Progress in The Proof of The Conjecture $c<\operatorname{rad}^{2}(a b c)$ -
Case : $c=a+1$

Abdelmajid Ben Hadj Salem, Dipl.-Eng.

Received: date / Accepted: date

Abstract

In this paper, we consider the $a b c$ conjecture. We give some progress in the proof of the conjecture $c<\operatorname{rad}^{2}(a b c)$ in the case $c=a+1$.

Keywords Elementary number theory • real functions of one variable • Number of solutions of elementary Diophantine equations.
Mathematics Subject Classification (2010) 11AXX • 26AXX

To the memory of my Father who taught me arithmetic
 To my wife Wahida, my daughter Sinda and my son Mohamed Mazen

1 Introduction and notations

Let a a positive integer, $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as:

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{1}
\end{equation*}
$$

We note:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{2}
\end{equation*}
$$

The $a b c$ conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Esterlé of Pierre et Marie Curie University (Paris 6) (4]). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the $a b c$ conjecture is given below:

[^0]Conjecture 1 (abc Conjecture): Let a, b, c positive integers relatively prime with $c=a+b$, then for each $\epsilon>0$, there exists $K(\epsilon)$ such that:

$$
\begin{equation*}
c<K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \tag{3}
\end{equation*}
$$

We know that numerically, $\frac{\operatorname{Logc}}{\log (\operatorname{rad}(a b c))} \leq 1.629912$ ([2]). A conjecture was proposed that $c<\operatorname{rad}^{2}(a b c)([\mathbb{1})$. Here we will give a proof of it for the case $c=a+1$.

Conjecture 2 Let a, b, c positive integers relatively prime with $c=a+b$, then:

$$
\begin{equation*}
c<\operatorname{rad}^{2}(a b c) \Longrightarrow \frac{\log c}{\log (\operatorname{rad}(a b c))}<2 \tag{4}
\end{equation*}
$$

This result, I think is the key to obtain the final proof of the veracity of the $a b c$ conjecture.

2 A Proof of the conjecture (2) case $c=a+1$

Let a, c positive integers, relatively prime, with $c=a+1$ and $R=\operatorname{rad}(a c)$, $c=\prod_{j^{\prime} \in J^{\prime}} c_{j^{\prime}}^{\beta_{j^{\prime}}}, \beta_{j^{\prime}} \geq 1$.

If $c<\operatorname{rad}(a c)$ then we obtain:

$$
\begin{equation*}
c<\operatorname{rad}(a c)<\operatorname{rad}^{2}(a c) \Longrightarrow c<R^{2} \tag{5}
\end{equation*}
$$

and the condition (4) is verified.
If $c=\operatorname{rad}(a c)$, then a, c are not coprime, case to reject.
In the following, we suppose that $c>\operatorname{rad}(a c)$ and c and a are not prime numbers.

$$
\begin{equation*}
c=a+1=\mu_{a} r a d(a)+1 \stackrel{?}{<} r a d^{2}(a c) \tag{6}
\end{equation*}
$$

$2.1 \mu_{a} \neq 1, \mu_{a} \leq \operatorname{rad}(a)$
We obtain :

$$
\begin{equation*}
c=a+1<2 \mu_{a} \cdot \operatorname{rad}(a) \Rightarrow c<2 \operatorname{rad}^{2}(a) \Rightarrow c<\operatorname{rad}^{2}(a c) \Longrightarrow c<R^{2} \tag{7}
\end{equation*}
$$

Then (6) is verified.
$2.2 \mu_{c} \neq 1, \mu_{c} \leq \operatorname{rad}(c)$
We obtain :

$$
\begin{equation*}
c=\mu_{c} \operatorname{rad}(c) \leq \operatorname{rad}^{2}(c)<\operatorname{rad}^{2}(a c) \Longrightarrow c<R^{2} \tag{8}
\end{equation*}
$$

and the condition (6) is verified.
$2.3 \mu_{a}>\operatorname{rad}(a)$ and $\mu_{c}>\operatorname{rad}(c)$

2.3.1 Case: $\mu_{a}=\operatorname{rad}^{q}(a), q \geq 2, \mu_{c}=\operatorname{rad}^{p}(c), p \geq 2$:

In this case, we write $c=a+1$ as $\operatorname{rad}^{p+1}(c)-\operatorname{rad}^{q+1}(a)=1$. Then $\operatorname{rad}(c), \operatorname{rad}(a)$ are solutions of the Diophantine equation: :

$$
\begin{equation*}
X^{p+1}-Y^{q+1}=1 \quad \text { with }(p+1)(q+1) \geq 9 \tag{9}
\end{equation*}
$$

