Bell's theorem refuted via elementary probability theory

Gordon Stewart Watson ${ }^{1}$

Abstract: Bell's theorem has been described as the most profound discovery of science. Let's see.
Introduction: Let β denote the thought-experiment in Bell (1964). Let $\mathbf{B}($.$) denote his equations$ (.). Let the causally-independent same-instance results in $\mathbf{B}(1)$ be $A^{ \pm}$and $B^{ \pm}$, pairwise correlated via the functions $A \& B$ and the variable λ. Then, reserving P for probabilities, let's replace Bell's expectation $P(\vec{a}, \vec{b})$ in $\mathbf{B}(2)$ with its identity $E(a, b \mid \beta)$. So, from $\mathbf{B}(1), \mathbf{B}(2)$, RHS $\mathbf{B}(3)$ and the line below \mathbf{B} (3)—with Λ denoting the space of λ-here's Bell's theorem (BT) in our notation:

$$
\begin{gather*}
\text { BT: } E(a, b \mid \beta)=\int_{\Lambda} d \lambda \rho(\lambda) A(a, \lambda) B(b, \lambda) \neq-a \cdot b[\mathrm{sic}] ; \tag{1}\\
\text { with } A(a, \lambda)= \pm 1 \equiv A^{ \pm}, B(b, \lambda)= \pm 1 \equiv B^{ \pm}, A(a, \lambda) B(b, \lambda)= \pm 1 . \tag{2}
\end{gather*}
$$

Refutation: Via RHS (2), and independent of the functions A and B, we divide Λ into two subsets: Λ^{+}is the space that delivers $A(a, \lambda) B(b, \lambda)=1, \Lambda^{-}$delivers $A(a, \lambda) B(b, \lambda)=-1$. Thus, from (1):

$$
\begin{align*}
E(a, b \mid \beta) & =\int_{\Lambda^{+}} d \lambda \rho(\lambda) A(a, \lambda) B(b, \lambda)-\int_{\Lambda^{-}} d \lambda \rho(\lambda) A(a, \lambda) B(b, \lambda) \tag{3}\\
& =P\left(A B=1 \mid a, b, \Lambda^{+}\right)-P\left(A B=-1 \mid a, b, \Lambda^{-}\right), \text {the weighted-sum of } A B \text { results. } \tag{4}\\
& =\left[P\left(A^{+} B^{+}\right)+P\left(A^{-} B^{-}\right)\right]-\left[P\left(A^{+} B^{-}\right)+P\left(A^{-} B^{+}\right)\right], \text {with conditions suppressed, } \tag{5}
\end{align*}
$$

the weighted-sum of the same-instance results (± 1) that deliver each $A B$ result.
$=P\left(A^{+}\right) P\left(B^{+} \mid A^{+}\right)+P\left(A^{-}\right) P\left(B^{-} \mid A^{-}\right)-P\left(A^{+}\right) P\left(B^{-} \mid A^{+}\right)-P\left(A^{-}\right) P\left(B^{+} \mid A^{-}\right)$ via the product rule for the paired (same-instance) results correlated as in (2).
$=\frac{1}{2}\left[P\left(B^{+} \mid A^{+}\right)+P\left(B^{-} \mid A^{-}\right)-P\left(B^{-} \mid A^{+}\right)-P\left(B^{+} \mid A^{-}\right)\right]$for, with λ a random latent variable, the marginal probabilities $\left[\right.$ like $\left.P\left(A^{+}\right)\right]=\frac{1}{2}$.
$=\frac{1}{2}\left[\sin ^{2} \frac{1}{2}(a, b)+\sin ^{2} \frac{1}{2}(a, b)-\cos ^{2} \frac{1}{2}(a, b)-\cos ^{2} \frac{1}{2}(a, b)\right]$: replacing the probability functions in (7) with our β-based laws (akin to Malus' Law for light-beams).
$=\sin ^{2} \frac{1}{2}(a, b)-\cos ^{2} \frac{1}{2}(a, b)=-\cos (a, b)=-a \cdot b$. So RHS (1) is refuted: QED.

