An array of mathematical results concerning polynomial, and inverse trigonometric expressions

[Aryamoy Mitra]

Abstract;

This paper is segregated into two components; one yielding a set of algebraically trivialized results regarding polynomial expressions, and the other delineating equalities between the derivatives of the three inverse trigonometric functions.

Part 1;

Firstly, consider the quartic polynomial;

$$
a x^{4}+b x^{3}+c x^{2}+d x+e
$$

Note that integrating yields;

$$
\begin{aligned}
& \int a x^{4}+b x^{3}+c x^{2}+d x+e d x \\
= & \frac{a}{5} x^{5}+\frac{b}{4} x^{4}+\frac{c}{3} x^{3}+\frac{d}{2} x^{2}+e x+f
\end{aligned}
$$

i.e a polynomial of a degree 5 .

Similarly, differentiating yields;

$$
\begin{gathered}
\frac{d}{d x} a x^{4}+b x^{3}+c x^{2}+d x+e \\
4 a x^{3}+3 b x^{2}+2 c x+d
\end{gathered}
$$

i.e. a polynomial of degree 3 .

Naturally, this phenomena can be generalized in the proposition that the first integral of a polynomial of a degree n, is another polynomial of a degree $[n+1]$, and that the first derivative of a polynomial of a degree n, is another polynomial of a degree $[n-1]$ [with the latter being constrained to $n \geq 3$].

Secondly, conceive of a classic quadratic expression;

$$
a x^{2}+b x+c
$$

For any stationary points [its vertex];

$$
\begin{gathered}
\frac{d}{d x} a x^{2}+b x+c=0 \\
2 a x+b=0
\end{gathered}
$$

$$
\begin{aligned}
2 a x & =-b \\
x & =\frac{-b}{2 a}
\end{aligned}
$$

In remapping this ubiquitous vertex formulation onto its domain;

$$
\begin{gathered}
a x^{2}+b x+c \\
a\left[\frac{-b}{2 a}\right]^{2}+b \frac{-b}{2 a}+c \\
\frac{b^{2} a}{4 a^{2}}-\frac{b^{2}}{2 a}+c \\
\frac{b^{2}}{4 a}-\frac{b^{2}}{2 a}+c \\
-\frac{b^{2}}{4 a}+c
\end{gathered}
$$

Any quadratic vertex of the form (h, k) subsequently equals;

$$
\left[\frac{-b}{2 a}, \frac{-b^{2}}{4 a}+c\right]
$$

Part 2;

Consider the inverse trigonometric function for sine values;

$$
\frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}}
$$

Rearranging generates;

$$
\begin{aligned}
\sqrt{1-x^{2}} & =\left[\frac{d}{d x} \arcsin x\right]^{-1} \\
1-x^{2} & =\left[\frac{d}{d x} \arcsin x\right]^{-2}
\end{aligned}
$$

$$
\begin{aligned}
-x^{2} & =\left[\frac{d}{d x} \arcsin x\right]^{-2}-1 \\
x^{2} & =1-\left[\frac{d}{d x} \arcsin x\right]^{-2}
\end{aligned}
$$

[E1]

Consider the inverse trigonometric function for cosine values;

$$
\frac{d}{d x} \arccos x=\frac{-1}{\sqrt{1-x^{2}}}
$$

Redefining facilitates;

$$
\begin{aligned}
& \sqrt{1-x^{2}}=-\left[\frac{d}{d x} \arcsin x\right]^{-1} \\
& 1-x^{2}=\left[\frac{d}{d x} \arccos x\right]^{-2} \\
& -x^{2}=\left[\frac{d}{d x} \arccos x\right]^{-2}-1 \\
& x^{2}=1-\left[\frac{d}{d x} \arccos x\right]^{-2}
\end{aligned}
$$

[E2]
Consider the inverse trigonometric function for tangential values;

$$
\frac{d}{d x} \arctan x=\frac{1}{1+x^{2}}
$$

Reconstituting the above derivative in a manner commensurate with the formulations above, once again yields:

$$
1+x^{2}=\left[\frac{d}{d x} \arctan x\right]^{-1}
$$

$$
x^{2}=\left[\frac{d}{d x} \arctan x\right]^{-1}-1
$$

[E3]
Given that E1, E2 and E3 all represent derived equalities describing x^{2}, one may initiate a coalescence that relates them;

$$
x^{2}=\left[\frac{d}{d x} \arctan x\right]^{-1}-1=1-\left[\frac{d}{d x} \arccos x\right]^{-2}=1-\left[\frac{d}{d x} \arcsin x\right]^{-2}
$$

Reconstituting the above ultimately reveals, that for any combination of trigonometric correspondences;

$$
\left[\frac{d}{d x} \arctan x\right]^{-1}+\left[\frac{d}{d x} \arccos x\right]^{-2}=2
$$

[E4]

$$
\left[\frac{d}{d x} \arctan x\right]^{-1}+\left[\frac{d}{d x} \arcsin x\right]^{-2}=2
$$

[E5]

$$
\left[\frac{d}{d x} \arccos x\right]^{-2}=\left[\frac{d}{d x} \arcsin x\right]^{-2}
$$

[E6]

$$
\left[\frac{d}{d x} \arccos x\right]^{2}=\left[\frac{d}{d x} \arcsin x\right]^{2}
$$