But the solutions of the equation (9) are : $(X= \pm 3, p+1=2, Y=+2, q+1=$ 3), we obtain $p=1<2$, then $\operatorname{rad}(c), \operatorname{rad}(a)$ are not solutions of (9) and the case $\mu_{a}=\operatorname{rad}^{q}(a), q \geq 2, \mu_{c}=\operatorname{rad}^{p}(c), p \geq 2$ is to reject.
2.3.2 Case: $\operatorname{rad}(c)<\mu_{c}<\operatorname{rad}^{2}(c)$ and $\operatorname{rad}(a)<\mu_{a}<\operatorname{rad}^{2}(a)$:

We can write:

$$
\begin{aligned}
& \left.\begin{array}{l}
\mu_{c}<\operatorname{rad}^{2}(c) \Longrightarrow c<\operatorname{rad}^{3}(c) \\
\mu_{a}<\operatorname{rad}^{2}(a) \Longrightarrow a<\operatorname{rad}^{3}(a)
\end{array}\right\} \Longrightarrow a c<R^{3} \Longrightarrow a^{2}<a c<R^{3} \Longrightarrow \\
& a<R \sqrt{R}<R^{2} \Longrightarrow c=a+1<R^{2} \text { (10) }
\end{aligned}
$$

2.3.3 Case: $\mu_{c}>\operatorname{rad}^{2}(c)$ or $\mu_{a}>\operatorname{rad}^{2}(a)$

I- We suppose that $\mu_{c}>\operatorname{rad}^{2}(c)$ and $\operatorname{rad}(a)<\mu_{a} \leq \operatorname{rad}^{2}(a)$:
I-1- Case $\operatorname{rad}(a)<\operatorname{rad}(c)$: In this case $a=\mu_{a} \cdot \operatorname{rad}(a) \leq \operatorname{rad}^{2}(a) \cdot \operatorname{rad}(a)<$ $\operatorname{rad}^{2}(a) \operatorname{rad}(c)<\operatorname{rad}^{2}(a c) \Longrightarrow a<R^{2} \Longrightarrow c<R^{2}$.

I-2- Case $\operatorname{rad}(c)<\operatorname{rad}(a)<\operatorname{rad}^{2}(c):$ As $a \leq \operatorname{rad}^{2}(a) \cdot \operatorname{rad}(a)<\operatorname{rad}^{2}(a) \cdot \operatorname{rad}^{2}(c) \Longrightarrow$ $a<R^{2} \Longrightarrow c<R^{2}$.

Example: $2^{30} .5^{2} \cdot 127.353^{2}=3^{7} \cdot 5^{5} .13^{5} \cdot 17 \cdot 1831+1, \operatorname{rad}(c)=2 \cdot 5 \cdot 127.353=$ $448310, \operatorname{rad}^{2}(c)=200981856100$,
$\mu_{c}=2^{29} \cdot 5 \cdot 353=947577159680 \Longrightarrow \operatorname{rad}^{2}(c)<\mu_{c}<\operatorname{rad}^{3}(c)$,
$\operatorname{rad}(a)=3.5 .13 .17 .1831=6069765, \operatorname{rad}^{2}(a)=36842047155225$,
$\mu_{a}=3^{6} .5^{4} .13^{4}=13013105625<\operatorname{rad}^{2}(a)$. It is the case $: \operatorname{rad}(c)<$ $\mu_{c}<\operatorname{rad}^{2}(c)$ and $\operatorname{rad}(a)<\mu_{a} \leq \operatorname{rad}^{2}(a)$ with $\operatorname{rad}(c)=448310<\operatorname{rad}(a)=$
$6069765<\operatorname{rad}^{2}(c)=200981856100$.
I-3- Case $\operatorname{rad}^{2}(c)<\operatorname{rad}(a)$:
I-3-1- We suppose que $c \leq \operatorname{rad}^{6}(c)$, we obtain:
$c \leq \operatorname{rad}^{6}(c) \Longrightarrow c \leq \operatorname{rad}^{2}(c) \cdot \operatorname{rad}^{4}(c) \Longrightarrow c<\operatorname{rad}^{2}(c) \cdot(\operatorname{rad}(a))^{2}=R^{2} \Longrightarrow c<R^{2}$

