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1 Introduction and notations

Let a a positive integer, a =
∏
i a
αi
i , ai prime integers and αi ≥ 1 positive

integers. We call radical of a the integer
∏
i ai noted by rad(a). Then a is

written as:
a =

∏
i

aαi
i = rad(a).

∏
i

aαi−1
i (1)

We note:
µa =

∏
i

aαi−1
i =⇒ a = µa.rad(a) (2)

The abc conjecture was proposed independently in 1985 by David Masser of
the University of Basel and Joseph Œsterlé of Pierre et Marie Curie University
(Paris 6) ([4]). It describes the distribution of the prime factors of two integers
with those of its sum. The definition of the abc conjecture is given below:
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Conjecture 1 (abc Conjecture): Let a, b, c positive integers relatively prime
with c = a+ b, then for each ε > 0, there exists K(ε) such that :

c < K(ε).rad(abc)1+ε (3)

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 ([2]). A conjecture was

proposed that c < rad2(abc) ([1]). Here we will give a proof of it for the case
c = a+ 1.

Conjecture 2 Let a, b, c positive integers relatively prime with c = a+ b, then:

c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2 (4)

This result, I think is the key to obtain the final proof of the veracity of the
abc conjecture.

2 A Proof of the conjecture (2) case c = a + 1

Let a, c positive integers, relatively prime, with c = a + 1 and R = rad(ac),

c =
∏
j′∈J′ c

βj′

j′ , βj′ ≥ 1.

If c < rad(ac) then we obtain:

c < rad(ac) < rad2(ac) =⇒ c < R2 (5)

and the condition (4) is verified.

If c = rad(ac), then a, c are not coprime, case to reject.

In the following, we suppose that c > rad(ac) and c and a are not prime
numbers.

c = a+ 1 = µarad(a) + 1
?
< rad2(ac) (6)

2.1 µa 6= 1 ,µa ≤ rad(a)

We obtain :

c = a+ 1 < 2µa.rad(a)⇒ c < 2rad2(a)⇒ c < rad2(ac) =⇒ c < R2 (7)

Then (6) is verified.



Progress in The Proof of The Conjecture c < rad2(abc) - Case : c = a + 1 3

2.2 µc 6= 1, µc ≤ rad(c)

We obtain :

c = µcrad(c) ≤ rad2(c) < rad2(ac) =⇒ c < R2 (8)

and the condition (6) is verified.

2.3 µa > rad(a) and µc > rad(c)

2.3.1 Case: µa = radq(a), q ≥ 2, µc = radp(c), p ≥ 2:

In this case, we write c = a+1 as radp+1(c)−radq+1(a) = 1. Then rad(c), rad(a)
are solutions of the Diophantine equation: :

Xp+1 − Y q+1 = 1 with (p+ 1)(q + 1) ≥ 9 (9)

But the solutions of the equation (9) are :(X = ±3, p+ 1 = 2, Y = +2, q+ 1 =
3), we obtain p = 1 < 2, then rad(c), rad(a) are not solutions of (9) and the
case µa = radq(a), q ≥ 2, µc = radp(c), p ≥ 2 is to reject.

2.3.2 Case: rad(c) < µc < rad2(c) and rad(a) < µa < rad2(a):

We can write:

µc < rad2(c) =⇒ c < rad3(c)

µa < rad2(a) =⇒ a < rad3(a)

 =⇒ ac < R3 =⇒ a2 < ac < R3 =⇒

a < R
√
R < R2 =⇒ c = a+ 1 < R2 (10)

2.3.3 Case: µc > rad2(c) or µa > rad2(a)

I- We suppose that µc > rad2(c) and rad(a) < µa ≤ rad2(a):

I-1- Case rad(a) < rad(c): In this case a = µa.rad(a) ≤ rad2(a).rad(a) <

rad2(a)rad(c) < rad2(ac) =⇒ a < R2 =⇒ c < R2 .

