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Abstract.-This paper introduces a new foundational basis for Euclidean geometry that includes productive
definitions of concepts so far primitive, or formally unproductive, allowing to prove a significant number of
axiomatic statements, unproved propositions and hidden postulates, among them the strong form of Euclid’s
First Postulate, Euclid’s Second Postulate, Hilbert’s Axioms I.5, II.1, II.2, II.3, II.4 and IV.6, Euclid’s Postulate
4, Posidonius-Geminus’ Axiom, Proclus’ Axiom, Cataldi’s Axiom, Tacquet’s Axiom 11, Khayyām’s Axiom,
Playfair’s Axiom, Euclid’s Postulate 5. The proposed foundation is more formally detailed and productive than
other classical and modern alternatives, and at least as accessible as any of them.

1 Introduction

After more than two millennia of discussions on Euclid’s original geometry and at a time in which such discussions
have been practically abandoned, this article introduces a new foundational basis for Euclidean geometry that
includes productive definitions of concepts so far formally unproductive, as sidedness, betweenness, straight line,
straightness, angle, or plane, among others (all of them properly legitimized by axioms or by formal proofs).
The result is an enriched Euclidean geometry in which it is possible to prove some propositions that were proved
to be unprovable on other Euclidean geometry bases. It will be introduced in the next sections. Conventions
and general fundamentals are the objectives of Section 2. Section 3 introduces the new foundational basis:
29 definitions, 10 axioms and 44 corollaries (8 of the 10 axioms and most of the 44 corollaries are implicit
(hidden) postulates in other Euclidean geometries). Sections 4-6 introduce Euclidean plane geometry through
49 propositions and 7 corollaries on angles, triangles, perpendiculars and parallels.

2 Conventions and general fundamentals

The nth axiom, corollary, definition, postulate, proposition and theorem will be referred to, respectively, as [Ax.
n], [Cr. n], [Df. n], [Ps. n], [Pr. n] and [Th. n]. The same letters, for instance AB or BA, will be used to denote
a line of endpoints A and B [Df. 1], as well as its length [Df. 9], and the distance between A and B [Df. 15] if
AB is a straight line [Df. 11]. Unless otherwise indicated, different letters will denote different points, including
endpoints. When convenient, lines will also be denoted by lower case Latin letters, whether or not indexed.
Symbols as 0,+,−,=, 6=,≤, etc. will be used conventionally. The expressions ’point in a line,’ and ’point of a
line’ will be used as synonyms. The same goes for ’line in a plane’ and ’line of a plane’. Closed lines [Df. 2] will
be referred to as such closed lines, or by specific names, as circle [Df. 19]. As in classical Euclidean geometry
[5, p. 8], [3, p. 153], in Euclidean geometry a straight line is a particular type of line. So, and in contrast with
modern English, in Euclidean geometry ’line’ and ’straight line’ are not synonyms. Asterisked expressions as
’for instance*’, ’for example*’, ’assume*’ etc., will always indicate that only one of the possible alternatives in
a proof will be considered and proved, because the other alternatives can be proved in the same way. Proofs
begin with the symbol ✄ and end with the symbol �. The biconditional logical connective will be shortened by
the term ’iff’. And, unless otherwise indicated, the word ’number’ will always mean natural number.

The following four definitions and three postulates are not exclusive to geometry, they have a general use in all
sciences. For that reason they have been separated from the very fundamentals of geometry and named with
letters in the place of numbers.

Definition 1 A quantity to which a real number can be assigned is said a numerical quantity. Numerical
quantities that can be symbolically represented and operated with one another according to the procedures and
laws of algebra, are said operable values.

Definition 2 An operable value is said to vary in a continuous way iff for any two different operable values of
the corresponding variation, the variation contains any operable value greater than the less and less than the
greater of those two operable values.

Definition 3 Metric properties and metric transformations: properties (transformations) to which operable
values that vary in a continuous way are univocally assigned: to each quantity of the property (transformation)
a unique and exclusive operable value, even zero, is assigned.

Definition 4 To define an object is to give the properties that unequivocally identifies the object. Objects with
the same definition are said of the same class. To draw objects is to make a descriptive representation of them by
means of graphics or texts, or by both of them, without the drawing modifies neither their established properties
nor their established relations with other objects, if any.
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Postulate A Of any two operable values, either they are equal to each other, or one of them is greater than the
other, and the other is less than the one. Symbolic representations of equal operable values, or of equal objects,
are interchangeable in any expression where they appear.

Postulate B To be less than, equal to, or greater than, are transitive relations of operable values that are
preserved when adding to, subtracting from, multiplying or dividing by the same operable value, the operable
values so related. Metric properties (transformations) are algebraically operable through their corresponding
operable values.

Postulate C Belonging to, and not belonging to, are mutually exclusive relations. Belonging to is a reflexive
and transitive relation.

Contrarily to, for instance, fuzzy set theory or non-Boolean logics, this Euclidean geometry assumes [Ps. C],
according to which it is not possible for an object to partially belong and partially not to belong to another
object.

3 Foundational basis of Euclidean geometry

3.1 Fundamentals on lines

Definition 1 Endedness.- A point at which a line ends is said endpoint. If such a point belongs to the line, the
line is said closed at that end; if not, the line is said open at that end. Two endpoints, whether or not in the
line, define two opposite directions in the corresponding line, each from an endpoint, said initial, to the other,
said final.

