of Q-GP vanishes to zero for all x, i.e., σ2

f |y(x) → 0 ∀x.

Whereas, when σe → 0, the variance of GP goes to zero only in {xn}Nn=1, i.e., in the data points
σ2
f |y(xn) = 0 for all n. The interpolation case is given in Figure 11 (see also Table 5).

7.3 The legend of infinite bases

Several authors show that the squared exponential kernel function, defined (scalar x ∈ R for
simplicity) as

ψ(xi, xj) = exp

(
−(xi − xj)2

2
√

2λ

)
,

28

-15 -10 -5 0 5 10 15
-4

-2

0

2

4 GP mean
Q-GP mean
Data points

(a) (b)

(c)

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8
var of Q-GP
var of GP
Data inputs

(d)

Figure 10: Variance Behaviour (with σe = 0.5). (a)-(b)-(c) show the posterior (predictive) mean

f̂(x) of GP and Q-GP. The shaded areas represents f̂(x)± 2
√
σ2
f |y(x). Note the posterior means

coincides. (d) shows the corresponding variances σ2
f |y(x) as function of x. The horizontal blue

line denotes the value of a = 0.7.

can also be obtained by expanding the input into a feature space represented by an infinite network

defined by Gaussian-shaped basis functions φc(x) = exp
(
− (x−c)2

2λ

)
, where c denotes the centre of

the basis function. Let us consider M bases centered in different values c. Assuming the covariance
matrix of the prior density as Σp = σ2

pIM , the induced kernel can be written as

kM(xi, xj) = σ2
p

M∑

c=1

φc(xi)φc(xj).

It is possible to show that lim
M→∞

kM(xi, xj) ∝ ψ(xi, xj) (see, e.g., [6]).

This result can lead to misleading conclusions. For instance, one could state that “ to obtain the
GP flexibility and performance, with a standard Bayesian formulation, we need infinite bases”.
This statement is not true, or only partially true. Indeed, regarding the posterior/predictive
mean function, we know that we can obtain exactly the GP solution with a standard Bayesian

29

(a) RVM and Q-GP (b) GP

Figure 11: Interpolation case, i.e., σe = 0 (and a = 1). (a) In this case, RVM and Q-GP provides
the same solution with a null predictive variance, i.e., σ2

f |y(x) = 0. The posterior/predictive

mean f̂(x) of RVM/Q-GP is also given. (b) Predictive mean and variance of a GP when σe = 0

(interpolation). The shaded area represents f̂(x)±2
√
σ2
f |y(x). The corresponding variances σ2

f |y(x)

as function of x is also given below. Note that σ2
f |y(x) is zero only at the data inputs.

formulation setting M = N (finite) and using a suitable covariance prior over the weights,
Σp = Ψ−1. On the other hand, we cannot obtain the same posterior/predictive variance, at
least not with a finite number of bases.

7.4 Marginal likelihood and parameter learning

The marginal likelihood (a.k.a., Bayesian evidence) is defined as

p(y) =

∫

RN
p(y|f)p(f)df . (77)

where p(f) is the prior over the N × 1 vector f given the considered probabilistic model. The
marginal likelihood represents the probability of data given the model M and its parameters,
p(y) = p(y|M), hence it is useful for model selection purposes. For instance, it can be used in
order to tune of the parameters and hyper-parameters of the model denoted as θ. In the vector
θ = [λ, σ2

e] we include all the parameters λ of the nonlinearities ψn, as well as the parameters
need for defining the prior densities and the power of the noise perturbation σ2

e . Therefore, in this
case, a more complete notation is the following

p(y|θ) =

∫

RN
p(y|f ,θ)p(f |θ)df . (78)

30

The marginal likelihoods of different methods studied so far can be computed analytically, and
are given below

RVM: p(y|θ) = N (y|0,ΨΣρΨ
> + σ2

eIN),

Q-GP, GP: p(y|θ) = N (y|0,Ψ + σ2
eIN).

Remark 20. Since Q-GP and GP have the same marginal likelihood, then they have the same
estimator θ̂ of the hyper-parameters (e.g., maximum likelihood, MAP, MMSE etc.).

Note that, in all cases, we have a multivariate Gaussian density

p(y) = N (y|0,Cyy),

with Cyy = ΨΣρΨ
> + σ2

eIN in RVM, and Cyy = Ψ + σ2
eIN in Q-GP and GP. Then, we can write

the full negative log-marginal likelihood as

− log p(y|θ) =
1

2
y>C−1yy y +

1

2
log [det Cyy] + const. (79)

The first term 1
2
y>C−1yy y in Eq. (79) can be considered a fitting term, the second one 1

2
log [det Cyy]

plays the role of a regularizer, i.e., a penalty on the model complexity.
We can maximize p(y|θ) obtaining a possible choice θ̂ (i.e., a possible estimator). This approach
is also called type-II maximum likelihood procedure (a.k.a., empirical Bayes). Note that, in this
way, we avoid the use of a cross-validation (CV) procedure. Alternatively, one can also consider
a prior p(θ) over θ and study the posterior p(θ|y) ∝ p(y|θ)p(θ) using for instance Monte Carlo

methods [27, 28]. Different possible point estimators θ̂ are possible such as the maximum, the
expected value or the median of the posterior p(θ|y). Additionally, studying the posterior p(θ|y),
we can obtain credible intervals of each parameter and approximate its marginal distribution, for
instance. An additional alternative is the use of a full Bayesian approach, described in the next
section.

8 Uncertainty analysis with GPs

Although the predictive GP variance has a good intuitive behavior, its analytical form depends
explicitly just on the inputs {xn}Nn=1 (not on the outputs {yn}Nn=1), i.e., σ2

f |y(x) = ψ(x,x) −
ψ(x)>(Ψ + σ2

eIN)−1ψ(x).
Namely, fixing the hyper-parameters of the employed kernel, we could compute σ2

f |y(x) only

knowing {xn}Nn=1 and without any information of the signal values {yn}Nn=1. In this case, since
we can compute σ2

f |y(x) before knowing the signal, it seems that σ2
f |y(x) can not provide relevant

information. However, we will learn the hyper-parameters given the data y = [y1, . . . , yN]> and the
choice of the hyper-parameters affects (a) the value ψ(x,x) (if we have a multiplicative parameter
a as in Eq. (69)), (b) the vector ψ(x) and (c) the matrix Ψ. Hence, we can assert that the
variance σ2

f |y(x) depends on {yn}Nn=1 through the hyper-parameters learning. More information
can be obtained by performing a full Bayesian study.

