
The Clique Problem

A Polynomial Time and Non-Heuristic Solution (P=NP)

By

© John Archie Gillis

September 28th, 2020

Gillis Intellectual Property Developments

johnarchiegillis@gmail.com

NOTE:

This is simply another draft version of specific elements of a paper that I am
working on. I hope to gather all the best elements for the creation of a LaTex
Document for a strong submission to a Scientific Journal when I can find the
time to work more on this.

1 Introduction to Clique

In computer science, the clique problem is the computational problem of finding cliques (subsets of

vertices, all adjacent to each other, also called complete subgraphs) in a graph. It has several different

formulations depending on which cliques, and what information about the cliques, should be found.

Common formulations of the clique problem include finding a maximum clique (a clique with the

largest possible number of vertices), finding a maximum weight clique in a weighted graph, listing all

maximal cliques (cliques that cannot be enlarged), and solving the decision problem of testing

whether a graph contains a clique larger than a given size.

The clique problem arises in the following real-world setting. Consider a social network, where the

graph's vertices represent people, and the graph's edges represent mutual acquaintance. Then a clique

represents a subset of people who all know each other, and algorithms for finding cliques can be

mailto:johnarchiegillis@gmail.com

used to discover these groups of mutual friends. Along with its applications in social networks, the

clique problem also has many applications in bioinformatics and computational chemistry.

Most versions of the clique problem are hard. The clique decision problem is NP-complete (one of

Karp's 21 NP-complete problems). The problem of finding the maximum clique is stated to be both

fixed-parameter intractable and hard to approximate. Most experts in the field have concluded that

listing all maximal cliques may require exponential time as there exist graphs with exponentially many

maximal cliques.

Most, if not all experts in the field agree that to find a maximum clique, one can systematically inspect

all subsets, but this sort of brute-force search is too time-consuming to be practical for networks

comprising more than a few dozen vertices. Although (prior to the present paper), no polynomial

time algorithm is known for this problem, more efficient algorithms than the brute-force search are

known. For instance, the Bron–Kerbosch algorithm can be used to list all maximal cliques in worst-

case optimal time, and it is also possible to list them in polynomial time per clique.

While a method for computing the solutions to NP-complete problems using a reasonable amount

of time has remained undiscovered (until the publication of the present paper), computer scientists

and programmers still frequently encounter NP-complete problems. NP-complete problems are

often addressed by using heuristic methods and approximation algorithms. The present author feels

that this is a poor methodology and strategy.

The ability to compute solutions for problems such as clique (and many others NP-Complete

problems) has been deemed the holy grail of computational complexity theory and is one of the

Millennium Prize Problems.

2 Description of the New Approach

The present paper provides a novel approach to solving the clique problem(s). The present methods

will work for any clique problem, including those which are determined to be NP-Complete.

Determining other cliques, such as cliques of a fixed size (k=3, k=4, etc.) is trivial by comparison

but will also be described.

The author provides a means for greatly reducing the time that it will take a computer (or human) to

solve for:

1. Maximum clique (a clique with the largest possible number of vertices),

2. Listing all maximal cliques (cliques that cannot be enlarged), and

3. Solving the decision problem of testing whether a graph contains a clique larger than a given

size.

To solve the clique problem, the author feels that we must discard previous graphing methods and

start from scratch with a new strategy.

Traditional methods of organizing data don’t seem to work for sorting data into cliques or for finding

a maximum clique in polynomial time. The present novel method requires that the data and each of

its variables be converted into one of two binary systems so that each and every permutation can be

accounted for and compared to each other in more logical way. In our new method each variable will

take on a single binary place value such as 1, 2, 4, 8, 16, 32, 64 etc.

By organizing our data this way, we can account for every possible permutation that might occur, no

matter what the size of the input, without requiring brute-force or exponential time strategies. The

present innovation requires utilization of (potentially two different) Boolean Incidence Matrices.

Figure 1

Present methods of working with graphs as seen above (Figure 1), are one of the problems why finding

items, such as a largest clique(s) is a real problem for computational devices. Attempting to solve a

clique problem of any significant size by utilizing these methods is not feasible.

Mathematicians generally order elements of clique in an ordered progression 1, 2, 3, 4, 5, 6, etc., but

herein lies the problem when trying to find specific size cliques or groups within the larger structure.

The present invention matches a binary place valued number to the variables, which in this example

are names prior to computation.