Example: $5^{8} .7^{2}=2^{4} 3^{7} .547+1 \Longrightarrow 19140625=19140624+1, \operatorname{rad}(c)=$ $5.7=35, \operatorname{rad}(a)=2.3 .547=3282 \Longrightarrow \operatorname{rad}(a)>\operatorname{rad}^{2}(c)$, we obtain $c=$ $19140625>\operatorname{rad}^{3}(c)=42875$ and $c<\operatorname{rad}^{6}(c)=1838265625$ and $3282=$ $\operatorname{rad}(a)<\mu_{a}=5832<\operatorname{rad}^{2}(a)=10771524 \Longrightarrow a<\operatorname{rad}^{3}(a)=35352141768$.

I-3-2- We suppose $c>\operatorname{rad}^{6}(c) \Longrightarrow \mu_{c}>\operatorname{rad}^{5}(c)$, we suppose $\mu_{a}=\operatorname{rad}^{2}(a) \Longrightarrow$ $a=\operatorname{rad}^{3}(a)$. Then we obtain that $x=\operatorname{rad}(a)$ is a solution in positive integers of the equation:

$$
\begin{equation*}
X^{3}+1=c=\mu_{c} \cdot \operatorname{rad}(c) \tag{11}
\end{equation*}
$$

If $c=\operatorname{rad}^{n}(c)$ with $n \geq 7$, we obtain an equation like (9) that gives a contradiction. In the following, we will study the cases $\mu_{c}=A \cdot \operatorname{rad}^{n}(c)$ with $\operatorname{rad}(c) \nmid A, n \geq 0$. The above equation (11) can be written as :

$$
\begin{equation*}
(X+1)\left(X^{2}-X+1\right)=c \tag{12}
\end{equation*}
$$

Let δ any divisor of c, then:

$$
\begin{array}{r}
X+1=\delta \\
X^{2}-X+1=\frac{c}{\delta}=c^{\prime}=\delta^{2}-3 X \tag{14}
\end{array}
$$

We recall that $\operatorname{rad}(a)>\operatorname{rad}^{2}(c)$, it follows that δ must verifies $\delta-1>$ $\operatorname{rad}^{2}(c) \Longrightarrow \delta>\operatorname{rad}^{2}(c)+1$.

I-3-2-1- We suppose that $\delta=l \cdot \operatorname{rad}(c) \Longrightarrow \operatorname{lrad}(c)>\operatorname{rad}^{2}(c)+1 \Longrightarrow l>$ $\frac{\operatorname{rad}^{2}(c)+1}{\operatorname{rad}(c)}$. We obtain $l \geq \operatorname{rad}(c)+2$ so $\operatorname{rad}(c)$ and l have the same parity. We have $\delta=l \cdot \operatorname{rad}(c)<c=\mu_{c} \cdot \operatorname{rad}(c) \Longrightarrow l<\mu_{c}$. As δ is a divisor of c, then l is a divisor of μ_{c}, we write $\mu_{c}=l . m$. From $\mu_{c}=l\left(\delta^{2}-3 X\right)$, we obtain:

$$
m=l^{2} r a d^{2}(c)-3 \operatorname{rad}(a) \Longrightarrow 3 \operatorname{rad}(a)=l^{2} r a d^{2}(c)-m
$$

A- Case $3 \mid m \Longrightarrow m=3 m^{\prime}, m^{\prime}>1$: As $\mu_{c}=m l=3 m^{\prime} l \Longrightarrow 3 \mid r a d(c)$ and $\left(\operatorname{rad}(c), m^{\prime}\right)$ not coprime. We obtain:

$$
\operatorname{rad}(a)=l^{2} r a d(c) \cdot \frac{\operatorname{rad}(c)}{3}-m^{\prime}
$$

It follows that a,c are not coprime, then the contradiction.
B - Case $m=3 \Longrightarrow \mu_{c}=3 l \Longrightarrow c=3 \operatorname{lrad}(c)=3 \delta=\delta\left(\delta^{2}-3 X\right) \Longrightarrow \delta^{2}=$ $3(1+X)=3 \delta \Longrightarrow \delta=\operatorname{lrad}(c)=3$, then the contradiction.