I-2- Case rad(c) < rad(a) < rad2(c): As a ≤ rad2(a).rad(a) < rad2(a).rad2(c) =⇒
a < R2 =⇒ c < R2 .

Example: 230.52.127.3532 = 37.55.135.17.1831+1, rad(c) = 2.5.127.353 =
448 310, rad2(c) = 200 981 856 100,

µc = 229.5.353 = 947 577 159 680 =⇒ rad2(c) < µc < rad3(c),
rad(a) = 3.5.13.17.1831 = 6 069 765, rad2(a) = 36 842 047 155 225,
µa = 36.54.134 = 13 013 105 625 < rad2(a). It is the case : rad(c) <

µc < rad2(c) and rad(a) < µa ≤ rad2(a) with rad(c) = 448 310 < rad(a) =
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6 069 765 < rad2(c) = 200 981 856 100.

I-3- Case rad2(c) < rad(a):

I-3-1- We suppose que c ≤ rad6(c), we obtain:

c ≤ rad6(c) =⇒ c ≤ rad2(c).rad4(c) =⇒ c < rad2(c).(rad(a))2 = R2 =⇒ c < R2

Example: 58.72 = 2437.547 + 1 =⇒ 19 140 625 = 19 140 624 + 1, rad(c) =
5.7 = 35, rad(a) = 2.3.547 = 3 282 =⇒ rad(a) > rad2(c), we obtain c =
1 9140 625 > rad3(c) = 42 875 and c < rad6(c) = 1 838 265 625 and 3 282 =
rad(a) < µa = 5 832 < rad2(a) = 10 771 524 =⇒ a < rad3(a) = 35 352 141 768.

I-3-2- We suppose c > rad6(c) =⇒ µc > rad5(c), we suppose µa = rad2(a) =⇒
a = rad3(a). Then we obtain that x = rad(a) is a solution in positive integers
of the equation:

X3 + 1 = c = µc.rad(c) (11)

If c = radn(c) with n ≥ 7, we obtain an equation like (9) that gives a con-
tradiction. In the following, we will study the cases µc = A.radn(c) with
rad(c) - A,n ≥ 0. The above equation (11) can be written as :

(X + 1)(X2 −X + 1) = c (12)

Let δ any divisor of c, then:

X + 1 = δ (13)

X2 −X + 1 =
c

δ
= c′ = δ2 − 3X (14)

We recall that rad(a) > rad2(c), it follows that δ must verifies δ − 1 >
rad2(c) =⇒ δ > rad2(c) + 1.

I-3-2-1- We suppose that δ = l.rad(c) =⇒ lrad(c) > rad2(c) + 1 =⇒ l >
rad2(c) + 1

rad(c)
. We obtain l ≥ rad(c) + 2 so rad(c) and l have the same parity.

We have δ = l.rad(c) < c = µc.rad(c) =⇒ l < µc. As δ is a divisor of c, then l
is a divisor of µc, we write µc = l.m. From µc = l(δ2 − 3X), we obtain:

m = l2rad2(c)− 3rad(a) =⇒ 3rad(a) = l2rad2(c)−m

A- Case 3|m =⇒ m = 3m′, m′ > 1: As µc = ml = 3m′l =⇒ 3|rad(c) and
(rad(c),m′) not coprime. We obtain:

rad(a) = l2rad(c).
rad(c)

3
−m′
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It follows that a,c are not coprime, then the contradiction.

B - Case m = 3 =⇒ µc = 3l =⇒ c = 3lrad(c) = 3δ = δ(δ2 − 3X) =⇒ δ2 =
3(1 +X) = 3δ =⇒ δ = lrad(c) = 3, then the contradiction.

I-3-2-2- We suppose that δ = l.rad2(c), l ≥ 2. In this case rad(a) = lrad2(c)−1
verifies rad(a) > rad2(c). If lrad(c) - µc then the case to reject. We suppose

that lrad(c)|µc =⇒ µc = m.lrad(c), then
c

δ
= m = δ2 − 3rad(a).