As an example;

John becomes 1

Sue becomes 2

Bob becomes 4

Jenn becomes 8

Colin becomes 16

Maggy becomes 32

Jim becomes 64

Kelly becomes 128

Figure 2

Figure 3

The above diagrams (Figures 2 & 3) provides an example for one instance of clique. It is a very simple

version of clique with a very small input of only eight individuals. Most instances or examples of

clique will have many more variables to be sorted, but for simplicity we will begin with this basic

example.

Next we need to utilize what I call “Collaboritive Variables”,.

Note: I initially outlined and described in-depth in a paper that I published on Research Gate on ___date____ for

TSP and Sudoku. In hind sight I should have also utilized Collaborative Variables’ in clique as well. Blunders

happen more easily when nobody will proof read your papers I suppose.

In the provided example (Figure 3), John has been assigned the binary variable 1 and Sue 2. John and

Sue are then further assigned the number 255. 255 shows their relationship to themselves, each other

and everybody else in the data set.

By following this logic, we can also see that IF an individual is assigned a number 254, 253, 251, 247,

239, 223, 191 or 127, then they will be friends with six people, themselves and enemies with one. We

can see this clearly in the binary representations. 11111110, 1111101, 11111011, 11110111, 11101111,

11011111, 10111111, 01111111. These binary numbers represent both themselves and all their

friendships within the data set. A high or low number doesn’t mean that you have more or less friends,

CLIQUE Kelly Jim Maggy Colin Jenn Bob Sue John

128 64 32 16 8 4 2 1

1 John 1 1 1 1 1 1 1 1 255

2 Sue 1 1 1 1 1 1 1 1 255

4 Bob 0 0 1 1 1 1 1 1 63

8 Jenn 0 0 1 1 1 1 1 1 63

16 Colin 0 0 0 1 1 1 1 1 31

32 Maggy 0 0 1 0 1 1 1 1 47

64 Jim 0 1 0 0 0 0 1 1 67

128 Kelly 1 0 0 0 0 0 1 1 131

131 67 47 31 63 63 255 255

but it instead tells us exactly who your friends are. This will be useful when we begin sorting and

filtering for requested outputs.

Figure 4 below provides a bell curve for the distribution of binary digits. Numbers with four binary

digits out of eight turned ON are the most frequent). Numbers with ALL ON or ALL OFF are the

least frequent (there is only one option for zero ALL OFF and only one option for 255 ALL ON).

The importance of this will be explained. Cliques of different sizes will obviously have different

distributions and sometimes different curves.

Figure 4

15

23

27

29

30

39

43

45

46

51

53

54

57

58

31 60 7

47 71 11

55 75 13

59 77 14

61 78 19

62 83 21

79 85 22

87 86 25

91 89 26

93 90 28

94 92 35

103 99 37

107 101 38

109 102 41

110 105 42

115 106 44

117 108 49

118 113 50

121 114 52

122 116 56

124 120 67

143 135 69

151 139 70

155 141 73

157 141 74

158 147 76

167 149 81

171 150 82

63 173 153 84 3

95 174 154 88 5

111 179 156 97 6

119 181 163 98 9

123 182 165 100 10

125 185 166 104 12

126 186 169 112 17

159 188 170 131 18

175 199 172 133 20

183 203 177 134 24

1111 187 205 178 137 33

1111 189 206 180 138 34

0111 190 211 184 140 36

1011 207 213 195 145 40

1101 215 214 197 146 48

1110 219 217 198 148 65

1111 221 218 201 152 66

0111 222 220 202 161 68

1011 231 227 204 162 72

1101 235 229 209 164 80

1110 127 237 230 210 168 96 1

0111 191 238 233 212 176 129 2

1011 223 243 234 216 193 130 4

1101 239 245 236 225 194 132 8

1110 247 246 241 226 196 136 16

0011 251 249 242 228 200 144 32

0101 253 250 244 232 208 160 64

0110 255 254 252 248 240 224 192 128 0

Figure 2 (Again)

Eureka!

My system requires the use of collaborative variables (as were initially outlined in my 1st P=NP paper

entitled Methods for Organizing Data July 2018), but I forgot to put them in my later Clique papers.

The TSP and Sudoku explanations are ok. Collaborative Variables may very well be the key to the P

= NP Universe.

For an 8-Clique we know that there are 256 possible variations to search --- (in the worst-case

scenario). Computers will presently search them all, which is trivial for an 8-CLIQUE, however it

could well take millions of years for a 1000-CLIQUE problem.