I-3-2-2- We suppose that $\delta=l \cdot \operatorname{rad}^{2}(c), l \geq 2$. In this case $\operatorname{rad}(a)=\operatorname{lrad}(c)-1$ verifies $\operatorname{rad}(a)>\operatorname{rad}^{2}(c)$. If $\operatorname{lrad}(c) \nmid \mu_{c}$ then the case to reject. We suppose that $\operatorname{lrad}(c) \mid \mu_{c} \Longrightarrow \mu_{c}=m \cdot \operatorname{lrad}(c)$, then $\frac{c}{\delta}=m=\delta^{2}-3 \operatorname{rad}(a)$.

C - Case $m=1=c / \delta \Longrightarrow \delta^{2}-3 \operatorname{rad}(a)=1 \Longrightarrow(\delta-1)(\delta+1)=3 \operatorname{rad}(a)=$ $\operatorname{rad}(a)(\delta+1) \Longrightarrow \delta=2=l \cdot \operatorname{rad}^{2}(c)$, then the contradiction.

D - Case $m=3$, we obtain $3(1+\operatorname{rad}(a))=\delta^{2}=3 \delta \Longrightarrow \delta=3=\operatorname{lrad}^{2}(c)$. Then the contradiction.

E - Case $m \neq 1,3$, we obtain: $3 \operatorname{rad}(a)=l^{2} \operatorname{rad}^{4}(c)-m \Longrightarrow \operatorname{rad}(a)$ and $\operatorname{rad}(c)$ are not coprime. Then the contradiction.

I-3-2-3- We suppose that $\delta=l \cdot \operatorname{rad}^{n}(c), l \geq 2$ with $n \geq 3$. From $c=\mu_{c} \cdot \operatorname{rad}(c)=$ $\operatorname{lrad}^{n}(c)\left(\delta^{2}-3 \operatorname{rad}(a)\right)$, let $m=\delta^{2}-3 \operatorname{rad}(a)$.

F - As seen above (paragraphs C,D), the cases $m=1$ and $m=3$ give contradictions, it follows the reject of these cases.

G-Case $m \neq 1,3$. Let q a prime that divides m, it follows $q \mid \mu_{c} \Longrightarrow q=$ $c_{j_{0}^{\prime}} \Longrightarrow c_{j_{0}^{\prime}}\left|\delta^{2} \Longrightarrow c_{j_{0}^{\prime}}\right| \operatorname{rad}(a)$. Then $\operatorname{rad}(a)$ and $\operatorname{rad}(c)$ are not coprime. It follows the contradiction.

I-3-2-4- We suppose that $\delta=\prod_{j \in J_{1}} c_{j}^{\beta_{j}}, \beta_{j} \geq 1$ with at least one $j_{0} \in J_{1}$ with $\beta_{j_{0}} \geq 2, \operatorname{rad}(c) \nmid \delta$ and $\delta-1=\prod_{j \in J_{1}} c_{j}^{\beta_{j}}-1>\operatorname{rad}^{2}(c)=\prod_{j^{\prime} \in J^{\prime}} c_{j^{\prime}}^{2}, J_{1} \subset J^{\prime}$. We can write:

$$
\delta=\mu_{\delta} \cdot \operatorname{rad}(\delta), \quad \operatorname{rad}(c)=\operatorname{m\cdot rad}(\delta)
$$

Then we obtain:

$$
\begin{gather*}
c=\mu_{c} \cdot \operatorname{rad}(c)=\mu_{c} \cdot m \cdot \operatorname{rad}(\delta)=\delta\left(\delta^{2}-3 X\right)=\mu_{\delta} \cdot \operatorname{rad}(\delta)\left(\delta^{2}-3 X\right) \Longrightarrow \\
m \cdot \mu_{c}=\mu_{\delta}\left(\delta^{2}-3 X\right) \tag{15}
\end{gather*}
$$