31

Full Bayesian solution. A full Bayesian solution can provide more information for a proper
uncertainty analysis, as we show below. Let us assume also a prior p(θ) over the hyper-parameters
θ. A full Bayesian analysis considers the complete joint posterior, which can be expressed as

p(f ,θ|y) =
p(f ,θ,y)

p(y)
=
p(y|f ,θ)p(f |θ)p(θ)

p(y)
. (80)

This is a more complete and proper approach from a Bayesian point of view. However,
moments and other features of p(f ,θ|y) are not analytically available, so that the application
of computational algorithms (such as Monte Carlo methods) is required [27, 28]. Indeed, so far
we have considered a conditional posterior, i.e.,

p(f |y,θ) =
p(f ,θ,y)

p(θ,y)
=
p(y|f ,θ)p(f |θ)p(θ)

p(y|θ)p(θ)
=
p(y|f ,θ)p(f |θ)

p(y|θ)
, (81)

where the conditional marginal likelihood is p(y|θ) =
∫
RN p(y|f ,θ)p(f |θ)df . One marginal

posterior of θ is given as

p(θ|y) =
p(y|θ)p(θ)

p(y)
∝ p(y|θ)p(θ), (82)

where

p(y) =

∫

Θ

p(y|θ)p(θ)dθ.

which can be useful for comparing GP models using different kernels, for instance. Note that the
relationship among the full posterior in Eq. (80), the conditional posterior in Eq. (81), and the
marginal posterior in Eq. (82), is give by

p(f ,θ|y) = p(f |y,θ)p(θ|y). (83)

Furthermore, the other marginal posterior is

p(f |y) =

∫

Θ

p(f |y,θ)p(θ|y)dθ. (84)

In order to study the posterior p(f ,θ|y), we can use a Monte Carlo approximation. We can
generate N samples from the complete posterior {fs,θs} ∼ p(f ,θ|y), where θs ∼ p(θ|y) and
fs ∼ p(f |y,θs), with s = 1, ..., S. The difficult task is to draw from the marginal posterior p(θ|y),
whereas the conditional posterior p(f |y,θs) is a Gaussian pdf with known mean and covariance
matrix (for any possible value of θs). Thus, the Monte Carlo approximation of marginal posterior
p(f |y) in Eq. (84), is a mixture of Gaussians,

p(f |y) ≈ 1

S

S∑

s=1

p(f |y,θs), θs ∼ p(θ|y). (85)

32

Dependence on the choice of the hyperparameters. Here, we discuss a more complete
study related to the uncertainty analysis of the solutions. Let us draw S samples θ1, ...,θS from
the marginal posterior p(θ|y). Since the conditional posterior mean µf |y(x|θs) = f̂(x|θs) and
variance σ2

f |y(x|θs) depend on the hyper-parameters θs, we also have S mean and variance values

(for each x), i.e., f̂(x|θ1),....,f̂(x|θS) and σ2
f |y(x|θ1),....,σ2

f |y(x|θS). Then we can calculate the
approximate averaged solution as

f̄(x) =
1

S

S∑

s=1

f̂(x|θs) ≈
∫

Θ

f̂(x|θ)p(θ|y)dθ

σ̄2(x) =
1

S

S∑

s=1

σ2
f |y(x|θs) ≈ Ep

[
σ2
f |y(x|θ)

]
=

∫

Θ

σ2
f |y(x|θ)p(θ|y)dθ.

Note that f̄(x) is an approximation the expected value associated to marginal posterior p(f(x)|y).
Thus, we can also compute

Vf (x) =
1

S

S∑

s=1

(
f̂(x|θs)− f̄(x)

)2
≈ Var

[
f̂(x|θ)

]
.

For the law of total variance, the variance associated to p(f(x)|y) is

Var[f̂(x)] = Var [Ep[f(x|θ)]] + Ep [Var[f(x|θ)]] , (86)

= Var
[
f̂(x|θ)

]
+ Ep

[
σ2
f |y(x|θ)

]
, (87)

≈ Vf (x) + σ̄2(x). (88)

Therefore, the complete variance is the sum of the two terms σ̄2(x) and Vf (x). Moreover, it is
interesting to analyze the term Vf (x) which provides the variation of the mean solution depending
on the choice of the hyper-parameters θ (i.e., a sensitivity analysis).

9 Linear kernel smoothers

RVMs and GPs belong to a more general class of regressors: the linear kernel smoothers. In this
family of regression methods the prediction f̂(x) at some input x is expressed as linear combination
of the outputs y1, . . . , yN . The weights of this combination vary with x. We can interpret that
is another way of implicitly modeling the correlation among the different outputs. Generally, the
linear smoothers have not associated a probabilistic derivation (unlike RVMs and GPs), so that

we focus on the approximation f̂(x).

9.1 Definition and examples

A linear smoother is a regressor which combines linearly the observations y1, . . . , yN at each x,
i.e.,

f̂(x) =
N∑

n=1

ϕn(x,xn)yn = ϕ(x)>y, (89)

33

where ϕ(x) = [ϕ1(x,x1), . . . , ϕN(x,xN)]> and ϕn(x,xn) : X × X → R plays the role as a weight.
When the output of a regression technique can be expressed as in Eq. (89) then it is also called

linear kernel smoother. Equation (89) shows that the estimator at any input x, i.e., f̂(x), can be
expressed as linear combination of the N outputs y1, . . . , yN . We can observe that the coefficients
of the linear combination ϕn(x,xn), with n = 1, . . . , N , depend on x.