HOW?

Our 1st step is to sort our data as a 1 by 1 matrix as seen again below.

CLIQUE Kelly Jim Maggy Colin Jenn Bob Sue John

128 64 32 16 8 4 2 1

1 John 1 1 1 1 1 1 1 1 255

2 Sue 1 1 1 1 1 1 1 1 255

4 Bob 0 0 1 1 1 1 1 1 63

8 Jenn 0 0 1 1 1 1 1 1 63

16 Colin 0 0 0 1 1 1 1 1 31

32 Maggy 0 0 1 0 1 1 1 1 47

64 Jim 0 1 0 0 0 0 1 1 67

128 Kelly 1 0 0 0 0 0 1 1 131

131 67 47 31 63 63 255 255

Figure 4

We then use our collaborative Variables which could be likened to a 2 by 1 Matrix!

We actually only need to do collaborative variable scenarios when each pairing of two people are

FRIENDS. In red we see the NOT FRIENDS, which we did not need to even look at! Below I have

adjusted the table and deleted them.

Kelly Jim Maggy Colin Jenn Bob Sue John

128 64 32 16 8 4 2 1

John & Kelly 128 0 0 0 0 0 2 1 131

John & Jim 0 64 0 0 0 0 2 1 67

John & Maggy 0 0 32 0 8 4 2 1 47

John & Colin 0 0 0 16 8 4 2 1 31

John & Jenn 0 0 32 16 8 4 2 1 63

John & Bob 0 0 32 16 8 4 2 1 63

John & Sue 128 64 32 16 8 4 2 1 255

Sue & Kelly 128 0 0 0 0 0 2 1 131

Sue & Jim 0 64 0 0 0 0 2 1 67

Sue & Maggy 0 0 32 0 8 4 2 1 47

Sue & Colin 0 0 0 16 8 4 2 1 31

Sue & Jenn 0 0 32 16 8 4 2 1 63

Sue & Bob 0 0 32 16 8 4 2 1 63

Bob & Kelly 0 0 0 0 0 0 2 1 3

Bob & Jim 0 0 0 0 0 0 2 1 3

Bob & Maggy 0 0 32 0 8 4 2 1 47

Bob & Colin 0 0 0 16 8 4 2 1 31

Bob & Jenn 0 0 32 16 8 4 2 1 63

Jenn & Kelly 0 0 0 0 0 0 2 1 3

Jenn & Jim 0 0 0 0 0 0 2 1 3

Jenn & Maggy 0 0 32 0 8 4 2 1 47

Jenn & Colin 0 0 0 16 8 4 2 1 31

Colin & Kelly 0 0 0 0 0 0 2 1 3

Colin & Jim 0 0 0 0 0 0 2 1 3

Colin & Maggy 0 0 0 0 8 4 2 1 15

Maggy & Kelly 0 0 0 0 0 0 2 1 3

Maggy & Jim 0 0 0 0 0 0 2 1 3

Jim & Kelly 0 0 0 0 0 0 2 1 3

Figure 5

I then sort the answers and we get Figure 6

Figure 6

The left most Column provides us with all of our Maximal Cliques. Obviously smaller cliques can be

made from these, but the heavy lifting has been done. This hard problem has become EASY.

The true beauty of my system is that it scales absolutely wonderfully!