Definition 2 Collinearity.-Of the points that belong to a line is said they are points of the line, or points that
are on the line; and the line is said to pass through them. A line whose points belong, all of them, to a given
line is said a segment of the given line. Two points of a line are said different iff they are the endpoints of a
segment of the line. Two lines are said different, iff one of them has at least one point that is not in the other.
Different points and segments of the same line are said collinear; and non-collinear if they do not belong to the
same line.

Note.-The expression line passing through one or more points may be simplified to line through one or more
points.

Definition 3 Commonness.-Points and segments belonging to different lines are said common to them, other-
wise they are said non-common to them. Non-collinear lines with at least one common segment are said locally
collinear. Lines without common segments but with at least one common point are said intersecting lines, and
their common points are also said intersection points. Intersecting lines are said to cut or to intersect one
another at their intersection points.

Definition 4 Adjacency.-Lines whose unique common point is a common endpoint are said adjacent at that
common endpoint iff no point of any of them is a non-common endpoint of any of the others. Lines containing
all points of a given line, and only them, are said to make the given line.

Definition 5 Sidedness.-Adjacent lines containing all points of a given line, and only them, whose common
endpoint is a given point of the given line and whose non-common endpoints are the endpoints of the given line,
if any, are said sides of the given point in the given line.

Figure 1 – Left: A,B: endpoints of AB; C,D: endpoints of CD etc. AB, EF : locally collinear lines. AP,PS: lines
(segments) adjacent at P . AP,PB: sides of P in AB. QR: common segment of AB y EF . S is between A y Q; between
P and R etc. Right: self-closed lines.

Definition 6 Betweenness.-A point is said to be between two given points of a line, iff it is a point of that line
and each of the given points is in a different side of the point in that line.

Definition 7 Figures.- If any two points of a line are the common endpoints of only two segments of the line, the
line is said self-closed. Lines with self-closed segments are said self-intersecting. Self-closed and self-intersecting
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lines are also called figures.

Definition 8 Uniformity.-Lines whose segments have the same definition as the whole line are said uniform.
Two or more uniform lines are said mutually uniform iff any segment of any of them has the same definition
as any segment of any of the others.

Definition 9 Metricity.-Length (area) is an exclusive metric property of lines (figures) of which arbitrary units
can be defined. Lengths (areas) are said equal iff their corresponding operable values are equal. Lines (figures)
with a finite length (area) are said finite. If the sides of a point of a line have the same length, the point is said
to bisect the line.

Axiom 1 Point, line and surface are primitive concepts of which any number, and in any arrangement, can be
considered and drawn.

Axiom 2 A line has at least two points, at least one point between any two of its points, and at most two
endpoints, whether or not in the line.

Axiom 3 Two adjacent lines make a line, and a point of a line can be common to any number of any other
different lines, either collinear, or non-collinear, or locally collinear.

Axiom 4 Being not a figure, each point of a line, except endpoints, has just two sides in that line, whose lengths
are greater than zero and sum the length of the whole line.

Unless otherwise indicated, from now on all lines will be non-self-intersecting and closed at its endpoints, if any.

Corollary 1 The number of points of a line is greater than any given number.

✄ It is an immediate consequence of [Axs. 1, 2]. �

Corollary 2 Each side of a point, except endpoints, of a line is a segment of the line and both sides make the
line.

✄ Except endpoints, a point P of a line l [Ax.1, Cr. 1]

has two, and only two, sides in l [Ax. 4],

which are two lines adjacent at P [Df. 5]

containing all points of l, and only them [Df. 5].

So, each side is a segment of the line [Dfs. 5, 2],

and both sides make the line l [Ax. 3, Df. 4]. �

Corollary 3 Any point of a line is in one, and only in one, of the two sides of any other point, except endpoints,
of the line.

✄ Except endpoints, a point P of a line l [Ax.1]

has two, and only two, sides in l [Ax. 4].

Any other point of l [Cr. 1]

will be in one of such sides [Cr. 2],

and only in one of them, otherwise both sides would not be adjacent at P [Df. 4],

which is impossible [Dfs. 5, 4]. �

Corollary 4 A point is in a line with two endpoints iff, being not an endpoint of the line, it is between the
endpoints of the line.

✄ If a point P is between the two endpoints of a line AB [Axs. 1, 2, 4, Df. 6],

it is in AB [Df. 6].

If a point P is in a line AB and is not an endpoint of AB [Cr. 1],

it has just two sides in AB [Ax. 4],

whose respective non-common endpoints are the endpoints A and B of AB [Dfs. 5, 4].

So, P is between both endpoints A and B [Df. 6]. �

Note.-Unless otherwise indicated, from now on a point P of a line AB will be a point of AB between A and B.
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Corollary 5 Any two points of a line are the endpoints of a segment of the line. And the line has a number of
segments and a number of points between any two of its points greater than any given number.

✄ Let P and Q be any two points of a line l different from its endpoints, if any [Ax.1, Cr. 1].

Q has two sides in l [Ax. 4],

which are two lines l1 and l2 adjacent at Q [Df. 5]

that contains all points of l and only them [Cr. 2].

So, in one, and only in one, of such lines, for instance in l1, will be P [Cr. 3].

In turn, P has two sides in that side l1 of Q [Df. 5, Ax. 4],

the side PQ in which it is Q and the side in which it is not Q [Cr. 3].

PQ is a line [Df. 5]

all of whose points belong to l1 [Df. 5]

and therefore to l [Ps. C].

Hence, PQ is a segment of l [Df. 2].