- If $\mu_{c}=\mu_{\delta} \Longrightarrow m=\delta^{2}-3 X=\left(\mu_{c} \cdot \operatorname{rad}(\delta)\right)^{2}-3 X$. As $\delta<\delta^{2}-3 X \Longrightarrow$ $m>\delta \Longrightarrow \operatorname{rad}(c)>m>\mu_{c} \cdot \operatorname{rad}(\delta)>\operatorname{rad}^{5}(c)$ because $\mu_{c}>\operatorname{rad}^{5}(c)$, it follows $\operatorname{rad}(c)>\operatorname{rad}^{5}(c)$. Then the contradiction.
- We suppose that $\mu_{c}<\mu_{\delta}$. As $\operatorname{rad}(a)=\mu_{\delta} \operatorname{rad}(\delta)-1$, we obtain:

$$
\begin{align*}
\operatorname{rad}(a)>\mu_{c} \cdot \operatorname{rad}(\delta)-1>0 & \Longrightarrow R>c \cdot \operatorname{rad}(\delta)-\operatorname{rad}(c)>0 \Longrightarrow \\
c>R>\operatorname{c\cdot rad}(\delta)-\operatorname{rad}(c) & >0 \Longrightarrow 1>\operatorname{rad}(\delta)-\frac{\operatorname{rad}(c)}{c}>0, \quad \operatorname{rad}(\delta) \geq 2 \\
\Longrightarrow & \text { The contradiction } \tag{16}
\end{align*}
$$

- We suppose that $\mu_{\delta}<\mu_{c}$. In this case, from the equation (25) and as $\left(m, \mu_{\delta}\right)=1$, it follows that we can write:

$$
\begin{align*}
\mu_{c} & =\mu_{1} \cdot \mu_{2}, \quad \mu_{1}, \mu_{2}>1 \tag{17}\\
\text { so that } \quad m \cdot \mu_{1} & =\delta^{2}-3 X, \quad \mu_{2}=\mu_{\delta} \tag{18}
\end{align*}
$$

But:

$$
\operatorname{rad}(a)=\delta-1=\mu_{\delta} \operatorname{rad}(\delta)>\operatorname{rad}^{2}(c) \Longrightarrow 0>m^{2} \operatorname{rad}^{2}(\delta)-\mu_{2} \operatorname{rad}(\delta)+1
$$

Let $P(Z)$ the polynomial:

$$
\begin{equation*}
P(Z)=m^{2} Z-\mu_{2} Z+1 \Longrightarrow P(\operatorname{rad}(\delta))<0 \tag{19}
\end{equation*}
$$

The discriminant of $P(Z)$ is:

$$
\begin{equation*}
\Delta=\mu_{2}^{2}-4 m^{2} \tag{20}
\end{equation*}
$$

- $\Delta=0 \Longrightarrow \mu_{2}=2 m$, but $\left(m, \mu_{2}\right)=1$, then the contradiction. Case to reject.
- $\Delta<0 \Longrightarrow P(Z)$ has no real roots. From 19) it follows that $P(Z)>0, \forall Z \in$ \mathbb{R}. Then the contradiction with $P(\operatorname{rad}(\delta))<0$. Case to reject.
$-\Delta>0 \Longrightarrow \mu_{2}>2 m \Longrightarrow \frac{\mu_{2}}{m}>2$. We denote $t=\sqrt{\Delta}>0$. The roots of $P(Z)=0$ are Z_{1}, Z_{2} with $Z_{1}<Z_{2}$, given by:

$$
\begin{equation*}
Z_{1}=\frac{\mu_{2}-t}{2 m^{2}}, \quad Z_{2}=\frac{\mu_{2}+t}{2 m^{2}} \tag{21}
\end{equation*}
$$

We approximate t by \tilde{t} :

$$
t=\sqrt{\mu_{2}^{2}-4 m^{2}}=\mu_{2}\left(1-\frac{4 m^{2}}{\mu_{2}^{2}}\right)^{\frac{1}{2}} \Longrightarrow \tilde{t}=\mu_{2}-\frac{2 m^{2}}{\mu_{2}}>0
$$

Then, we obtain $\tilde{Z}_{1}, \tilde{Z}_{2}$ as:

$$
\begin{equation*}
\tilde{Z}_{1}=\frac{\mu_{2}-\tilde{t}}{2 m^{2}}=\frac{1}{\mu_{2}}, \quad \tilde{Z}_{2}=\frac{\mu_{2}+\tilde{t}}{2 m^{2}}=\frac{\mu_{2}}{m^{2}}-\frac{1}{\mu_{2}} \tag{22}
\end{equation*}
$$