9.1.1 The case of RVM and GP

The RVM and Q-GP, GP are linear kernel smoothers since the mean function of the posterior can
be expressed as in Eq. (89), setting

RVM: ϕ(x)> = ψ(x)>ΣρΨ
> (ΨΣρΨ

> + σ2
eIN
)−1

, (90)

Q-GP,GP: ϕ(x)> = ψ(x)>
(
Ψ + σ2

eIN
)−1

. (91)

Namely, the weighting functions ϕn(x,xn) depend also on the nonlinearities ψn(x,xn) as shown
above. Figure 12 shows some examples of the weighting functions ϕn(x,xn) in RVM and GP
cases.

-20 -10 0 10 20
-0.2

0

0.2

0.4

0.6

0.8

(a) RVM (σe = 0.5)

-20 -10 0 10 20
-0.2

0

0.2

0.4

0.6

0.8

(b) GP (σe = 0.5)

-20 -10 0 10 20
-2

-1

0

1

2

3

(c) RVM, GP (σe = 0)

Figure 12: An example of weighting functions ϕn(x, xn); (a) in a RVM and (b) in a GP. We have

considered N = 8 data inputs xn (shown with dots), ψ(x,xn) = exp
(
− (x−xn)2

λ

)
with λ = 25,

and σe = 0.5. For RVM, we have also considered a diagonal covariance matrix Σρ with all the
elements in the diagonal equal to 1. (c) Weighting functions ϕn(x, xn) of RVM and GP for the
interpolation case, σe = 0. In this scenario, at each data input xn, all ϕn(x, xn) are zero except
the n-th function where ϕn(xn, xn) = 1, i.e., ϕn(xj, xn) = δjn.

9.1.2 Normalized weighed functions

Generally, the linear combination above in Eq. (89) is not a convex combination. Often, people
considers linear smoothers defined as a convex combination where the weight function are positive
and the sum is 1. For instance, consider when auxiliary weighting function hλ(x,xn) ≥ 0 is

34

used to assign weights to xn based on its distance from x. The parameter λ ∈ R indicates the
bandwidth (the width of the neighborhood), determined from the training data. One example is
the Nadaraya-Watson estimator where

f̂(x) =
N∑

n=1

hλ(x,xn)∑N
j=1 hλ(x,xj)

yn =
N∑

n=1

ϕn(x,xn)yn, (92)

where ϕn(x,xn) = hλ(x,xn)∑N
j=1 hλ(x,xj)

. Note that, with this definition,

N∑

n=1

ϕn(x,xn) = 1.

Figure 13 provides some examples of f̂(x) (with x ∈ R) when hλ(x, z) = exp (−(x− z)2/λ) and
different values of λ. The form of this estimator above is quite general. For instance, it contains
the k-nearest neighbors algorithm (kNN) for regression as a specific case (with a specific choice of
hλ(x,xn)). See the next sections for further details.

9.1.3 Derivation of Nadaraya-Watson estimator

So far we have considered the outputs yn as random variables (affected by random perturbations),
whereas the inputs xn are considered as auxiliary deterministic information. Now, let us consider
both xn and yn as random variables with joint density p(x, y). Namely, we assume

[xn, yn] ∼ p(x, y) n = 1, . . . , N.

We can try to estimate p(x, y) via kernel density estimation,

p̂(x, y) =
1

N

N∑

n=1

hλx(x− xn)hλy(y − yn). (93)

where
∫
X hλx(x)dx = 1 and

∫
R hλy(y)dy = 1. Moreover,

∫
X xhλx(x)dx = 0 and

∫
R yhλy(y)dy = 0.

The regression function is defined as

f̂(x) = E[y|x] =

∫

R
yp(y|x)dy =

∫
R yp(x, y)dy∫
R p(x, y)dy

. (94)

Replacing p(x, y) with p̂(x, y), then we have

∫

R
yp̂(x, y)dy =

1

N

∫

R
y

N∑

n=1

hλx(x− xn)hλy(y − yn)dy,

=
1

N

N∑

n=1

hλx(x− xn)yn,

35

-15 -10 -5 0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5

(a) λ = 1

-15 -10 -5 0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5

(b) λ = 3

-15 -10 -5 0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5

(c) λ = 0.1

-15 -10 -5 0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5

(d) λ = 100

Figure 13: Examples of f̂(x) (with x ∈ R) when hλ(x, z) = exp (−(x− z)2/λ) and λ ∈
{0.1, 1, 3, 100}. The data points are shown with red dots.

where we have used
∫
R yhλy(y − yn)dy = yn, since

∫
R yhλy(y)dy = 0, i.e., the mean is zero by

assumption and, hence the mean of hλy(y−yn) is yn (it is just a translation of the pdf). Moreover,

∫

R
p̂(x, y)dy =

∫

R

N∑

n=1

hλx(x− xn)hλy(y − yn)dy,

=
1

N

N∑

n=1

hλx(x− xn).

Thus, replacing the numerator and denominator of Eq. (94) with the two approximations above,
finally we can write

f̂(x) ≈
N∑

n=1

hλx(x,xn)∑N
j=1 hλx(x,xj)

yn. (95)

This is the Nadaraya-Watson estimator with ϕn(x,xn) =
hλx (x,xn)∑N
j=1 hλx (x,xj)

[1].

36

9.2 Other examples of linear smoothers

In section, we describe some well-known linear smoothers that are encompassed in Eq. (89).

9.2.1 k-Nearest Neighbors (kNN)

In this section, we replace the real parameter λ with an integer value k ∈ N+. In the kNN
technique for regression, given an integer value 1 ≤ k ≤ N , we have

hk(x,xn) = 1,

if xn is one of the k nearest inputs of x (within the N possible inputs xn), otherwise

hk(x,xn) = 0,

if xn does not belong to the set k of nearest inputs of x. Let us consider now the two extreme
cases. If k = 1, only one function hk(x,xj∗) will be equal to 1 (where xj∗ represents to the closest

input to x). As a consequence, for all x such that xj∗ is the closest input then f̂(x) = yj∗ , i.e., we
obtain an interpolator. If k = N , all functions hk(x,xj∗) = 1 and, as a consequence,

f̂(x) =
1

N

N∑

n=1

yn, ∀x ∈ X ,

i.e., we obtain a constant approximation, equal to the arithmetic mean of the outputs yn [19].