Kelly Jim Maggy Colin Jenn Bob Sue John

128 64 32 16 8 4 2 1

John & Kelly 128 0 0 0 0 0 2 1 131

John & Jim 0 64 0 0 0 0 2 1 67

John & Maggy 0 0 32 0 8 4 2 1 47

John & Colin 0 0 0 16 8 4 2 1 31

John & Jenn 0 0 32 16 8 4 2 1 63

John & Bob 0 0 32 16 8 4 2 1 63

John & Sue 128 64 32 16 8 4 2 1 255

Sue & Kelly 128 0 0 0 0 0 2 1 131

Sue & Jim 0 64 0 0 0 0 2 1 67

Sue & Maggy 0 0 32 0 8 4 2 1 47

Sue & Colin 0 0 0 16 8 4 2 1 31

Sue & Jenn 0 0 32 16 8 4 2 1 63

Sue & Bob 0 0 32 16 8 4 2 1 63

Bob & Maggy 0 0 32 0 8 4 2 1 47

Bob & Colin 0 0 0 16 8 4 2 1 31

Bob & Jenn 0 0 32 16 8 4 2 1 63

Jenn & Maggy 0 0 32 0 8 4 2 1 47

Jenn & Colin 0 0 0 16 8 4 2 1 31

Kelly Jim Maggy Colin Jenn Bob Sue John

128 64 32 16 8 4 2 1

John & Sue 128 64 32 16 8 4 2 1 255

John & Kelly 128 0 0 0 0 0 2 1 131

Sue & Kelly 128 0 0 0 0 0 2 1 131

John & Jim 0 64 0 0 0 0 2 1 67

Sue & Jim 0 64 0 0 0 0 2 1 67

John & Jenn 0 0 32 16 8 4 2 1 63

John & Bob 0 0 32 16 8 4 2 1 63

Sue & Jenn 0 0 32 16 8 4 2 1 63

Sue & Bob 0 0 32 16 8 4 2 1 63

Bob & Jenn 0 0 32 16 8 4 2 1 63

John & Maggy 0 0 32 0 8 4 2 1 47

Sue & Maggy 0 0 32 0 8 4 2 1 47

Bob & Maggy 0 0 32 0 8 4 2 1 47

Jenn & Maggy 0 0 32 0 8 4 2 1 47

John & Colin 0 0 0 16 8 4 2 1 31

Sue & Colin 0 0 0 16 8 4 2 1 31

Bob & Colin 0 0 0 16 8 4 2 1 31

Jenn & Colin 0 0 0 16 8 4 2 1 31

Here is a quick 11 variable version!

Pretend that the letters are friends and/or enemies.

1 denotes a friend in this instance.

Figure 7

We then Collaborate the Variables that are FRIENDS

K J I H G F E D C B A

A 1 0 1 0 1 0 1 0 1 1 1

B 0 0 0 0 0 0 1 0 0 1 1

C 1 0 1 0 1 0 1 1 1 0 1

D 0 0 0 0 0 1 1 1 1 0 0

E 1 0 1 1 1 1 1 0 1 1 1

F 0 1 0 0 0 1 1 1 1 0 0

G 1 1 1 0 1 0 1 0 1 0 1

H 0 1 1 1 0 0 1 0 0 0 0

I 1 0 1 1 1 0 1 0 1 0 1

J 1 1 0 1 1 1 0 0 0 0 0

K 1 1 1 0 1 0 1 0 1 0 1

Figure 8

Then we sort in Figure 9

K J I H G F E D C B A

1024 512 256 128 64 32 16 8 4 2 1

A&B 0 0 0 0 0 0 16 0 0 2 1 19

A&C 1024 0 256 0 64 0 16 0 4 0 1 1365

A&E 1024 0 256 0 64 0 16 0 4 2 1 1367

A&G 1024 0 256 0 64 0 16 0 4 0 1 1365

A&I 1024 0 256 0 64 0 16 0 4 0 1 1365

A&K 1024 0 256 0 64 0 16 0 4 0 1 1365

B&E 0 0 0 0 0 0 16 0 4 2 0 22

B&E 0 0 0 0 0 0 16 0 0 2 1 19

C&D 0 0 0 0 0 0 16 8 4 0 0 28

C&E 1024 0 256 0 64 0 16 0 4 0 1 1365

C&G 1024 0 256 0 64 0 16 0 4 0 1 1365

C&I 1024 0 256 0 64 0 16 0 4 0 1 1365

C&K 1024 0 256 0 64 0 16 0 4 0 1 1365

D&F 0 0 0 0 0 32 16 8 4 0 0 60

E&F 0 0 0 0 0 32 16 0 4 0 0 52

E&G 1024 0 256 0 64 0 16 0 4 0 1 1365

E&H 0 0 256 128 0 0 16 0 0 0 0 400

E&I 1024 0 256 128 0 0 16 0 4 0 1 1429

E&K 1024 0 256 0 64 0 16 0 4 0 1 1365

F&J 0 512 0 0 0 32 0 0 0 0 0 544

G&I 1024 0 256 0 64 0 16 0 4 0 1 1365

G&J 1024 512 0 0 64 0 0 0 0 0 0 1600

G&K 1024 512 256 0 64 0 16 0 4 0 1 1877

H&I 0 0 256 0 0 0 16 0 0 0 0 272

H&J 0 512 0 128 0 0 0 0 0 0 0 640

J&K 1024 512 0 0 64 0 0 0 0 0 0 1600

Figure 9

Figure 9 gives us all the Maximal Cliques larger than two. We can see that 1600 or GJ&K are

friends, 19 or AB&E are friends, but that our Maximum Clique is ACGIK&E are all friends or a 6

clique! Yay!

