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This text is motivated by the desire to point out some more applications of geometric 

algebra in physics. The presentation is simplified, and the reader is referred to the literature.  
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1. AC electrical circuits 

 

In AC8, Steinmetz proposed a symbolic method to calculate power in AC electric circuits. 

Given a voltage 1 2V V iV   and a current 1 2I I iI   in complex form ( 1i   ), he tried to get 

the power formula (see AC7) 

 1 1 2 2 1 2 2 1P V I V I i V I V I    . 

Note that simple multiplication gives  1 1 2 2 1 2 2 1VI V I V I i V I V I    , while the usual *VI gives 

 1 1 2 2 1 2 2 1V I V I i V I V I   , the complex conjugate of the Steinmetz’s P , that is *V I  (such a 

product is called geometric product, see AC4). Anyhow, in order to get the desired multiplication 

rule, Steinmetz suggested an additional “imaginary unit” that squares to 1, as well as some kind of 

non-commutative multiplication. 

With the knowledge of geometric algebra, it is obvious that the “imaginary unit that 

squares to 1” could be a unit vector, while the non-commutative multiplication is just the 

geometric product. Defining 1 1 2 2V V e V e   and 1 1 2 2I I e I e  , we have 

 1 1 2 2 1 2 2 1 1 2P VI V I V I V I V I e e     . 

This gives the possibility to eliminate complex numbers and phasors from the AC circuit theory.  

It should be remarked that power theory has not been completed to date, despite many 

attempts. Nonlinear AC circuits are a particular problem. There are attempts to solve this problem 

in GA (see AC1-8), but we leave it to the reader to judge for himself. 

 

 



2. Tensors 

 

2.1 Moment of inertia without tensors 

 

Linear transformations in geometric algebra provide the possibility to replace matrices and 

tensors with transformations of  k-vectors in a unified way. 

We can write a triple cross product (see [1]) of two vectors   a b a , where   a b a , 

as 

       j j          a b a a b a a b a a a b . 

In classical mechanics, introducing the angular velocity vector ω , the  angular momentum is given 

by 

   
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m m     L r ω r r r ω . 

In the continuum limit, this becomes 

 dm L r r ω . 

In the traditional form, we define the inertia tensor I  as IL ω , which we can write in the 

coordinate form 
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In geometric algebra (see [1], Sect. 1.7), we are introducing a linear transformation I  as 

   I I dm   L ω ω r r ω .  

 

 

 

 

 

 

Consider a thin rod of length a  extending from 2a  to 2a  and rotating about an 

arbitrary axis passing through its center (see Fig. 1). Defining a new variable s  by  
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ω Fig. 1: Rotating rod 
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we have 
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Using   2  n ω nω ωn , we get 

   
2

I
24

ma
 ω ω nωn . 

Note that the vector   ω nωn  is just reflected vector ω  with respect to the plane jn  (see [1], 

Sect. 1.9.3).  

Generally, we can define bivectors 

L j L , j  ω , 

and write 

     2 21
d d d

2 2

j
L j m r m r m        r r ω ω rωr r r . 

The inertia tensor now becomes a biform, i.e., a bivector-valued linear transformation of bivectors 

   21
I d

2
r m    r r . 

Again, the geometric content of the problem, hidden in the tensor formulation (we need to find out 

what the tensor is doing), is clearly seen in the GA formulation (the geometric interpretation is 

immediately clear). For other applications (including the Riemann curvature tensor), see IT2.  

 

2.2 Anisotropy without tensors 

 

A similar procedure can be applied to other physical problems with tensors. In IT3, there is 

a nice explanation of application of geometric algebra in optics. The relation between the electric 

field E and the electric displacement D  in anisotropic crystals is given by 

0D E  , 

where 0  is the permittivity of vacuum and   is a dielectric tensor. In Cl3, we define a linear 

transformation ε  

 0εD E , 

where the principal dielectric axes are given by the eigenvalue problem 



 ε a a ,  . 

See IT3 for the details on specific crystal configurations. 

 

3. Point groups in crystollagraphy 

 

In PG1, Hestenes shows that each of the 32 lattice point groups and 230 space groups in 

three dimensions is generated from a set of three symmetry vectors. Here we present just some 

basic ideas. As expected, the power of geometric algebra is seen here as well, bringing clarity and 

giving fresh insights.  

An isometry that permutes parts of a rigid body, leaving it unchanged as a whole, is called a 

symmetry. The symmetries of an object form a group called the symmetry group of the object. 