Being P and Q any two of its points, l has a number of segments and a number of points between any two of
its points greater than any given number [Crs. 1, 4]. �

Corollary 6 A segment of a segment of a line, it is also a segment of that line.

✄ Let RS be a segment of a segment PQ of a line l [Ax.1, Cr. 5].

PQ is a line whose points belong to l [Df. 2].

RS is a line whose points belong to PQ [Df. 2],

and then to l [Ps. C].

So, RS is a segment of l [Df. 2]. �

Corollary 7 If a point is between two given points of a given line, it is also between the given points in any
other line of which the given line is a segment.

✄ Let R be a point of a segment PQ of a line l′ [Ax.1, Cr. 5],

which is a segment of another line l [Cr. 5].

Since PQ is a segment of l′, it is also a segment of l [Cr. 6].

So, R is a point of a segment PQ of l [Df. 2],

and then a point of l [Df. 2]

between P and Q [Cr. 4]. �

Corollary 8 (A variant of Hilbert’s Axiom II.2) At least one of any three points of a line is between the other
two.

Figure 2 – Corollary 8

✄ Let P , Q and R be any three points of any line l [Ax.1, Cr. 1].

At least one of them, for example* Q, will not be an endpoint of l [Ax. 2].

P can only be in one of the two sides of Q in l [Cr. 3]

R can only be in one of the two sides of Q in l [Cr. 3].

So, either P and R are in different sides of Q in l, or they are in the same side of Q in l. If P and R are in
different sides of Q in l (Fig. 2 (a)), then Q is between P and R in l [Df. 6].
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If not, P and R are in the same side of Q in l, which is a segment l′ of l [Cr. 2],

one of whose endpoints is Q [Df. 5].

If R is an endpoint of l′ (Fig. 2 (b)), P can only be between the endpoints Q and R of l′ [Cr. 4],

and then between Q and R in l [Cr. 7].

If R is not an endpoint of l′, it has two sides in l′ [Ax. 4]:

the side RQ in which it is Q, and the side in which it is not Q [Cr. 3].

If P is in RQ (Fig. 2 (c)), P is between R and Q in l′ [Cr. 4],

and then between R and Q in l [Cr. 7].

If P is in the side of R in l′ in which it is not Q (Fig. 2 (d)), then P and Q are in different sides of R in l′, and
R is between P and Q in l′ [Df. 6]

and then between P and Q in l [Cr. 7].

So, in all possible cases [Ax. 4, Cr. 3]

at least one of the three points is between the other two in l. �

Corollary 9 (Hilbert’s Axioms II.3, II.1) One, and only one, of any three points of a line is between the other
two.

✄ Let P , Q and R be any three points of any line l [Ax.1, Cr. 1].

At least one of them, for example* Q, will be between the other two, P and R, in l [Cr. 8],

in which case Q is a point of PR [Cr. 4].

So, Q has two sides in PR [Ax. 4],

which are two lines, QP and QR, adjacent at Q [Df. 5].

P cannot be between Q and R, otherwise it would be in QR [Cr. 4],

QP would be a segment of QR [Cr. 5],

all points QP [Cr. 1]

would be points of QR [Df. 2],

and QP and QR would not be adjacent at Q [Df. 4],

which is impossible [Df. 5].

For the same reasons R cannot be between P and Q either. Therefore, one [Cr. 8],

and only one, of any three points of a line is between the other two. �

Corollary 10 (a variant of Hilbert’s Axiom II.4) Of any four points of a line, two of them are between the
other two.

Figure 3 – Corollary 10.

✄ Let P , Q, R and S be any four points of a line l [Ax.1, Cr. 1].

Consider any three of them, for instance* P , Q and R. One, and only one, of them, for instance* Q, will be
between the other two, P and R [Cr. 9],

and Q will be in PR [Cr. 4].

Of the other three points P , R and S, one, and only one, of them will be between the other two [Cr. 9]:

if P is between S and R (Fig. 3 (a)), it is in SR [Cr. 4],

so that PR is a segment of SR [Cr. 5],

Therefore Q, which is in PR, is also in SR [Cr. 6].

So, Q and P are between R and S [Cr. 4].
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For the same reasons, if R is between P and S (Fig. 3 (b)) then Q and R are between P and S; and if S is
between P and R (Fig. 3 (c)), then Q and S are between P and R. So, in all possible cases [Ax. 4, Cr. 3]

two of the four points are between the other two. �

Corollary 11 Two segments can only be either collinear or non-collinear. And if a segment of a given line is
non-collinear with another segment of another given line, then both given lines are also non-collinear.

✄ Since belonging to is a reflexive relation [Ps. C]

and segments are lines [Df. 2],

any two segments l1 and l2 [Ax. 1]

belong to a line, even if the line is the own segment itself [Df. 2].

So, l1 and l2 will be either collinear, or non-collinear, or collinear and non-collinear. If they were collinear and
non-collinear they would be segments that belong to the same line l [Df. 2],

and segments that do not belong to the same line l [Df. 2],

which is impossible [Ps. C].

So, l1 and l2 can only be either collinear or non-collinear. Let now l′1 be a segment of a line l1, and l′2 another
segment of a line l2 [Cr. 5],

such that l′1 and l′2 are non-collinear [Df. 2].

If l1 and l2 were collinear, they would be segments of the same line l [Df. 2],

and being their respective segments l′1 and l′2 also segments of l [Cr. 6],

l′1 and l′2 would also be collinear [Df. 2],

which is not the case. Hence, l1 and l2 must also be non-collinear. �

Corollary 12 If two points of a line have a given property, and all points between any two points with the given
property have also the given property, then the line has a unique segment whose points are all points of the line
with the given property.