9.2.2 Inverse distance weighting

Another example is the so-called inverse distance weighting method for multivariate interpolation
with the choice

hλ(x,xn) =
1

dλ(x,xn)p
, if x 6= xn,

where dλ(x,xn) is a distance (metric operator) and p > 0 is a positive real value [29]. When

x = xn, we directly set f̂(xn) = yn (i.e., we have an interpolator). Note that the weight hλ(x,xn)
decreases as dλ(x,xn) grows.

9.2.3 Polynomial interpolation with Lagrange bases

In this section, we focus on the interpolation problem as typycally addressed in the initial courses
of numerical analysis [30]. Let us consider for simplicity the scalar input case, xi ∈ R. Consider
the problem of obtaining the polynomial interpolation of order N − 1 of N data {xi, yi}Ni=1. Let
us also define the Lagrange polynomial weighting functions [30, 31],

ϕn(x, xn) = Ln(x)

=
(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xN)

(xn − x1) · · · (xn − xk−1)(xn − xn+1) · · · (xn − xN)
, (96)

=
N∏

i=1,i 6=n

x− xi
xn − xi

, n = 1, . . . , N. (97)

37

Note that Ln(xn) = 1 and Ln(xi) = 0 for all i 6= n, i.e., we have Ln(xi) = δin (as in Figure 12(c) for

RVM and GP), which is exactly the condition for obtaining an interpolator, i.e., f̂(xn) = yn. Note
that Lagrange functions Ln(x) are also polynomials of order N − 1. The polynomial interpolator

f̂(x) can be written as

f̂(x) =
N∑

n=1

Ln(x)yn, (98)

i.e., a linear combination of the outputs yn with ϕn(x, xn) = Ln(x) (or, equivalently, a linear
combination of the Lagrange functions Ln(x)). Figure 14 gives an example of polynomial
interpolation of N = 4 data points and the corresponding Lagrange functions Ln(x).

-10 -5 0 5 10
-15

-10

-5

0

5

10

(a)

-10 -5 0 5 10
-2

-1

0

1

2

(b)

Figure 14: (a) Example of polynomial interpolation of N = 4 data points. (b) The corresponding
Lagrange functions ϕn(x, xn) = Ln(x). Note that, at each data input xn, all ϕn(x, xn) are zero
except the n-th function where ϕn(xn, xn) = 1, i.e., ϕn(xj, xn) = δjn, as in Figure 12(c).

9.2.4 Ideal Fourier interpolation

The interpolation idea is employed as upsampling in signal processing in a context of equidistant
inputs [32, 33]. For simplicity, let us consider a scalar input x ∈ R. Moreover, consider an infinite
number of equidistant inputs, i.e.,

xn = nT0, T0 ∈ R.

This is an important difference and limitation compared with the previous cases: here we
consider equidistant inputs with a sampling period T0. In this scenario, a well-known interpolator
f̂(x) =

∑N
n=1 ϕn(x, xn)yn is the ideal Fourier interpolator, where

ϕn(x, xn) = sinc(x, xn) = T0
sin
(
π
T0

(x− nT0)
)

π(x− nT0)
. (99)

38

Note that ϕi(xn, xn) = 1, indeed

sinc(xn, xn) = T0
sin
(
π
T0

(nT0 − nT0)
)

π(nT0 − nT0)
= 1 (solving the indeterminate form)

and ϕn(xi, xn) = 0, if i 6= n, indeed

sinc(xi, xn) =
sin (π(i− n))

π(i− n)
=

sin (kπ)

kπ
= 0, k = i− n ∈ Z\{0},

since sin(kπ) = 0 with k ∈ Z. Then, we have again ϕn(xi, xn) = δin which is the condition to

obtain f̂(xn) = yn for all n. The choice of ϕn(x, xn) = sinc(x, xn) is due to the Fourier transform
of a sin function is an ideal rectangle filter (for more details see [32]). An example is shown in
Figure 15.

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

8

(a)

-6 -4 -2 0 2 4 6
-0.5

0

0.5

1

(b)

Figure 15: (a) Example of the ideal Fourier interpolation of N = 6 data points. (b) The
corresponding weighting sinc functions ϕn(x, xn) = sinc(x, xn). Note that, at each data input
xn, all ϕn(x, xn) are zero except the n-th function where ϕn(xn, xn) = 1, i.e., ϕn(xj, xn) = δjn, as
in Figure 12(c) and Figure 14(b).

9.2.5 Finite and infinite impulse response filters (FIR, IIR)

Here, we describe two classes of discrete filters connected to the previous techniques. Consider
again a scalar and discrete input x = t ∈ Z, representing a discrete time index, i.e., t =
. . . ,−2,−1, 0, 1, 2, 3, Moreover, we consider consecutive time instants, t = 1, 2, . . . , N , we
can use the simpler notation

{tn, yn}Nn=1 = {t, yt}Nt=1,

39

removing the sub-index n. In this context, the Finite Impulse Response (FIR) filters are defined

f̂(t) = f̂t = a0yt + a1yt−1 + a1yt−2 . . .+ aRyt−R,

=
R∑

r=0

aryt−r, (100)

where ar and R are constant values decided by the user [32, 33]. The value R is the order of
the filter. Comparing Eq. (89) and the expression above, we can see that a FIR filter is also a
linear smoother with coefficients ar for r = 0, . . . , R, and the linear combination only considers
the previous R samples yt−1, . . . , yt−R and the current sample yt. If ar = 1

R
for all r, we have a

low-pass filter which compute the arithmetic mean of R+ 1 outputs yt, yt−1, . . . , yt−R. Therefore,
we have a “sliding” memory window of length R. The FIR filters are similar to the kNN approach
but considering k = R nearest neighbors only in the past, i.e., t′ ≤ t (not in the future, i.e., t′ > t).
In a FIR filter, the output sequence is a weighted sum of the most recent values. In terms of
neural network architectures, this can be seen as a linear type of time delay neural network with
fixed weights (a standard multi-layer perceptron taking a time window as input) [34].

