Hopf fibrations in the language of 3D geometric algebra

Miroslav Josipović, 2020

This short text is a continuation of a series on the applications of geometric algebra, related to the book [3]. As the book [3], this text is intended for young (or at least young at heart) and open-minded people.

Keywords:

Hopf fibration, fiber, stereographic projection, rotor, spinor, unit sphere, geometric algebra

An example Hopf fibration

The standard *unit* n - *sphere* S^n is the set of points $\{x_0, x_1, \dots, x_n\}$ in \mathbb{R}^{n+1} that satisfy the equation

$$x_0^2 + x_1^2 + \dots + x_n^2 = 1.$$

The *dimension* of a unit sphere is the number of parameters we need to describe it. For example, for a unit circle S^1 , we need just one parameter (an angle), which means that we can write

$$x_0 = \cos \theta, \ x_1 = \sin \theta.$$

The unit circle can also be described by unit complex numbers, |z|=1. Note that the product of two unit complex numbers is a complex number. In geometric algebra, we can represent a unit circle by a unit vector $e_1 \cos \theta + e_2 \sin \theta$ (e_1 , e_2 , and e_3 are orthonormal unit vectors); however, the product of unit vectors is not a vector. The solution is to use unit spinors, like $\cos \theta + e_1 e_2 \sin \theta$, where $e_1 e_2$ is a new imaginary unit, due to $e_1 e_2 = -e_2 e_1$. The product of spinors in exponential form gives an immediate meaning: angles just add up. It appears that we can represent S^3 in a similar way, using unit spinors (rotors) from *Cl3* (instead of usually used *quaternions*, see in the text).

As an example of the *Hopf fibration*, consider the mapping $h: S^3 \to S^2$, defined by

$$h(a,b,c,d) = (a^{2} + b^{2} - c^{2} - d^{2}, 2(ad + bc), 2(bd - ac)), a^{2} + b^{2} + c^{2} + d^{2} = 1$$

(Hopf's original formula differs from that given here, see [2]; for a more general definition, see [7]). This means that a point from S^3 is mapped to a unit vector (check) that defines a point on S^2 . Such a mapping can be connected to quaternions (see [4] and [7]), which means that we can formulate it in *Cl3* (the even part).

Hopf fibrations in Cl3

Consider the rotor

$$R = a - bje_1 - cje_2 - dje_3$$

and let us find its effect on e_1

$$Re_{1}R^{\dagger} = (a^{2} + b^{2} - c^{2} - d^{2})e_{1} + (2ad + 2bc)e_{2} + (2bd - 2ac)e_{3}.$$

It is clear that for c = d = 0 and $a^2 + b^2 = 1$ we have $Re_1R^{\dagger} = e_1$, which means that the set of points

$$C = \left\{ \left(\cos \alpha, \ \sin \alpha, \ 0, \ 0 \right) \middle| \alpha \in \mathbb{R} \right\}$$

in S^3 all map to e_1 via the Hopf map h.

Exercise 1: Show that the set C is the entire set of points that maps to e_1 via the Hopf map h.

The set *C* is a unit circle in a plane in \mathbb{R}^4 . We can say that the set *C* is the *preimage set* $h^{-1}(e_1)$. We call the preimage set $h^{-1}(P)$ the *fiber* of the Hopf map over *P*.

Exercise 2: Show that for any point P in S^2 , the preimage set $h^{-1}(P)$ is a circle in S^3 (see [4]).

Any point $p \in S^2$ can be represented by a unit vector, say $\hat{\mathbf{p}}$. Likewise, any point $P \in S^3$ can be represented by a *unit spinor* (*rotor*, see Sect. 1.9.13 in [3])), say R. Then the expression $R\hat{\mathbf{p}}R^{\dagger}$ can be seen as a rotation of the vector $\hat{\mathbf{p}}$, which means that we have a mapping $S^2 \to S^2$. However, we can also interpret it as a mapping $h_p : S^3 \to S^2$, defined by

$$h_{\hat{\mathbf{p}}}(R) = R\hat{\mathbf{p}}R^{\dagger}$$
.

We call such a map the *Hopf fibration*. This means that there is not just one Hopf fibration, but there are infinitely many of them, one of which is $\hat{\mathbf{p}} = e_1$. In [5] and [6]), the reader can find an interesting definition with $\hat{\mathbf{p}} = e_3$ and application to *stereographic projection*.

Rotors in *Cl*3 are powerful and easy to imagine. As the Hopf fibration could play an important role in physics (for example, see [8]), a motivated reader could gain a great deal of pleasure translating the results of this topic to the language of geometric algebra.

References

[1] Armstrong, M.A.: Groups and Symmetry, Springer-Verlag, 1988

[2] Hopf, H.: Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche, Math. Annalen 104, pp 637–665, 1931

[3] Josipović, M.: Geometric Multiplication of Vectors - An Introduction to Geometric Algebra in Physics, Birkhäuser, 2019

[4] Lyons, D.W.: An Elementary Introduction to the Hopf Fibration, Mathematics Magazine Vol. 76, Issue 2, 2003

[5] Sobczyk, G.: *Geometric Spinors, Relativity and the Hopf Fibration*, https://www.garretstar.com/secciones/publications/publications.html, 2015

[6] Sobczyk, G.: Vector analysis of spinors, http://www.garretstar.com, 2015

[7] Treisman, Z.: A young person's guide to the Hopf fibration, https://arxiv.org/abs/0908.1205, 2009

[8] Urbantke, H.K.: *The Hopf fibration - seven times in physics*, Journal of Geometry and Physics 46, 125-150, 2003