[^0]Confirmation: We now refute $\mathbf{B}(15)$, Bell's inequality ($\mathbf{B I}$), offered by Bell as proof of his theorem.

$$
\begin{equation*}
\text { BI: }|E(a, b)-E(a, c)|-1 \leq E(b, c)[\text { sic]: ie, } \mathbf{B}(15) \text { in our notation, } \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\text { where }-1 \leq E(a, b) \leq 1,-1 \leq E(a, c) \leq 1,-1 \leq E(b, c) \leq 1 \text {. } \tag{11}
\end{equation*}
$$

However: $E(a, b)[1+E(a, c)] \leq 1+E(a, c)$; for, if $V \leq 1$, and $0 \leq W$, then $V W \leq W$.

$$
\therefore E(a, b)-E(a, c)-1 \leq-E(a, b) E(a, c) .
$$

Similarly: $E(a, c)-E(a, b)-1 \leq-E(a, b) E(a, c)$. Hence our irrefutable inequality

$$
\begin{equation*}
\text { WI: }|E(a, b)-E(a, c)|-1 \leq-E(a, b) E(a, c) . \tag{14}
\end{equation*}
$$

So, with test-settings $0<(a, c)<\pi ;(a, b)=(b, c)=\frac{(a, c)}{2}=\frac{x}{2}$, and, via (9),
with test-functions $E(a, b)=E(b, c)=-\cos \left(\frac{x}{2}\right), E(a, c)=-\cos (x)$: please
copy, paste and test this next expression in WolframAlph a^{\circledR}; free-online, see References. (18)

$$
\begin{equation*}
\operatorname{plot}|\cos (x)-\cos (x / 2)|-1 \& \&-\cos (x / 2) \& \&-\cos (x) \cos (x / 2), 0 \leq x \leq \pi \tag{19}
\end{equation*}
$$

Thus, under the generality of (16)-(17): ${ }^{2}$ (i) For $0<x<\pi$, (10) is everywhere false, (15) is everywhere true. (ii) For $x=0$ and $x=\pi$, (10) and (15) are true. (iii) Let the unnumbered relations between $\mathbf{B}(14)$ and $\mathbf{B}(15)$ be $\mathbf{B}(14 a)-\mathbf{B}(14 c)$. (iv) Then Bell's error is his move from true $\mathbf{B}(14 a)$ to false $\mathbf{B}(14 \mathrm{~b})$: for $\mathbf{B}(14 \mathrm{~b})$ leads to false $\mathbf{B}(15)$. (v) In other words, given the common LHS in (10) and (15): Bell's error equates irrefutable $-E(a, b) E(a, c)$ from (15) to false $E(b, c)$ from (10); hence, as above, Bell's equality only holds at $x=0$ and $x=\pi$. That is: when Bell's $-\cos \left(\frac{x}{2}\right)=-\cos \left(\frac{x}{2}\right) \cos (x)$.

Conclusions: (i) Bell's theorem (1) and Bell's inequality (10) are refuted. (ii) In (8), via our heuristic debt to Malus, we provide the first of a family of laws that refute Bell's theorem in other settings.

References:

1. Bell, J. S. (1964). "On the Einstein Podolsky Rosen paradox." Physics 1, 195-200.
http://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf
2. WolframAlpha ${ }^{\circledR}$. "WolframAlpha: computational intelligence." https://www.wolframalpha.com
[^1]
[^0]: ${ }^{1}$ eprb@me.com [Ex: 1989.v0, 2019R.v1, 2020H.v3b] Ref: 2020H.v4 20201017

[^1]: ${ }^{2}$ Under β, the plane of the coplanar angles need not be orthogonal to the line-of-light axis: just not parallel to it.