A memory window of infinite length can be obtained considering a FIR filter of order R =∞,
i.e., with an infinite amount of coefficients. Thus, the sum in Eq. (100) would be a series. In that
case, the FIR filter with R =∞ is converted into an Infinite Impulse Response (IIR) filter [32, 33].
An equivalent way of expressing a IIR filter is incorporating an autoregressive part in Eq. (100),
i.e.,

f̂t =
L∑

`=1

b`f̂t−` +
R∑

r=0

aryt−r, (101)

where b` and L are anther constant values, decided by the user. In the context of stochastic
filtering, these filters are also called Autoregressive Moving Average (ARMA) models. In terms
of neural network architectures, an IIR filter can be interpreted as a linear version of recurrent
neural network.

10 GPs and Kalman filtering

In this section, we describe the connection, differences and similarities between the GP approach
and the Kalman filtering (KF) approach, from the simplest case to the most general case,
progressively [20, 21, 5]. The Kalman filter is a recursive MMSE estimator of the state of in
a linear state-space model with Gaussian noise perturbations (see Eq. (105), below). Note that
the MMSE and MAP estimators coincide in this context, i.e., under the assumptions of linearity
and Gaussian noises. For more clarifications, see below.

10.1 Kalman filter in discrete time

For the sake of simplicity, we change the notation considering scalar and discrete inputs

x = t ∈ Z, (102)

40

representing a discrete time index. Later on, we will consider also a continuous time index. The
dataset is then {tn, yn}Nn=1. Moreover, if we consider consecutive time instants, t = 1, 2, . . . , N , we
can use the notation

{tn, yn}Nn=1 = {t, yt}Nt=1,

removing the sub-index n. The observation vector and the corresponding values of the hidden
function is

y = [y1, . . . , yN]>, and f = [f1, . . . , fN]>,

and the observation model is

yt = ft + et, and y = f + e, (103)

where e = [e1, . . . , eN]> ∼ N (e|0, σ2
eIN) with IN is an N×N unit matrix. The likelihood function

is again p(y|f) = N (y|f , σ2
eIN). Therefore, the observation model (likelihood) is exactly the same.

Remark 21. The index t is playing the role of the input, the variable ft = f(t) is the hidden
function at the instant t and yt is the corresponding observation at the input t. Note that we are
also considering a normalized uniform sampling case, i.e., ti − tj = 1 for all i, j.

However, instead of assuming directly a covariance function k(t, t′) as prior information, we
consider an autoregressive (AR) model over ft, i.e.,

ft = γft−1 + vt, with |γ| < 1, (104)

where vt ∼ N (v|0, σ2
v), inducing a transition probability p(ft|ft−1). The complete state-space

model is formed by the transition (prior) and observation (likelihood) equations (densities), i.e.,
{
ft = γft−1 + vt,

yt = ft + et,
=⇒

{
p(ft|ft−1),
p(yt|ft),

t = 1, 2 . . . , N. (105)

Assuming also p(f1|f0) = p(f1) ∼ N (f1|0, σ2
v), the complete prior density and likelihood function

are

p(f) =
N∏

t=1

p(ft|ft−1) = N (f |0,Ψ), (106)

p(y|f) =
N∏

t=1

p(yt|ft) = N (y|f , σ2
eIN). (107)

where the N ×N covariance matrix Ψ is generated by the autoregressive process in Eq. (104) is
given below.

Remark 22. The recursion ft = γft−1 +vt (equivalent to transition probability p(ft|ft−1)) induces
a prior over f . Namely, the recursive equation plays the same role of a kernel function k(t, t′)
in the GP derivation. Indeed, we see below that we can obtain an equivalent a kernel/covariance
function k(t, t′).

41

10.1.1 Equivalent kernel function of an AR model

For simplicity, let start the recursion in Eq. (104) with f0 = 0. Then, we can write

E[ft] = γE[ft−1] + E[vt] = 0, ∀t. (108)

Hence, E[f1, . . . , fN] = 0. Moreover, regarding the variance, we have

var[ft] = γ2var[ft−1] + σ2
v

var[ft] = γ4var[ft−2] + (γ2 + 1)σ2
v

...

var[ft] = γ2tvar[f0] +

(
t−1∑

i=0

γ2i

)
σ2
v . (109)

Since we start with f0 = 0 then var[f0] = 0. However, in any case, the variance of initial condition
var[f0] goes to zero as t approaches infinity since |γ| < 1. Therefore, we can write

var[ft] =
1− γ2t
1− γ2 σ

2
v , (110)

and as t→∞, the stationary variance is

σ2
f = var[f∞] =

σ2
v

1− γ2 . (111)

Recall that |γ| < 1, so that the expression above is finite and positive. The diagonal of Ψt is given
by the values var[ft]. Similarly, the stationary auto-covariance function

r(τ) = ψ(ft, ft+τ) = ψ(t, t+ τ) =

= E[(ft − µt)(ft+τ − µt−τ)],
= E[ftft+τ],

depends only to the instants t and t− τ (actually, only on the different τ). It is possible to show
that

r(τ) = γ · r(τ − 1) where r(0) = σ2
f . (112)

Then, we have r(1) = γσ2
f , r(2) = γ2σ2

f , so that r(τ) = γ|τ |σ2
f . Replacing σ2

f = σ2
v

1−γ2 in the previous
expression, we obtain the formula of the stationary covariance function

r(τ) = ψ(t, t± τ) =
γ|τ |σ2

v

1− γ2 , τ ∈ Z. (113)

So that, after a transient, we can write

[Ψ]i,j = ψ(i, j) =
γ|i−j|σ2

v

1− γ2 , (114)

for all i, j = 1, . . . , N .