Figure 4 – Corollary 12.

✄ Let A and B be two points [Ax.1, Cr. 5]

with a given property (gp-points for short) of a line l such that all points of l between any two of its gp-points
are also gp-points. So, l has a number of gp-points greater than any given number [Cr. 5].

Let a segment whose points are gp-points, except at most its endpoints, be referred to as gp-segment. Any
gp-point C of l is at least in the gp-segment AC of l [Crs. 5, 4].

So, all gp-points of l are in gp-segments. If all gp-points of l were not in a unique gp-segment, they would be
in at least two gp-segments DE and FG of l [Cr. 5],

so that, being* E and F between D and G [Cr. 10],

DG is not a gp-segment. If so, there will be at least one point P between D and G that is not a gp-point. P

has two sides in DG, namely PD and PG [Ax. 4, Df. 5].

E must be in the side PD of P in DG in which it is D, otherwise it would be in the side PG of P in DG in
which it is not D [Cr. 3],

P would be between D and E [Df. 6],

it would be a point of DE [Cr. 4],

and being gp-points all points of DE, except at most D and E [Cr. 4],

P would be between any gp-point of DP and any gp-point of PE [Ax. 2],

and P would be a gp-point, which is not the assumed case. So, DE is a segment of the side PD of P in DG

[Crs. 5].
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For the same reasons, FG is a segment of the other side PG of P in DG. Hence, P is between any gp-point of
DE and any gp-point of FG [Df. 5].

It is then impossible for P not to be a gp-point, and for DG not to be a gp-segment. And l has a unique
gp-segment DG. �

Corollary 13 The length of a finite line is greater than the length of each of the sides of any of its points,
except endpoints, and it is greater than zero. The length of each side is equal to the length of the whole line
minus the length of the other side. And the length of a segment of the line is less than the length of the whole
line if at least one endpoint of the segment is not an endpoint of the line.

✄ Let P be a point of a finite line AB [Df. 9, Axs. 1, 2].

Assume the length AP is not less than the length AB. It will be AP ≥ AB [Ps. A],

and being AB = AP + PB [Ax. 4],

it would hold AP ≥ AP + PB [Ps. A].

Hence, 0 ≥ PB [Ps. B],

which is impossible [Ax. 4].

So, it must be AP < AB [Ps. A].

And for the same reasons PB < AB. Therefore, and being 0 < PB [Ax. 4],

it holds 0 < AB [Ps. B].

So, the length of any line is greater than zero. And from AP + PB = AB [Ax. 4],

it follows immediately AP = AB − PB; PB = AB −AP [Ps. B].

Let now Q be any point of AB different from P [Crs. 1].

It will be in one, and only in one, of the sides of P in AB [Cr. 3],

for instance* in AP . It has just been proved that AP < AB. If Q were the endpoint A of AP we would have
QP = AP [Ps. A].

If not, and for the same reasons above, it will be QP < AP . So, we can write QP ≤ AP , and then QP < AB

[Pss. B, A].

Therefore, the length of a segment of AB is less than AB if at least one if its endpoints P is not an endpoint
of AB. �

3.2 Fundamentals on straight lines

Definition 10 Extensible lines.-To produce (extend) a given line by a given length is to define a line, said
production (extension) of the given line, so that the production is adjacent to the given line, has the given
length, and the production and the produced line are lines of the same class as the given line. Lines that can be
extended from each endpoint and by any given length are called extensible lines.

Definition 11 Straight lines: extensible and mutually uniform lines that can neither be locally collinear nor
have non-common points between common points.

Definition 12 Straightness.-Three or more points are said to be in straight line with one another iff they are
in the same straight line, whether or not produced. A point is said in straight line with a given straight line iff
it is in straight line with at least two points of the given straight line, whether or not produced. Only the straight
segments of the same straight line, whether or not produced, are said to be in straight line with one another.
Otherwise it is said that they are not in a straight line.

Axiom 5 Any two points can be the endpoints of a straight line, and only both points are necessary to draw the
straight line.

Corollary 14 A segment of a straight line is also a straight line.

✄ It is an immediate consequence of [Ax. 5, Dfs. 11, 8]. �

Corollary 15 (Strong form of Euclid’s First Postulate) Any two points can be the endpoints of one, and only
of one, straight line.

✄ Assume two different straight lines l1 and l2 have the same endpoints A and B. At least one of them will have
a point which is not in the other [Df. 2].
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And they would have at least one non-common point between the two common points A and B, which is
impossible [Df. 11].

So, any two points can be the endpoints of one [Ax. 5],

and only of one, straight line. �

Note.-Unless otherwise indicated, hereafter, to join two points will mean to consider and draw the unique
straight line whose endpoints are both points.

Corollary 16 (Strong form of Euclid’s Second Postulate) There is one, and only one, way to produce a given
straight line by any given length and from any of its endpoints, being the produced line a straight line; and the
given straight line and its production, adjacent straight lines in straight line with each other.

Figure 5 – Corollary 16.

✄ Let AB be any straight line [Ax. 1, Cr. 15].

AB can be produced from any of its endpoints, for example* from B, by any given length [Dfs. 11, 10]

to a point C, so that BC and AC are straight lines [Dfs. 11, 10, 4],

and AB and BC are adjacent segments [Dfs. 11, 10].