C - Case m = 1 = c/δ =⇒ δ2−3rad(a) = 1 =⇒ (δ−1)(δ+ 1) = 3rad(a) =
rad(a)(δ + 1) =⇒ δ = 2 = l.rad2(c), then the contradiction.

D - Case m = 3, we obtain 3(1 + rad(a)) = δ2 = 3δ =⇒ δ = 3 = lrad2(c).
Then the contradiction.

E - Case m 6= 1, 3, we obtain: 3rad(a) = l2rad4(c) − m =⇒ rad(a) and
rad(c) are not coprime. Then the contradiction.

I-3-2-3- We suppose that δ = l.radn(c), l ≥ 2 with n ≥ 3. From c = µc.rad(c) =
lradn(c)(δ2 − 3rad(a)), let m = δ2 − 3rad(a).

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give
contradictions, it follows the reject of these cases.

G - Case m 6= 1, 3. Let q a prime that divides m, it follows q|µc =⇒ q =
cj′0 =⇒ cj′0 |δ

2 =⇒ cj′0 |3rad(a). Then rad(a) and rad(c) are not coprime. It
follows the contradiction.

I-3-2-4- We suppose that δ =
∏
j∈J1 c

βj

j , βj ≥ 1 with at least one j0 ∈ J1 with

βj0 ≥ 2, rad(c) - δ and δ − 1 =
∏
j∈J1 c

βj

j − 1 > rad2(c) =
∏
j′∈J′ c2j′ , J1 ⊂ J ′.

We can write:

δ = µδ.rad(δ), rad(c) = m.rad(δ)

Then we obtain:

c = µc.rad(c) = µc.m.rad(δ) = δ(δ2 − 3X) = µδ.rad(δ)(δ2 − 3X) =⇒
m.µc = µδ(δ

2 − 3X) (15)

- If µc = µδ =⇒ m = δ2 − 3X = (µc.rad(δ))2 − 3X. As δ < δ2 − 3X =⇒
m > δ =⇒ rad(c) > m > µc.rad(δ) > rad5(c) because µc > rad5(c), it follows
rad(c) > rad5(c). Then the contradiction.
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- We suppose that µc < µδ. As rad(a) = µδrad(δ)− 1, we obtain:

rad(a) > µc.rad(δ)− 1 > 0 =⇒ R > c.rad(δ)− rad(c) > 0 =⇒

c > R > c.rad(δ)− rad(c) > 0 =⇒ 1 > rad(δ)− rad(c)

c
> 0, rad(δ) ≥ 2

=⇒ The contradiction (16)

- We suppose that µδ < µc. In this case, from the equation (25) and as
(m,µδ) = 1, it follows that we can write:

µc = µ1.µ2, µ1, µ2 > 1 (17)

so that m.µ1 = δ2 − 3X, µ2 = µδ (18)

But:

rad(a) = δ − 1 = µδrad(δ) > rad2(c) =⇒ 0 > m2rad2(δ)− µ2rad(δ) + 1

Let P (Z) the polynomial:

P (Z) = m2Z − µ2Z + 1 =⇒ P (rad(δ)) < 0 (19)

The discriminant of P (Z) is:

∆ = µ2
2 − 4m2 (20)

- ∆ = 0 =⇒ µ2 = 2m, but (m,µ2) = 1, then the contradiction. Case to reject.

- ∆ < 0 =⇒ P (Z) has no real roots. From (19) it follows that P (Z) > 0,∀Z ∈
R. Then the contradiction with P (rad(δ)) < 0. Case to reject.