42

10.1.2 Covariance and precision matrices in the stationary regime

Let us now assume that the marginal distribution of f0 is Gaussian with mean zero and variance
σ2
v

1−γ2 (recall that |γ| < 1), which is simply the stationary distribution of this process. Therefore,

considering as an example N = 5, the covariance Ψ and the precision P = Ψ−1 matrices in the
stationary regime is

Ψ = σ2
v

1 γ γ2 γ3 γ4

γ 1 γ γ2 γ3

γ2 γ 1 γ γ2

γ3 γ2 γ 1 γ
γ4 γ3 γ2 γ 1

, P =

1

σ2
v

1 −γ 0 0 0
−γ 1 + γ2 −γ 0 0
0 −γ 1 + γ2 −γ 0
0 0 −γ 1 + γ2 −γ
0 0 0 −γ 1

.

Note that the precision matrix P is the tridiagonal matrix, i.e., with zero entries outside the
diagonal and first off-diagonals. The tridiagonal form is due to the fact that fi and fj are
conditionally independent for |i− j| > 1 given the rest of variables. It is interesting to remark the
entries in the covariance matrix Ψ only give direct information about the marginal dependence
structure, not about the conditional dependence.

10.1.3 Filtering, smoothing, prediction

Given the state-space model in Eq. (105), at each time instant, we have an additional variable
ft and an additional observation yt. Several algorithms in the literature tackle different inference
problems, corresponding to different posterior and/or predictive densities.

Complete and partial smoothing. As we already have seen, the complete smoothing problem
consider the joint posterior density

p(f1, . . . , fN |y1, . . . , yN) = p(f |y).

Other partial smoothing densities can be considered in this scenario, for instance,

p(ft|y1, . . . , yN) = p(ft|y), t < N.

or considering different time instants, for instance, p(ft1 , ft2|y1, . . . , yT) with t1, t2 < N . More
generally, people are often interested in studying the posterior

p(f1, . . . , ft|y1, . . . , yt), t ≤ N,

where we analyze the vector [f1, . . . , ft]
> considering only the observations [y1, . . . , yt]

> (assuming
unknown the data yt+1, . . . , yN).

Filtering. The filtering problem corresponds to the study of the following posterior densities

p(ft|y1, . . . , yt), t ≤ N, (115)

43

where we have only the variable ft given all the measurements [y1, . . . , yt]
> obtained so far,

i.e., assuming unknown the future observations yt+1, . . . , yN . Generally, the people consider the
sequential problem considering the sequence of filtering posteriors

p(f1|y1),
p(f2|y1, y2),
...

p(ft|y1, . . . , yt−1, yt),

providing recursive solutions.

Prediction at lag-τ . in time series analysis, one often consider the predictive density

p(ft+τ |y1, . . . , yt), τ ≥ 1,

where we are interesting in inferring the variable ft+τ in the future instant t′ = t + τ , observing
only the measurements until time t.

10.1.4 Discrete Kalman solution for filtering

Remark 23. The standard discrete Kalman filter provides the recursive equations for computing
the mean µ̂t|t and variance σ̂2

t|t of the filtering posterior density, i.e.,

p(ft|y1, . . . , yt) = N (ft|µ̂t|t, σ̂2
t|t). (116)

Let us also denote µ̂t|t−1 and σ̂2
t|t−1 the mean and variance of the predictive density

p(ft|y1, . . . , yt−1) = N (ft|µ̂t|t−1, σ̂2
t|t−1). (117)

The Kalman equations provide recursively the means and variances of these two densities as
new observations are obtained. From the instant t − 1 to t, the sequential Kalman solution, for
computing mean and variance of the predictive density p(ft|y1, . . . , yt−1), is then given by

{
µ̂t|t−1 = γµ̂t−1|t−1

σ̂2
t|t−1 = γ2σ̂2

t−1|t−1 + σ2
v

(118)

and, for the filtering pdf p(ft|y1, . . . , yt), we have

µ̂t|t =
σ2
e

σ̂2
t|t−1 + σ2

e

µ̂t|t−1 +
σ̂2
t|t−1

σ̂2
t|t−1 + σ2

e

yt

σ̂2
t|t =

σ̂2
t|t−1σ

2
e

σ̂2
t|t−1 + σ2

e

.

(119)

44

Defining the precision values as p̂t|t−1 = 1
σ̂2
t|t−1

and pe = 1
σ2
e
, we can rewrite the last two equations

as

µ̂t|t =

p̂t|t−1
p̂t|t−1 + p̄e

µ̄t +
p̄e

p̂t|t−1 + p̄e
yt,

p̂t|t = p̂t|t−1 + pe.

(120)

Remark 24. The standard Kalman filter focuses on the sequence of filtering densities,
p(ft|y1, . . . , yt) = N (ft|µ̂t, σ̂2

t) for t = 1, . . . , N . We can have a complete equivalence with the
GP solution for smoothing, if we consider a Kalman approach for smoothing, i.e., considering the
density p(f1:N |y1:N) = p(f |y).

Note that we have considered scalar values f1, . . . , fN and y1, . . . , yN to be coherent to the rest of
the paper, and facilitate the comparison with the other techniques. However, the Kalman filter
can be directly generalized for multivariate/multioutput case, i.e., at each iteration we can have
vectors ft and yt of the observations.

10.1.5 Backward filter for partial Kalman smoothing

Let us consider that we have already run the forward Kalman filter described above, obtaining
µ̂t|t−1, σ̂

2
t|t−1, µ̂t|t and σ̂2

t|t for all t = 1, . . . , N . Now, we focus on the partial smoothing densities,
i.e.,

p(ft|y1, . . . , yN) = p(ft|y) = N (ft|µ̂t|N , σ̂2
t|N), ∀t < N. (121)

Then, we can consider the following backward recursion (from t = N − 1 to t = 1):

µ̂t|N = µ̂t|t + γ
σ̂2
t|t

σ̂2
t+1|t

(µ̂t+1|N − µ̂t+1|t),

σ̂2
t|N = σ̂2

t|t +

(
γ
σ̂2
t|t

σ̂2
t+1|t

)2

(σ̂t+1|N − σ̂t+1|t).