Assume AB can be produced from B by the same given length to another point C′. The straight lines AC,
AC′ [Dfs. 11, 10]

would have a common segment AB [Cr. 5];

they would be collinear since they cannot be locally collinear [Dfs. 11, 3, Cr. 11];

and BC and BC′ would be two segments of the same line l [Cr. 5],

both adjacent at B to AB [Ax. 5, Df. 10],

and so with a common endpoint B. And being C and C′ different points of the same line l, one of them, for
example* C′, would be between B and the other in l [Cr. 9],

and we would have BC′ < BC [Cr. 13],

which is not the case. So, C′ can only be the point C. And being BC a straight line [Dfs. 11, 10, 4],

it is the unique straight line joining B and C [Cr. 15].

So, there is a unique way of producing a straight line by a given length from any of its endpoints. And AB and
BC are the unique straight lines joining respectively A with B and B with C [Cr. 15],

and being A, B and C points of the straight line AC [Dfs. 12, 11, 8,

the straight lines AB and BC are segments of the same straight line AC [Dfs. 2, 4].

Therefore, the straight lines AB and BC are in straight line with each other [Df. 12]. �

Corollary 17 Through any two points, any number of collinear straight lines of different lengths can be drawn.

✄ It is an immediate consequence of [Df. 2, Crs. 15, 16]. �

Corollary 18 Two straight lines with two common points belong to the same straight line.

✄ Let AB and CD be two straight lines with two common points P and Q [Cr. 17].

Consider one of them, for instance* AB. Every point R of AB is in straight line with two points, P and Q, of
CD [Df. 12].

Therefore, every point R of AB belongs to CD, whether or not produced [Df. 12].

In consequence, AB is a segment of CD, whether or not produced [Df. 2, Cr. 16].

Hence, AB and CD belong to the same straight line: CD or a production of CD [Cr. 16]. �

Corollary 19 Being in a straight line is a transitive relation of straight lines.

✄ Suppose that a straight line AB is in a straight line with another straight line CD, which in turn is in a straight
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line with another straight line EF . AB and CD belong to a straight line r1. CD and EF belong to a straight
line r2 [Df. 12].

Since CD belongs to r1 and r2, the straight lines r1 and r2 have two common points C and D, so they belong
to the same straight line r3 [Cr. 18].

Consequently, AB and EF belong to the same straight line r3, and they are in a straight line [Ps. C, Df. 12].
�

Corollary 20 If a point is in straight line with a given straight line then it is in straight line with any two
points of the given straight line.

✄ Let l be any straight line [Cr. 15].

A point P in straight line with l is in straight line with at leas two points Q y R of l, produced or not [Df. 12,
Cr. 16].

So, P , Q y R belongs to l, produced or not [Df. 12, Cr. 16].

And being a point of l, P belongs to the same straight line l as any couple of points of l; and P is in straight
line with them [Df. 12]. �

Corollary 21 Any point between the endpoints of a given straight line can be common to any number of
intersecting straight lines not in straight line with the given straight line, and that point is the only common
point of those straight lines and the given straight line, even arbitrarily producing them and the given straight
line.

✄ Any point P between the endpoints of a straight line AB [Ax. 1, Cr. 15]

can be common to any number n of non-collinear straight lines [Ax. 3],

which being non-collinear are not in straight line with the given straight line AB [Dfs. 12, 2].

Assume there is a second common point Q of AB and of any one of those n intersecting straight lines l, whether
or not producing AB and l [Cr. 16].

Both straight lines would belong to the same straight line [Cr. 18],

which is not the case, because they are non-collinear [Df. 3].

Therefore, P is the only intersection points of AB and each of those n intersecting straight lines, even arbitrarily
producing AB and any of the n intersecting straight lines. �

Corollary 22 There is a number of points greater than any given number that are not in straight line with any
two given points, or with a given straight line.

✄ Let A and B be any two points [Ax. 1].

Join A and B [Cr. 15],

and let PC be a straight line non-collinear with AB that intersects AB at P [Cr. 21].

P is the only common point of both straight lines even arbitrarily produced [Cr. 21].

So, PC has a number of points greater than any given number [Cr. 1]

none of which, except P , is in straight line with A and B because none of them belong to AB, produced or not
[[Df. 12].

On the other hand, if AB is any straight line, it has just been proved there is a number greater than any given
number of points that are not in straight line with the points A and B. So, there is a number greater than any
given number of points that are not in straight line with AB [Cr. 20]. �

Corollary 23 Each endpoint of a given straight line can be the common endpoint of any number of adjacent
straight lines not in straight line with the given straight line.

✄ Let AB be any straight line [Ax. 1, Cr. 15].

There is a number greater than any given number of points not in straight line with AB [Cr. 22].

Join each of them with, for instance*, the endpoint A of AB [Cr. 15].

Each of these straight lines are adjacent at A to AB [Df. 4].

If any of them, for instance* AP , were in straight line with AB, they would be segments of the same straight
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line l [Df. 12],

P , A y B would be points of that straight line l [Df. 2],

P would be in straight line with A and B [Df. 12],

and then with AB [Df. 12],

which is not the case. �

Corollary 24 If two adjacent straight lines are not in straight line, then no point of any of them, except their
common endpoint, is in straight line with the other. And by producing any of them from their common endpoint,
the production is also adjacent to the non-produced one.

✄ Let AB and AC be two straight lines adjacent at A and not in straight line with each other [Cr. 23].

Let P be a point of, for instance*, AB [Cr. 1].

A, P and B belong to AB. So, if P were in straight line with AC, it would be in straight line with A and C

[Cr. 20],

and it would also belong to AC, whether or not produced [Df. 12].