As $\mu_{2}^{2}-4 m^{2}>0 \Longrightarrow \mu_{2}^{2}-m^{2}>3 m^{2}>0 \Longrightarrow \frac{\mu_{2}^{2}}{m^{2}}-1>0$, we will give below the proof that $\operatorname{rad}(\delta)>\tilde{Z}_{2} \Longrightarrow P(\operatorname{rad}(\delta))>0$, then the contradiction with $P(\operatorname{rad}(\delta))<0$; we write:

$$
\begin{array}{r}
\operatorname{rad}(\delta) \stackrel{?}{>} \frac{\mu_{2}}{m^{2}}-\frac{1}{\mu_{2}}, \quad \mu_{2}>0 \Longrightarrow \\
\mu_{2} \cdot \operatorname{rad}(\delta) \stackrel{?}{>} \frac{\mu_{2}^{2}}{m^{2}}-1 \\
\delta \stackrel{?}{>} \frac{\mu_{2}^{2}-m^{2}}{m^{2}}>\frac{3 m^{2}}{m^{2}} \\
\text { as } \delta>3 \Longrightarrow \delta>\frac{\mu_{2}^{2}}{m^{2}}-1>3 \Longrightarrow \operatorname{rad}(\delta)>\frac{\mu_{2}}{m^{2}}-\frac{1}{\mu_{2}}>\frac{3}{\mu_{2}} \tag{23}
\end{array}
$$

If follows $P(\operatorname{rad}(\delta))>0$ and the contradiction with the conclusion of the equation (19).

It follows that the case $c>\operatorname{rad}^{6}(c)$ and $a=\operatorname{rad}^{3}(a)$ is impossible.
I-3-3- We suppose $c>\operatorname{rad}^{6}(c) \Longrightarrow c=\operatorname{rad}^{6}(c)+h, h>0$ and $\mu_{a}<\operatorname{rad}^{2}(a) \Longrightarrow$ $a+l=\operatorname{rad}^{3}(a), l>0$. Then we obtain :

$$
\begin{equation*}
\operatorname{rad}^{6}(c)+h=\operatorname{rad}^{3}(a)-l+1 \tag{24}
\end{equation*}
$$

As $\operatorname{rad}^{2}(c)<\operatorname{rad}(a)$ (see I-3), we obtain the equation:

$$
\operatorname{rad}^{3}(a)-\left(\operatorname{rad}^{2}(c)\right)^{3}=h+l-1=m>0
$$

Let $X=\operatorname{rad}(a)-\operatorname{rad}^{2}(c)$, then X is an integer root of the polynomial $H(X)$ defined as:

$$
\begin{equation*}
H(X)=X^{3}+3 R \cdot \operatorname{rad}(c) X-m=0 \tag{25}
\end{equation*}
$$

To resolve the above equation, we note $X=u+v$, then we obtain the two conditions:

$$
u^{3}+v^{3}=m, \quad u \cdot v=-R \cdot \operatorname{rad}(c)<0 \Longrightarrow u^{3} \cdot v^{3}=-R^{3} r a d^{3}(c)
$$

It follows that u^{3}, v^{3} are the roots of the polynomial $G(t)$ given by:

$$
\begin{equation*}
G(t)=t^{2}-m t-R^{3} r a d^{3}(c)=0 \tag{26}
\end{equation*}
$$

The discriminant of $G(t)$ is :

$$
\begin{equation*}
\Delta=m^{2}+4 R^{3} r a d^{3}(c)=\alpha^{2}, \quad \alpha>0 \tag{27}
\end{equation*}
$$

The two real roots of (26) are:

$$
\begin{align*}
& t_{1}=u^{3}=\frac{m+\alpha}{2} \tag{28}\\
& t_{2}=v^{3}=\frac{m-\alpha}{2} \tag{29}
\end{align*}
$$

As $m=\operatorname{rad}^{3}(a)-\operatorname{rad}^{6}(c)>0$, we obtain that $\alpha=\operatorname{rad}^{3}(a)+\operatorname{rad}^{6}(c)>0$, then from the equation (27), it follows that $(\alpha=x, m=y)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{30}
\end{equation*}
$$

with $N=4 R^{3} r a d^{3}(c)>0$. From the equations 2829, we remark that α and m verify the following equations:

$$
\begin{array}{r}
x+y=2 u^{3}=2 \operatorname{rad}^{3}(a) \\
x-y=-2 v^{3}=2 \operatorname{rad}^{6}(c) \\
\text { then } \quad x^{2}-y^{2}=N=4 R^{3} \operatorname{rad}^{3}(c) \tag{33}
\end{array}
$$