In some instances, it may be beneficial to flip the bits and search for NOT FRIENDS rather than

friends as it may require less data entry and search efforts. People may still be friends with

themselves though and so we hit about a 50-50% mark….meaning if it seems that most people are

friends we may be better served by searching the NOT FRIEND Cliques to save time and

extrapolate FRIEND groups from the opposite data.

K J I H G F E D C B A

1024 512 256 128 64 32 16 8 4 2 1

G&K 1024 512 256 0 64 0 16 0 4 0 1 1877

G&J 1024 512 0 0 64 0 0 0 0 0 0 1600

J&K 1024 512 0 0 64 0 0 0 0 0 0 1600

E&I 1024 0 256 128 0 0 16 0 4 0 1 1429

A&E 1024 0 256 0 64 0 16 0 4 2 1 1367

A&C 1024 0 256 0 64 0 16 0 4 0 1 1365

A&G 1024 0 256 0 64 0 16 0 4 0 1 1365

A&I 1024 0 256 0 64 0 16 0 4 0 1 1365

A&K 1024 0 256 0 64 0 16 0 4 0 1 1365

C&E 1024 0 256 0 64 0 16 0 4 0 1 1365

C&G 1024 0 256 0 64 0 16 0 4 0 1 1365

C&I 1024 0 256 0 64 0 16 0 4 0 1 1365

C&K 1024 0 256 0 64 0 16 0 4 0 1 1365

E&G 1024 0 256 0 64 0 16 0 4 0 1 1365

E&K 1024 0 256 0 64 0 16 0 4 0 1 1365

G&I 1024 0 256 0 64 0 16 0 4 0 1 1365

H&J 0 512 0 128 0 0 0 0 0 0 0 640

F&J 0 512 0 0 0 32 0 0 0 0 0 544

E&H 0 0 256 128 0 0 16 0 0 0 0 400

H&I 0 0 256 0 0 0 16 0 0 0 0 272

D&F 0 0 0 0 0 32 16 8 4 0 0 60

E&F 0 0 0 0 0 32 16 0 4 0 0 52

C&D 0 0 0 0 0 0 16 8 4 0 0 28

B&E 0 0 0 0 0 0 16 0 4 2 0 22

A&B 0 0 0 0 0 0 16 0 0 2 1 19

B&E 0 0 0 0 0 0 16 0 0 2 1 19

In some instances we may also want to utilize larger collaborative variables of 3, 4, 5 etc… as a

group for various reasons.

Scaling and Worst Case Scenario

For an 8 clique we require 7+6+5+4+3+2+1 * 8 = 224 data entry points (for 256 possible

permutations) as a worst case scenario if everyone are friends. (Obviously this is an error as we

know we have an 8 by 8 clique as everyone would be friends with everyone). We also know that if

very few folks are friends, we may convert to searching NOT FRIEND Cliques to save space, but

let’s simply continue for a fun example of worst case scenario!

For a 9 clique we would require 8+7+6+5+4+3+2+1 * 9 = 324 data entry points (for 512 possible

permutations). Figure 10 below continues this train of thought. We can see that as the problem

scales that even though it still grows, that it grows at a smaller and smaller rate! I also discussed this

type of growth rate in my TSP paper.

Figure 10

8+7+6+5+4+3+2+1 Equals 36 * 9 Equals 324 data entry elements for 512 Permutations

9+8+7+6+5+4+3+2+1 Equals 46 * 10 Equals 460 data entry elements for 1,024 Permutations

10+9+8+7+6+5+4+3+2+1 Equals 57 * 11 Equals 627 data entry elements for 2,048 Permutations

etc…. Equals 69 * 12 Equals 828 data entry elements for 4,096 Permutations

etc…. Equals 82 * 13 Equals 1,066 data entry elements for 8,192 Permutations

etc…. Equals 95 * 14 Equals 1,330 data entry elements for 16,384 Permutations

etc…. Equals 108 * 15 Equals 1,620 data entry elements for 32,768 Permutations

etc…. Equals 121 * 16 Equals 1,936 data entry elements for 65,536 Permutations

etc…. Equals 134 * 17 Equals 2,278 data entry elements for 131,072 Permutations

etc…. Equals 147 * 18 Equals 2,646 data entry elements for 262,144 Permutations

etc…. Equals 160 * 19 Equals 3,040 data entry elements for 524,288 Permutations

etc…. Equals 173 * 20 Equals 3,460 data entry elements for 1,048,576 Permutations