In such a case AB and AC would have two common points, A and P , they would be segments of the same
straight line [Cr. 18],

and they would be in straight line with each other [Df. 12],

which is not the case. So, P is not in a straight line with AC.

If AQ is any production from A, for example* of AB, AQ is adjacent to AB and is in a straight line with AB

[Cr. 16].

The common endpoint A is the only common point of AQ and AC, otherwise they would have at least two
common points; and AQ and AC would be segments of the same straight line [Cr. 18],

and, consequently, AC and AB would also be in a straight line with each other [Cr. 19],

which is not the case. So, AQ and AC are also adjacent at A [Df. 4]. �

3.3 Fundamentals on planes

Definition 13 Plane: a surface that contains at least three points not in straight line and any straight line
through any two of its points. A line is said in a plane iff all of its points are points of the plane. Lines in a
plane are said plane lines. Points, or lines, or points and lines in the same plane are said coplanar. Two planes
are said different if at least one of them has a point that is not in the other.

Definition 14 Sides of a given straight line in a plane: parts of the plane that contain all points of the plane,
and only them, each part with at least two common points and at least two non-common points, where a point
is said common, or common to all parts, if it is in straight line with the given straight line; and non-common if
it is not, being said non-common of a part iff it is in that part. Any other straight line is said to be in one of
those parts iff all of its points between its endpoints are non-common points of that part.

Axiom 6 Any three points lie in a plane, in which any straight line has two, and only two, sides. Any other
straight line is in one of such sides iff its endpoints are in that side.

Corollary 25 (A variant of Hilbert’s Axiom I.5) A plane has a number of points greater than any given number,
any two of which can be joined by a unique straight line in that plane. And any given straight line is at least in
a plane, in which it can be produced by any given length from any of its endpoints.

✄ Let P , Q and R be any three points not in straight line [Cr. 22],

and Pl a plane in which they lie [Ax. 6].

Pl has at least the points P , Q and R and all points of any straight line [Cr. 1]

through any two of its points [Dfs. 13, Ax. 5, Cr. 17].

So, Pl has a number of points greater than any given number [Cr. 1].

Let, then, A and B be any two points of Pl. Join A and B [Cr. 15],

and produce AB from A and from B by any given length to the respective points A′ and B′ [Cr. 16].

Since A′B′ is a straight line [Cr. 16]

through two points A and B [Df. 2, Cr. 17]
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of Pl, A′B′ is in Pl [Df. 13],

so that all points of A′B′ are in Pl [Df. 13],

and then all points of its segment AB are in Pl [Df. 2, Cr. 5].

Hence, Pl contains the unique straight line joining any two of its points A and B [Crs. 14, 15].

Let now AB be any straight line [Ax. 1, Cr. 15],

and P , Q and R any thee of its points between A and B [Cr. 1].

There is a plane Pl containing P , Q and R [Ax. 6],

and the straight line AB through P and Q is in Pl [Df. 13].

Produce AB from A and from B by any given length to the points A′ and B′ respectively [Cr. 16].

Since the produced straight line A′B′ is a straight line [Cr. 16]

through two points A and B [Cr. 17]

of Pl, it is a straight line of Pl [Df. 13]. �

Corollary 26 A point of a plane can only be either common to both sides of a straight line in that plane, or
non-common of one, and only of one, of such sides.

✄ Let A and B be any two points of a plane Pl [Ax. 6].

Join A and B [Cr. 15].

AB is in Pl [Cr. 25].

Let P be any point of Pl. Either P belongs to AB, whether or not produced [Cr. 16],

or it does not [Ps. C].

If P belongs to AB, whether or not produced [Cr. 16],

P is a point common to both sides of AB [Ax. 6, Df. 14].

If P does not belong to AB [Df. 14],

whether or not produced [Cr. 16],

P cannot be in both sides of AB [Df. 14],

and being a point of Pl, it can only be in one, and only in one, of the two sides of AB [Df. 14, Ax. 6].

So, it is a non-common point of that side, and only of it [Df. 14]. �

Corollary 27 There is a plane containing any two adjacent straight lines not in straight line with each other,
being each of them in the same side of the other. And there is a plane containing any two intersecting and
non-adjacent straight lines.

✄ Let AB and AC be two straight lines adjacent at A and not in straight line with each other [Cr. 23].

A, B and C are not in straight line [Cr. 24],

So, there is a plane in which lie A, B and C [Ax. 6]

and the adjacent straight lines AB and AC [Cr. 25].

The common endpoint A is a common point of both sides of AC [Df. 14],

B is not in straight line with AC [Cr. 24],

so it is a non-common point of one of the sides of AC [Df. 14].

Therefore AB is in that side of AC [Ax. 6].

For the same reasons AC is in one of the sides of AB. Let now l1 and l2 be any two non-adjacent straight lines
that intersect at a unique point P [Cr. 21],

Q a point of l1, and R a point of l2 [Cr. 1].

There is a plane containing P , Q and R [Ax. 6],

the straight line l1 through Q and P [Cr. 17, Df. 13],

and the straight line l2 though R and P [Cr. 17, Df. 13]. �
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Corollary 28 All points between two points of a straight line in the same side of a given straight line lie in
that side of the given straight line, and that side has a number of non-common points greater than any given
number.

✄ Let l be a straight line in a plane Pl [Cr. 25]

and P and Q be any two non-common points in the same side Pl1 of l [Ax. 6, Df. 14].

Join P and Q [Cr. 15].