- ∆ > 0 =⇒ µ2 > 2m =⇒ µ2

m
> 2. We denote t =

√
∆ > 0. The roots of

P (Z) = 0 are Z1, Z2 with Z1 < Z2, given by:

Z1 =
µ2 − t
2m2

, Z2 =
µ2 + t

2m2
(21)

We approximate t by t̃:

t =
√
µ2
2 − 4m2 = µ2

(
1− 4m2

µ2
2

) 1
2

=⇒ t̃ = µ2 −
2m2

µ2
> 0

Then, we obtain Z̃1, Z̃2 as :

Z̃1 =
µ2 − t̃
2m2

=
1

µ2
, Z̃2 =

µ2 + t̃

2m2
=

µ2

m2
− 1

µ2
(22)
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As µ2
2 − 4m2 > 0 =⇒ µ2

2 −m2 > 3m2 > 0 =⇒ µ2
2

m2
− 1 > 0, we will give below

the proof that rad(δ) > Z̃2 =⇒ P (rad(δ)) > 0, then the contradiction with
P (rad(δ)) < 0; we write:

rad(δ)
?
>

µ2

m2
− 1

µ2
, µ2 > 0 =⇒

µ2.rad(δ)
?
>

µ2
2

m2
− 1

δ
?
>
µ2
2 −m2

m2
>

3m2

m2

as δ > 3 =⇒ δ >
µ2
2

m2
− 1 > 3 =⇒ rad(δ) >

µ2

m2
− 1

µ2
>

3

µ2
(23)

If follows P (rad(δ)) > 0 and the contradiction with the conclusion of the equa-
tion (19).

It follows that the case c > rad6(c) and a = rad3(a) is impossible.

I-3-3- We suppose c > rad6(c) =⇒ c = rad6(c)+h, h > 0 and µa < rad2(a) =⇒
a+ l = rad3(a), l > 0. Then we obtain :

rad6(c) + h = rad3(a)− l + 1 (24)

As rad2(c) < rad(a) (see I-3), we obtain the equation:

rad3(a)− (rad2(c))3 = h+ l − 1 = m > 0

Let X = rad(a)− rad2(c), then X is an integer root of the polynomial H(X)
defined as:

H(X) = X3 + 3R.rad(c)X −m = 0 (25)

To resolve the above equation, we note X = u + v, then we obtain the two
conditions:

u3 + v3 = m, u.v = −R.rad(c) < 0 =⇒ u3.v3 = −R3rad3(c)

It follows that u3, v3 are the roots of the polynomial G(t) given by:

G(t) = t2 −mt−R3rad3(c) = 0 (26)

The discriminant of G(t) is :

∆ = m2 + 4R3rad3(c) = α2, α > 0 (27)

The two real roots of (26) are:

t1 = u3 =
m+ α

2
(28)

t2 = v3 =
m− α

2
(29)
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As m = rad3(a) − rad6(c) > 0, we obtain that α = rad3(a) + rad6(c) > 0,
then from the equation (27), it follows that (α = x,m = y) is a solution of the
Diophantine equation:

x2 − y2 = N (30)

with N = 4R3rad3(c) > 0. From the equations (28-29), we remark that α and
m verify the following equations:

x+ y = 2u3 = 2rad3(a) (31)

x− y = −2v3 = 2rad6(c) (32)

then x2 − y2 = N = 4R3rad3(c) (33)

Let Q(N) be the number of the solutions of (30) and τ(N) is the number of
suitable factorization of N , then we announce the following result concerning
the solutions of the Diophantine equation (30) (see theorem 27.3 in [3]):

- If N≡2(mod 4), then Q(N) = 0.
- If N≡1 or N≡3(mod 4), then Q(N) = [τ(N)/2].
- If N≡0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the integral part of x for which [x] ≤ x < [x] + 1.

Let (α′,m′), α′,m′ ∈ N∗ be another pair, solution of the equation (30),
then α′2 − m′2 = x2 − y2 = N = 4R3rad3(c), but α = x and m = y ver-
ify the equation (31) given by x + y = 2rad3(a), it follows α′,m′ verify also
α′ + m′ = 2rad3(a), that gives α′ − m′ = 2rad6(c), then α′ = x = α =
rad3(a) + rad6(c) and m′ = y = m = rad3(a) − rad6(c). We have given the
proof of the uniqueness of the solutions of the equation (30) with the condition
x + y = 2rad3(a). As N = 4R3rad3(c)≡0(mod 4) =⇒ Q(N) = [τ(N/4)/2] =
[τ(rad6(c).rad3(a))/2] > 1. But Q(N) = 1, then the contradiction.