Let $Q(N)$ be the number of the solutions of (30) and $\tau(N)$ is the number of suitable factorization of N, then we announce the following result concerning the solutions of the Diophantine equation (30) (see theorem 27.3 in [3]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$.
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$.
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.
$[x]$ is the integral part of x for which $[x] \leq x<[x]+1$.
Let $\left(\alpha^{\prime}, m^{\prime}\right), \alpha^{\prime}, m^{\prime} \in \mathbb{N}^{*}$ be another pair, solution of the equation 30), then $\alpha^{\prime 2}-m^{\prime 2}=x^{2}-y^{2}=N=4 R^{3} r a d^{3}(c)$, but $\alpha=x$ and $m=y$ verify the equation given by $x+y=2 \operatorname{rad}^{3}(a)$, it follows $\alpha^{\prime}, m^{\prime}$ verify also $\alpha^{\prime}+m^{\prime}=2 \operatorname{rad}^{3}(a)$, that gives $\alpha^{\prime}-m^{\prime}=2 \operatorname{rad}^{6}(c)$, then $\alpha^{\prime}=x=\alpha=$ $\operatorname{rad}^{3}(a)+\operatorname{rad}^{6}(c)$ and $m^{\prime}=y=m=\operatorname{rad}^{3}(a)-\operatorname{rad}^{6}(c)$. We have given the proof of the uniqueness of the solutions of the equation (30) with the condition $x+y=2 \operatorname{rad}^{3}(a)$. As $N=4 R^{3} \operatorname{rad}^{3}(c) \equiv 0(\bmod 4) \Longrightarrow \overline{Q(N)}=[\tau(N / 4) / 2]=$ $\left[\tau\left(\operatorname{rad}^{6}(c) \cdot \operatorname{rad}^{3}(a)\right) / 2\right]>1$. But $Q(N)=1$, then the contradiction.

It follows that the case $\mu_{a} \leq \operatorname{rad}^{2}(a)$ and $c>\operatorname{rad}^{6}(a)$ is impossible.
II- We suppose that $\operatorname{rad}(c)<\mu_{c} \leq \operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{5}(a)$:
II-1- Case $\operatorname{rad}(c)<\operatorname{rad}(a):$ As $c \leq \operatorname{rad}^{3}(c)=\operatorname{rad}^{2}(c) \cdot \operatorname{rad}(c) \Longrightarrow c<$ $\operatorname{rad}^{2}(c) \cdot \operatorname{rad}(a) \Longrightarrow c<R^{2}$.

II-2- Case $\operatorname{rad}(a)<\operatorname{rad}(c)<\operatorname{rad}^{2}(a):$ As $c \leq \operatorname{rad}^{3}(c)=\operatorname{rad}^{2}(c) \cdot \operatorname{rad}(c) \Longrightarrow$ $c<\operatorname{rad}^{2}(c) \cdot \operatorname{rad}^{2}(a) \Longrightarrow c<R^{2}$.

II-3- Case $\operatorname{rad}^{2}(a)<\operatorname{rad}(c)$:
II-3-1- We suppose que $a \leq \operatorname{rad}^{6}(a) \Longrightarrow a \leq \operatorname{rad}^{2}(a) \cdot \operatorname{rad}^{4}(a) \Longrightarrow a<$ $\operatorname{rad}^{2}(a) \cdot(\operatorname{rad}(c))^{2}=R^{2} \Longrightarrow a<R^{2} \Longrightarrow 1+a \leq R^{2}$, but $(c, a)=1$, it follows $c<R^{2}$.

II-3-2- We suppose $a>\operatorname{rad}^{6}(a)$ and $\mu_{c} \leq \operatorname{rad}^{2}(c)$. Using the same method as it was explicated in the paragraphs I-3-2, I-3-3 (permuting a,c), we arrive at a contradiction. It follows that the case $\mu_{c} \leq \operatorname{rad}^{2}(c)$ and $a>\operatorname{rad}^{6}(a)$ is impossible.

2.3.4 III - Case $\mu_{c}>\operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{2}(a)$

We can write $c>\operatorname{rad}^{3}(c) \Longrightarrow c=\operatorname{rad}^{3}(c)+h$ and $a=\operatorname{rad}^{3}(a)+l$ with $h, l>0$ positive integers.