etc…. Equals 186 * 21 Equals 3,906 data entry elements for 2,097,152 Permutations

etc…. Equals 199 * 22 Equals 4,378 data entry elements for 4,194,304 Permutations

etc…. Equals 212 * 23 Equals 4,876 data entry elements for 8,388,608 Permutations

etc…. Equals 225 * 24 Equals 5,400 data entry elements for 16,777,216 Permutations

etc…. Equals 238 * 25 Equals 5,950 data entry elements for 33,554,432 Permutations

etc…. Equals 251 * 26 Equals 6,526 data entry elements for 67,108,864 Permutations

etc…. Equals 264 * 27 Equals 7,128 data entry elements for 134,217,728 Permutations

etc…. Equals 277 * 28 Equals 7,756 data entry elements for 268,435,456 Permutations

etc…. Equals 290 * 29 Equals 8,410 data entry elements for 536,870,912 Permutations

https://jamesmccaffrey.wordpress.com/2011/06/24/the-maximum-clique-problem/

“It turns out that finding the maximum clique for graphs of even moderate size is one of the most

challenging problems in computer science. The problem is NP-complete which means, roughly, that

every possible answer must be examined. Suppose we have a graph with six nodes. First we’d try to

see if all six nodes form a clique. There is Choose (6,6) = 1 way to do this. Next we’d examine all

groups of five nodes at a time; Choose (6,5) = 6 ways. And so on, checking Choose (6,4) = 15, Choose

(6,3) = 20, Choose (6,2) = 15, and Choose(6,1) = 6 possible solutions for a total of 63 checks. (For

the maximum clique problem we can stop when we find the largest clique so let’s assume that on

average we’d have to go through about one-half of the checks).

The total number of checks increases very quickly as the size of the graph, n, increases. For n = 10

there are 1,023 total combinations. For n = 20 there are 1,048,575 combinations. But for n = 1,000

there are 10,715,086,071,862,673,209,484,250,490,600,018,105,614,048,117,055,336,074,437,

503,883,703,510,511,249,361,224,931,983,788,156,958,581,275,946,729,175,531,468,251,871,452,856,

923,140,435,984,577,574,698,574,803,934,567,774,824,230,985,421,074,605,062,371,141,877,954,182,

153,046,474,983,581,941,267,398,767,559,165,543,946,077,062,914,571,196,477,686,542,167,660,429,

831,652,624,386,837,205,668,069,375 combinations. Even if you could perform one trillion checks

per second it would take you 3.4 x 10^281 years which is insanely longer than the estimated age of the

universe (about 1.0 x 10^10 = 14 billion years).”

- James McCaffrey

The above is no longer true…

F - References

1. Cook, S.A. (1971). "The complexity of theorem proving procedures". Proceedings, Third

Annual ACM Symposium on the Theory of Computing, ACM, New York. pp. 151–158.

doi:10.1145/800157.805047.

2. Wikipedia contributors. (2018, June 19). Clique problem. In Wikipedia, The Free Encyclopedia.

Retrieved 13:57, June 28, 2018,

from https://en.wikipedia.org/w/index.php?title=Clique_problem&oldid=846513850

https://en.wikipedia.org/w/index.php?title=Clique_problem&oldid=846513850

3. Wikipedia contributors. (2018, May 14). NP-completeness. In Wikipedia, The Free Encyclopedia.

Retrieved 14:00, June 28, 2018, from https://en.wikipedia.org/w/index.php?title=NP-

completeness&oldid=841292328

4. Gödel’s Lost Letter and P=NP https://rjlipton.wordpress.com/the-gdel-letter/

5. Garey, Michael R.; David S. Johnson (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman. ISBN 0-7167-1045-5

https://en.wikipedia.org/w/index.php?title=NP-completeness&oldid=841292328
https://en.wikipedia.org/w/index.php?title=NP-completeness&oldid=841292328
https://rjlipton.wordpress.com/the-gdel-letter/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-7167-1045-5

	NOTE:
	This is simply another draft version of specific elements of a paper that I am working on. I hope to gather all the best elements for the creation of a LaTex Document for a strong submission to a Scientific Journal when I can find the time to work mo...
	1 Introduction to Clique