PQ is in Pl1 [Ax. 6].

All points between P and Q are non-common points of Pl1 [Df. 14].

So, Pl1 has a number of non-common points greater than any given number [Cr. 1]. �

Corollary 29 In a plane and in each side of a straight line in that plane, it is possible the existence of a number
greater than any given number of straight lines, whether or not adjacent, none of which is in straight line with
any of the others.

Figure 6 – Corollary 29✄ (Fig. 6, left) Let A, B and C be any three points not in straight line [Cr. 22],

and Pl a plane in which they lie [Ax. 6].

Join A and B [Cr. 15]

and let Pl1 and Pl2 be the two sides of AB in Pl [Ax. 6].

C will be a non-common point [Df. 14]

of, for example*, Pl1 [Cr. 26].

Join C with A and with B [Cr. 15].

CA and CB are not in straight line, otherwise A, C and B would be in straight line [Df. 12],

which is not the case. Join each of any number n of points of CA between C and A with a different point of
CB between C and B [Crs. 5, 15],

and let DE and FG be any two of such straight lines, D and F in* CA; and E and G in* CB. The straight
lines DE and FG cannot be in straight line with each other, otherwise they would be segments of the same
straight line [Df. 12],

and D, E, F and G would be in that straight line [Df. 2],

so that D would be in straight line with E and G, and then with CB [Df. 12],

which is impossible [Cr. 24].

The same argument applies to the n straight lines joining the same point H of CA between A and C (Fig. 6,
right) with n different points of CB between C and B [Crs. 5, 15],

being all of these straight lines adjacent at H [Df. 4].

Since CA and CB are in Pl1 [Ax. 6],

all of these straight lines in Pl, whether or not adjacent, have their respective endpoints on Pl1 [Df. 14],

so that all of them are in Pl1 [Ax. 6]. �

Corollary 30 The intersection point of two intersecting straight lines has its two sides in each of the intersecting
straight lines in different sides of the other intersecting straight line in the plane that contains both straight lines.

✄ (Fig. 7) Let P be the unique intersection point of two straight lines [Cr. 21]

AB and CD in a plane Pl [Cr. 27].

Since the only points of Pl common to both sides of CD in Pl are the points in straight line with CD [Df. 14],
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Figure 7 – Corollary 30

and P is the only common point of AB and CD, even arbitrarily produced [Crs. 16, 21],

P is the only point of AB in straight line with CD [Df. 12],

and therefore the only point of AB that is a common point of both sides of CD in Pl [Df. 14].

Therefore, the endpoints A and B can only be non-common points of the sides of CD in Pl [Df. 14, Cr. 26].

So, if PA and PB were in the same side of CD in Pl, the endpoints A and B would be non-common points of
that side [Ax. 6],

and being P between them [Cr. 4],

P would also be a non-common point of that side [Cr. 28],

which is impossible because it is a common point of both sides [Cr. 26].

So, A and B must be in different sides of CD in Pl [Cr. 26],

and the sides PA and PB of P are on different sides of CD in Pl [Ax. 6].

The same argument proves PC and PD can only be in different sides of AB in Pl. �

Corollary 31 The straight line joining any two non-common points, each in a different side of another given
coplanar straight line, intersects the given straight line, or a production of it, at a unique point.

Figure 8 – Corollary 31

✄ (Fig. 8) Let Pl1 and Pl2 be the two sides of a line l in a plane Pl [Cr. 25, Ax. 6].

Let A be a non-common point of Pl1, and B be a non-common point of Pl2 [Cr. 28].

Join A and B [Cr. 15].

AB is in Pl [Cr. 25].

Except A and B, all points of AB are between A and B [Cr. 4].

If all points of AB between A and B were non-common points of Pl1, AB, including B, would be in Pl1 [Df.
12, Ax. 6],

which is not the case. Therefore, AB contains points of Pl2 other than B; and, for the same reason, points of
Pl1 other than A [Cr. 1].

So, AB has at least two points in each side of l. Since all points between two points of a straight line in the
same side of another coplanar straight line are also in that side [Cr. 28],

AB has a segment AC whose points are all points of AB in Pl1 [Cr. 12].

And for the same reasons it also has a segment BD whose points are all points of AB in Pl2 [Cr. 12].

If C and D were different points, all points of AB between C and D [Cr. 5]

would be in no side of l in Pl, which is impossible because all points of AB are points of Pl [Df. 13],

and all points of Pl are points either of Pl1, or of Pl2, or of both of them [Ax. 6, Df. 14].

So, C and D are the same point. Since all points between A and C are in Pl1, AC is in Pl1 [Df. 14],
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and C is also in Pl1 [Ax. 6].

For the same reasons D is in Pl2. Since C and D are the same point, and this point belongs to Pl1 and to Pl2,
it is a point of l, whether or not produced [Cr. 16, Df. 14].

So, it is an intersection point of AB and l [Df. 3]

whether or not produced [Cr. 16].

And it is the unique intersection point of AB and l, otherwise the non-common point A of Pl1 would be in
straight line with at least two points of l and it would be a common point of Pl1 and Pl2 [Dfs. 14, 12],

which is impossible [Cr. 26]. �

Corollary 32 A plane contains at least two non-intersecting straight lines, which can be intersected by any
number of different coplanar straight lines.

✄ Let l be a straight line in a plane Pl [Cr. 25],

Pl1 and Pl2 the two sides of l in Pl [Ax. 6],

A, B any two non-common points of Pl1, and C, D any two non-common points of Pl2 [Cr. 28].