Every symmetry S   can be given the mathematical form 

: RS   x x x a ,       (3.1) 

where x   designates a point in the object, R  is an orthogonal transformation with the origin as a 

fixed point, and the vector a  designates a translation. In most applications, the operator R  is 

represented by a matrix. There is a problem with the standard representation for a symmetry by 

(3.1), namely, the orthogonal group is multiplicative while the translation group is additive, so 

combining the two destroys the simplicity of both. Geometric algebra provides an elegant solution 

of this problem (see PG1). 

In geometric algebra, we use the coordinate-free canonical form 

†R R R x x ,  (3.2) 

where R  is an invertible versor, with even (odd) parity corresponding to the plus (minus) sign, 

normalized to unity, so its reverse 
†R  is equal to its inverse 

1R
. When R  is even, equation (3.2) 

describes a rotation. 

 

 3.1 Point Groups in Two Dimensions 

 

As an example, consider the benzene molecule shown in Fig. 2, with the fixed point condition, 

which eliminates translations, so all the symmetries are orthogonal transformations. This molecule 

has the structure of a regular hexagon with a carbon atom at each vertex.  The simplest symmetry 

of this molecule is the rotation R  taking each vertex kx  into its neighbor 1kx , as described by 

† 2

1 Rk k k kR R R   x x x x .  (3.3) 

Obviously, R  satisfies the operator equation 



                       
6

R 1                  (3.4) 

This relation implies that we have a group with six distinct elements R
k

, 1,  ...,  6k  .  This is the 

rotational symmetry group of a hexagon, called the cyclic group (of order 6) and commonly 

denoted by 6C .  The element R  is a generator of 6C , while the condition (3.4) is called a 

presentation of the group. In GA, the relation (3.4) corresponds to the versor relation 

6 1S  , 2S R   (3.5) 

(see (3.3)), which has the advantage of admitting the explicit solution 

   exp 2 6 exp 3S j j    . 

The representation (3.5) shows explicitly that the generator of 6C  is a rotation through angle 3 .   

 

 

 

Fig. 2: Planar benzene ( 6 6C H ), showing 

generators of the symmetry group. (Hydrogen 
atoms are not shown.) 

 

 

 

 

 

We know that to every rotation there correspond two rotors differing only by a sign.  

Consequently, to every finite rotation group there corresponds a rotor group with twice as many 

elements.  In the present case, the generator R  of the rotor group is related to the generator S  of 

the cyclic group by 
2S R . Taking the negative square root of the relation    

6 2
6 2 6 1S R R   , 

we get the presentation for the dicyclic group of order 12 generated by R  

6 1R   ,  

and we denote it as 62C . Note that the pair of rotors R  distinguishes equivalent rotations of 

opposite senses (the cyclic group does not assign a sense to rotations).  

A hexagon has reflectional as well as rotational symmetries.  It is evident (see Fig. 2) that 

the hexagon is invariant under reflection along any diagonal through a vertex or the midpoint of a 

side. For example, with 1a x , the reflections 

1A  x a xa   and  
1B  x b xb  

1 x a

2x

b

3x
4x

5x

6x

c

3 6



are symmetries of the regular hexagon. These reflections generate a symmetry group of the 

hexagon, which we denote by 6H  (sometimes called the dihedral group). Note that the product of 

two reflections A  and B is a rotation 

 
1

BA


x ab xab , 

which means that 6C  is a subgroup of 6H . We can normalize the vectors a  and b to unity to get 

R ab  and the presentation of the group 62H  (for the details, see PG1) 

2 2 1 a b ,  
6

1 ab . 

How to find and describe all the fixed-point symmetry groups of all two-dimensional 

figures? Consider the multiplicative group 2 pH , 0 p  , generated by two unit vectors a  and 

b  related by the dicyclic condition 

   1 exp
p

j   ab , 

which means  exp j p ab .  What if  1,  2,  p   ?   

 

3.2 Point Groups in Three Dimensions 

 

If three unit vectors a , b , and c  are to be generators of a finite multiplicative group, then each 

pair of vectors must generate a finite subgroup, which means that they must satisfy the dicycle 

conditions 

      1
p q r
   ab bc ac ,   (3.6) 

,  ,  1p q r   (why?).  From 

    ab bc ac ,   (3.7) 

(this equation relates the sides of a spherical triangle with vertices a , b , and c , see PG2) we see 

that the three generators of rotations in (3.6) are not independent. In fact, it can be shown 

(spherical excess formula, see PG1 and PG2) that (3.7) leads to the relation  

1 1 1
1

p q r
   , 

which has no solution for 3p q r   . Choosing 2r  , we get 

1 1 1

2p q
  . 



For 2q  , any value of p  is allowed, while for 3q  ,   3,  4, 5p . This exhausts the 

possibilities and (3.6) reduces to 

     
2

1
p q
   ab bc ac . 

The tables of the possible point groups for the possible values of p and q  can be found in PG1.   

 Prove the relation (35) from PG1.  
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