(122)

For the solution of the complete smoothing problem, see [35, 36, 37, 5]. Let us consider again the
GP solution in Eqs. (62)–(63) computed in a training input t = 1, 2, . . . , N , i.e.,

µf |y(t) = f̂(t) = ψ(t)>(Ψ + σ2
eIN)−1y,

σ2
f |y(t) = ψ(t, t)−ψ(t)>(Ψ + σ2

eIN)−1ψ(t),

where ψ(t, t′) = γ|t−t
′|σ2

v

1−γ2 with t, t′ ∈ N+, y = [y1, . . . , yN]>,

ψ(t) = [ψ(t, 1), . . . , ψ(t, N)]>, and [Ψ]i,j = ψ(i, j) =
γ|i−j|σ2

v

1− γ2 .

These mean and variance completely define the partial smoothing density

p(ft|y) = N (ft|µf |y(t), σ2
f |y(t)), ∀t < N. (123)

Remark 25. It is possible to show that µf |y(t) = µ̂t|N and σ2
f |y(t) = σ̂2

t|N , clearly considering the
equivalent kernel function, induced by the propagation equation in the state-space model.

45

10.2 Continous-time state-space models

In order to obtain a complete equivalence to GP models and a sequential Kalman solutions we
have to consider a continuous input variable, t ∈ R. In this scenario, the space-state model is
formed by a linear differential equation with constant coefficients and an observation equation.
The prior information is included by the linear differential equation which plays the same role
of the kernel/covariance function in the GP models. A linear differential equation with constant
coefficients of order R with a Gaussian white noise input v(t),

dRf(t)

dtR
+ aR−1

dR−1f(t)

dtR−1
+ · · ·+ a1

df(t)

dt
+ a0f(t) = v(t), (124)

can be rewritten as a first order vector Markov process, i.e.,

df(t)

dt
= Af(t) + bv(t) (125)

where f(t) =
[
dR−1f(t)
dtR−1 , . . . , df(t)

dt
, f(t)

]>
is an R× 1 vector,

A =

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
−aR−1 −aR−2 · · · −a1 −a0

, b =

0
0
0
...
1

,

are a R×R matrix and an R× 1 vector, respectively. Note also that

f(t) = b>f(t),

i.e., we can extract f(t) from the vector f(t) by the multiplication above. It possible to compute
the power spectral density of f(t) (a) replacing f(t) = b>f(t) in Eq. (125), (b) taking the Fourier
transform to both sides of Eq. (125), after replacing f(t) = b>f(t). Moreover, since the noise v(t)
is white, we have the its power spectral density is SV (ω) = c where c > 0. After some algebra and
rearrangement, this procedure yields [20, 21]

SF (ω) = b>(A + jωI)−1bSV (ω)b>
[
(A + jωI)−1

]>
b, (126)

= cb>(A + jωI)−1bb>
[
(A + jωI)−1

]>
b, (127)

In the stationary state (i.e., when the process has run an infinite amount of time), the stationary
covariance function ψ(t, t′) = ψ(τ) of f(t) (with τ = |t − t′|) can be expressed as inverse Fourier
transform of its spectral density SF (ω), hence

ψ(τ) =
1

2π

∫ +∞

−∞
SF (ω)ejωτdω. (128)

We have shown that a linear differential equation determines a covariance function over f(t)
[20, 21, 5].

46

11 Summary

In this work, we have provided a joint introduction to RVMs and GPs for regression, including
within this framework the tasks of filtering, smoothing, and interpolation. The probabilistic
derivation of both methods is given, along with several observations and recommendations for
the use of these methods in practice. We have highlighted the connections between them and
to related techniques such as kernel ridge regression, kernel smoothers, Fourier interpolators and
Kalman filtering. We have also remarked the benefits and drawbacks of each schemes. RVMs
allow the choice of more general basis functions whereas the behavior of the predictive variance is
generally counterintuitive. GPs present a good behavior of the predictive variance but the choice
of kernel functions is more restrictive. The Kalman smoothing method provides the same solution
as that of a GP with a specific kernel function, which is implicitly induced by the considered
propagation equation in the state-space model.

References

[1] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[2] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer School on Machine
Learning. Springer, 2003, pp. 63–71.

[3] D. J. MacKay, “Introduction to Gaussian processes,” NATO ASI Series F Computer and
Systems Sciences, vol. 168, pp. 133–166, 1998.

[4] B. Schölkopf, A. J. Smola, F. Bach et al., Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

[5] S. Särkkä, Bayesian Filtering and Smoothing, ser. Institute of Mathematical Statistics
Textbooks. Cambridge University Press, 2013.

[6] C. E. Rasmussen, “Gaussian processes for machine learning,” in the MIT Press, 2006, pp.
1–245.

[7] M. E. Tipping, “Sparse Bayesian learning and the Relevance Vector Machine,” Journal of
Machine Learning Research, vol. 1, pp. 211–244, 2001.

[8] J. Q. Candela, “Learning with uncertainty - Gaussian Processes and Relevance Vector
Machines,” Technical University of Denmark, pp. 1–152, 2004.

[9] U. B. Gewali, S. T. Monteiro, and E. Saber, “Gaussian Processes for vegetation parameter
estimation from hyperspectral data with limited ground truth,” Remote Sensing, vol. 11,
no. 13, p. 1614, 2019.

[10] M. Alvarez, D. Luengo, and N. D. Lawrence, “Latent force models,” in Artificial Intelligence
and Statistics, 2009, pp. 9–16.

47

[11] J. L. Gómez-Dans, P. E. Lewis, and M. Disney, “Efficient emulation of radiative transfer
codes using Gaussian processes and application to land surface parameter inferences,” Remote
Sensing, vol. 8, no. 2, p. 119, 2016.