It follows that the case µa ≤ rad2(a) and c > rad6(a) is impossible.

II- We suppose that rad(c) < µc ≤ rad2(c) and µa > rad5(a):

II-1- Case rad(c) < rad(a) : As c ≤ rad3(c) = rad2(c).rad(c) =⇒ c <

rad2(c).rad(a) =⇒ c < R2 .

II-2- Case rad(a) < rad(c) < rad2(a) : As c ≤ rad3(c) = rad2(c).rad(c) =⇒
c < rad2(c).rad2(a) =⇒ c < R2 .

II-3- Case rad2(a) < rad(c):

II-3-1- We suppose que a ≤ rad6(a) =⇒ a ≤ rad2(a).rad4(a) =⇒ a <
rad2(a).(rad(c))2 = R2 =⇒ a < R2 =⇒ 1 + a ≤ R2, but (c, a) = 1, it

follows c < R2 .
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II-3-2- We suppose a > rad6(a) and µc ≤ rad2(c). Using the same method
as it was explicated in the paragraphs I-3-2, I-3-3 (permuting a,c), we arrive
at a contradiction. It follows that the case µc ≤ rad2(c) and a > rad6(a) is
impossible.

2.3.4 III - Case µc > rad2(c) and µa > rad2(a)

We can write c > rad3(c) =⇒ c = rad3(c)+h and a = rad3(a)+ l with h, l > 0
positive integers.

III-1- We suppose rad(a) < rad(c). We obtain the equation:

rad3(c)− rad3(a) = l − h+ 1 = m > 0 (34)

Let X = rad(c) − rad(a), from the above equation, X is a real root of the
polynomial:

P (X) = X3 + 3RX −m = 0 (35)

As above, to resolve (35), we put X = u+v, then we obtain the two conditions:

u3 + v3 = m (36)

uv = −R < 0 =⇒ u3.v3 = −R3 (37)

Then u3, v3 are the roots of the equation:

H(Z) = Z2 −mZ −R3 = 0 (38)

The discriminant of H(Z) is:

∆ = m2+4R3 = (rad3(c)+rad3(a))2 = α2, taking α > 0⇒ α = rad3(c)+rad3(a)
(39)

From the equation (39), we obtain that (α = x,m = y) is a solution of the
Diophantine equation:

x2 − y2 = N (40)

with N = 4R3 > 0 and N≡0(mod 4). Using the same method as in I-3-3-, we
arrive to a contradiction.

III-2- We suppose rad(c) < rad(a). We obtain the equation:

rad3(a)− rad3(c) = h− l − 1 = m > 0 (41)

Let X = rad(a) − rad(c), from the above equation, X is a real root of the
polynomial:

P (X) = X3 + 3RX −m = 0 (42)

As above, to resolve (42), we put X = u+v, then we obtain the two conditions:

u3 + v3 = m (43)

uv = −R < 0 =⇒ u3.v3 = −R3 (44)



10 Abdelmajid Ben Hadj Salem, Dipl.-Eng.

Then u3, v3 are the roots of the equation:

H(Z) = Z2 −mZ −R3 = 0 (45)

The discriminant of H(Z) is:

∆ = m2+4R3 = (rad3(c)+rad3(a))2 = α2, taking α > 0⇒ α = rad3(c)+rad3(a)
(46)

From the equation (46), we obtain that (α = x,m = y) is a solution of the
Diophantine equation:

x2 − y2 = N (47)

with N = 4R3 > 0 and N≡0(mod 4). Using the same method as in I-3-3-, we
arrive to a contradiction.

It follows that the case µc > rad2(c) and µa > rad2(a) is impossible.

We can annonce the following theorem:

Theorem 1 (Abdelmajid Ben Hadj Salem, 2020) Let a, c positive inte-
gers relatively prime with c = a+ 1, then c < rad2(ac).
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