III-1- We suppose $\operatorname{rad}(a)<\operatorname{rad}(c)$. We obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{3}(c)-\operatorname{rad}^{3}(a)=l-h+1=m>0 \tag{34}
\end{equation*}
$$

Let $X=\operatorname{rad}(c)-\operatorname{rad}(a)$, from the above equation, X is a real root of the polynomial:

$$
\begin{equation*}
P(X)=X^{3}+3 R X-m=0 \tag{35}
\end{equation*}
$$

As above, to resolve (35), we put $X=u+v$, then we obtain the two conditions:

$$
\begin{array}{r}
u^{3}+v^{3}=m \\
u v=-R<0 \Longrightarrow u^{3} \cdot v^{3}=-R^{3} \tag{37}
\end{array}
$$

Then u^{3}, v^{3} are the roots of the equation:

$$
\begin{equation*}
H(Z)=Z^{2}-m Z-R^{3}=0 \tag{38}
\end{equation*}
$$

The discriminant of $H(Z)$ is:
$\Delta=m^{2}+4 R^{3}=\left(\operatorname{rad}^{3}(c)+\operatorname{rad}^{3}(a)\right)^{2}=\alpha^{2}, \quad$ taking $\quad \alpha>0 \Rightarrow \alpha=\operatorname{rad}^{3}(c)+\operatorname{rad}^{3}(a)$
From the equation (39), we obtain that $(\alpha=x, m=y)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{40}
\end{equation*}
$$

with $N=4 R^{3}>0$ and $N \equiv 0(\bmod 4)$. Using the same method as in I-3-3-, we arrive to a contradiction.

III-2- We suppose $\operatorname{rad}(c)<\operatorname{rad}(a)$. We obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)=h-l-1=m>0 \tag{41}
\end{equation*}
$$

Let $X=\operatorname{rad}(a)-\operatorname{rad}(c)$, from the above equation, X is a real root of the polynomial:

$$
\begin{equation*}
P(X)=X^{3}+3 R X-m=0 \tag{42}
\end{equation*}
$$

As above, to resolve 42 , we put $X=u+v$, then we obtain the two conditions:

$$
\begin{array}{r}
u^{3}+v^{3}=m \\
u v=-R<0 \Longrightarrow u^{3} \cdot v^{3}=-R^{3} \tag{44}
\end{array}
$$

Then u^{3}, v^{3} are the roots of the equation:

$$
\begin{equation*}
H(Z)=Z^{2}-m Z-R^{3}=0 \tag{45}
\end{equation*}
$$

The discriminant of $H(Z)$ is:
$\Delta=m^{2}+4 R^{3}=\left(\operatorname{rad}^{3}(c)+\operatorname{rad}^{3}(a)\right)^{2}=\alpha^{2}, \quad$ taking $\quad \alpha>0 \Rightarrow \alpha=\operatorname{rad}^{3}(c)+\operatorname{rad}^{3}(a)$
From the equation (46), we obtain that $(\alpha=x, m=y)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{47}
\end{equation*}
$$

with $N=4 R^{3}>0$ and $N \equiv 0(\bmod 4)$. Using the same method as in I-3-3-, we arrive to a contradiction.

It follows that the case $\mu_{c}>\operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{2}(a)$ is impossible.
We can annonce the following theorem:
Theorem 1 (Abdelmajid Ben Hadj Salem, 2020) Let a, c positive integers relatively prime with $c=a+1$, then $c<\operatorname{rad}^{2}(a c)$.

References

1. Mihăilescu, P.: Around ABC. European Mathematical Society Newsletter $\mathbf{N}^{\circ} \mathbf{9 3}$, September 2014, 29-34, (2014)
2. Robert, O., Stewart, C.L., Tenenbaum, G.: A refinement of the abc conjecture. Bull. London Math. Soc. 46,6, 1156-1166 (2014).
3. Stewart, B.M.: Theory of Numbers. Second edition, The Macmillan Compagny, NewYork, 390 pages. (1964)
4. Waldschmidt, M.: On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)

[^0]: Abdelmajid Ben Hadj Salem
 Résidence Bousten 8, Mosquée Raoudha, Bloc B,
 1181 Soukra Raoudha
 Tunisia
 E-mail: abenhadjsalem@gmail.com