[12] D. H. Svendsen, L. Martino, M. Campos-Taberner, F. J. Garćıa-Haro, and G. Camps-
Valls, “Joint Gaussian processes for biophysical parameter retrieval,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 56, no. 3, pp. 1718–1727, 2017.

[13] D. H. Svendsen, L. Martino, and G. Camps-Valls, “Active emulation of computer codes with
Gaussian processes–application to remote sensing,” Pattern Recognition, vol. 100, p. 107103,
2020.

[14] L. Martino, J. Vicent, and G. Camps-Valls, “Automatic emulation by adaptive Relevance
Vector Machines,” Scandinavian Conference on image analysis (SCIA), vol. 100, pp. 1–11,
2017.

[15] B. W. Silverman, “Some aspects of the Spline Smoothing approach to non-parametric
regression curve fitting,” Journal of the Royal Statistical Society. Series B (Methodological),
vol. 47, no. 1, pp. 1–52, 1985.

[16] R. Szeliski, “Regularization uses fractal priors,” in In Proceedings of the 6th National
Conference on Artificial Intelligence (AAAI), 1987.

[17] C. E. Rasmussen and J. Quiñonero Candela, “Healing the Relevance Vector Machine through
augmentation,” in Proceedings of the 22nd International Conference on Machine Learning
(ICML-05). New York, NY, USA: Association for Computing Machinery, 2005, pp. 689–
696.

[18] T. Poggio and F. Girosi, “Networks for approximation and learning,” Proceedings of the
IEEE, vol. 78, no. 9, pp. 1481–1497, 1990.

[19] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[20] J. Hartikainen and S. Särkkä, “Kalman filtering and smoothing solutions to temporal
Gaussian process regression models,” in 2010 IEEE International Workshop on Machine
Learning for Signal Processing, 2010, pp. 379–384.

[21] S. Särkkä and J. Hartikainen, “Infinite-dimensional Kalman filtering approach to spatio-
temporal Gaussian Process regression,” in Proceedings of the Fifteenth International
Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning
Research, vol. 22. PMLR, 21-23 Apr 2012, pp. 993–1001.

[22] M. A. Álvarez, L. Rosasco, and N. D. Lawrence, “Kernels for vector-valued functions: A
review,” Found. Trends Mach. Learn., vol. 4, no. 3, p. 195266, 2012.

[23] J. Read and L. Martino, “Probabilistic regressor chains with Monte Carlo methods,”
Neurocomputing, vol. 413, pp. 471 – 486, 2020.

48

[24] G. Wahba, Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, Philadelphia, PA., 1990.

[25] G. Kimeldorf and G. Wahba, “A correspondence between bayesian estimation of stochastic
processes and smoothing by Splines,” Annals of Mathematical Statistics, vol. 41, pp. 495–502,
1970.

[26] Z. Ghahramani, “A tutorial on Gaussian Processes (or why i dont use SVMs),” MLSS
Workshop talk by Zoubin Ghahramani on Gaussian Processes (Slides)., 2011.

[27] L. Martino, D. Luengo, and J. Miguez, Independent Random Sampling Methods. springer,
2018.

[28] C. Robert and G. Casella, Monte Carlo statistical methods. Springer, 2004.

[29] D. Shepard, “A two-dimensional interpolation function for irregularly-spaced data,” in
Proceedings of the 1968 23rd ACM National Conference, 1968, p. 517524.

[30] R. L. Burden and J. D. Faires, Numerical Analysis. Brooks Cole, 2000.

[31] B. F. Plybon, An Introduction to Applied Numerical Analysis. Boston, MA: PWS-Kent,
1992.

[32] E. W. Kamen and B. S. Heck, Fundamental of signals and systems using the web and Matlab.
Prentice-Hall, Inc., 2000.

[33] J. G. Proakis, Digital Communications (4th edition). Singapore: McGraw-Hill, 2000.

[34] K.-L. Du and M. N. Swamy, Neural Networks and Statistical Learning. Springer Publishing
Company, Incorporated, 2013.

[35] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood estimates of linear dynamic
systems,” AIAA Journal, vol. 3, no. 8, pp. 1445–1450, 1965.

[36] G. A. Einicke, “Asymptotic optimality of the minimum-variance fixed-interval smoother,”
IEEE Transactions on Signal Processing, vol. 55, no. 4, pp. 1543–1547, 2007.

[37] G. A. Einicke, J. C. Ralston, C. O. Hargrave, D. C. Reid, and D. W. Hainsworth, “Longwall
mining automation an application of minimum-variance smoothing [applications of control],”
IEEE Control Systems Magazine, vol. 28, no. 6, pp. 28–37, 2008.

[38] W. W. Hager, “Updating the inverse of a matrix,” SIAM Review, vol. 31, no. 2, pp. 221–239,
1989.

49

A Alternative formulation of the RVM variance

In this section, we analyze the expression of the variance of RVM.
Let us consider the following generic matrices Z of size M ×M , U of size N ×M , L of size N ×N
and V of size M ×N , the following matrix inversion lemma [38], [6, Appendix A] is satisfied,

(
Z + ULV>

)−1
= Z−1 − Z−1U

(
L−1 + V>Z−1U

)−1
V>Z−1. (129)

Using this matrix inversion lemma with Z−1 = Σρ, L−1 = σ2
eIN and U = V = Ψ> and considering

the variance of RVM, we obtain

(
Σ−1ρ +

1

σ2
e

Ψ>Ψ

)−1
= Σρ −ΣρΨ

> (σ2
eIN + ΨΣρΨ

>)−1 ΨΣρ. (130)

Replacing in Eq. (32), where we consider the matrix Ψ instead of Ψ, we have

σ̂(x) = ψ(x)>
(
Σρ −ΣρΨ

> (σ2
eIN + ΨΣρΨ

>)−1 ΨΣρ

)
ψ(x),

= ψ(x)>Σρψ(x)−ψ(x)>ΣρΨ
> (σ2

eIN + ΨΣρΨ
>)−1 ΨΣρψ(x).

50