Joint A with B; and C with D [Cr. 15].

AB is in Pl1, and CD in Pl2 [Ax. 6].

AB and CD cannot intersect with each other because the intersection point would be a common point of Pl1
and Pl2 [Df. 14],

while all points of AB and CD, even endpoints, are non-common points respectively of Pl1 and of Pl2 [Df. 14,
Ax. 6].

On the other hand, AB and CD can be intersected by any number n of straight lines in Pl, each joining each
of any n points of AB with a point of CD [Crs. 1, 15, 25]. �

3.4 Fundamentals on distances

Definition 15 Distance between two points: length of the straight line joining both points.

Definition 16 Distance from a point not in a given line to the given line: the shortest distance between the
point and a point of the given line, or of a production of the given line if the given line is a straight line and
the point is not in straight line with it.

Definition 17 Distancing direction and relative distancing.-Two non-common points in the same side of a
given coplanar straight line and at different distances from the given straight line define a distancing direction
in the straight line joining both points with respect to the given straight line: from the nearest to the farthest of
them. The difference between the distances to the given straight line from the endpoints of a segment of another
straight in the same side of the given straight line is called relative distancing of the segment with respect to the
given straight line.

Definition 18 Parallel straight lines.-A straight line is said parallel to another coplanar straight line, iff all of
its points are at the same distance, said equidistance, from the other straight line.

[Pr. 38] proves the existence of parallel straight lines. According to [Df. 15], the length of a straight line AB

and the distance from A to B will be used as synonyms.

Axiom 7 The distances from the points of a line to a fixed point or to another line vary in a continuous way.
The distance from a point to itself and to a line to which it belongs are zero.

Corollary 33 The distance between any two given points is unique.

✄ It is an immediate consequence of [Cr. 15, Df. 15, Ax. 7]. �

3.5 Fundamentals on circles

Definition 19 Circle: a plane self-closed and non-self-intersecting line whose points are all points of the plane,
and only them, at the same given finite distance, said radius, from a fixed point of that plane, said centre of the
circle. A straight line joining any point of the circle with its centre is also said a radius of the circle. A segment
of a circle is called arc, and the straight line joining its endpoints is a chord, or straight line subtending the
arc. If the center of the circle is a point of a chord, the chord is said a diameter, and the corresponding arc a
semicircle. Coplanar circles, and their corresponding segments, with the same centre are said concentric. The
centre and any coplanar point at a distance from the centre less than its radius are said interior to the circle; if
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that distance is greater than the radius of the circle, the coplanar point is said exterior to the circle.

Axiom 8 Any point of a plane can be the centre of a circle of any finite radius, being all points of any of its
arcs in the same side of its corresponding chord.

Corollary 34 A circle has interior points, other than its centre, and exterior points. And any point coplanar
with a circle is either in the circle, or it is interior or exterior to the circle.

✄ Let O be the centre of a circle c in a plane Pl [Ax. 8],

and A any point of c [Df. 19].

Joint A with O [Cr. 15].

Produce OA from A by any given finite length to a point A′ [Cr. 16].

OA′ is in Pl [Cr. 25].

Let P be any point of OA [Cr. 5].

Since OP < OA and OA < OA′ [Cr. 13],

P is interior and A′ is exterior to c [Dfs. 15, 19].

Join now any point R of Pl with O [Crs. 15, 25].

It holds RO T OA [Ps. A],

and R will be either in c (RO = OA), or it will be interior (RO < OA) or exterior (RO > OA) to c [Dfs. 15,
19]. �
Corollary 35 A plane line intersects a coplanar circle at a point between its endpoints iff it has points interior
and exterior to the circle.

Figure 9 – Corollary 35

✄ Let O be the centre and AO the finite radius of a circle c [Ax. 8]

in a plane Pl; BC a plane line in Pl [Df. 13, Ax. 6],

and P and Q two points of BC [Cr. 1]

such that P is interior and Q exterior to c [Cr. 34].

Being P interior to c, its distance to O is less than AO [Df. 19].

Being Q exterior to c, its distance to O is greater than AO [Df. 19].

Therefore, there will be at least one point R in PQ, and then in BC [Cr. 1, 2],

whose distance to O is just AO [Ax. 7, Df. 2].

And R will also be in c [Df. 19].

So, R is an intersection point of BC and c [Df. 3].

On the other hand, if all points of a plane line BC are interior (exterior) to c, none of its points is at a distance
AO from O [Df. 19],

and then no point of BC is in c [Df. 19].

Therefore c and BC have no point in common, and they do not intersect with each other [Df. 3]. �
Corollary 36 Any point of a circle defines a unique diameter and two unique semicircles, each on a different
side of the diameter.

✄ Let O be the centre and AO the finite radius of a circle c [Ax. 8],

and let P be any of its points [Cr. 1].
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Figure 10 – Corollary 36

Join P with the centre O of c [Cr. 15],

and produce PO from O by any given length greater than OA to a point P ′ [Cr. 16].

Since OP ′ > OA, PP ′ is a straight line with points interior, as any point of OP , and exterior, as P ′, to c [Cr.
16, Df. 19],

PP ′ intersects c at a point Q [Cr. 35].

Since O is a point of PQ and PQ is unique [Cr. 15],

PQ is the unique diameter defined by P [Df. 19].

And being c a self-closed line, P and Q are the common endpoints of two semicircles of c [Dfs. 4, 19, Ax. 8],

each on a different side of its diameter PQ [Ax. 8]. �

3.6 Fundamentals on angles

Definition 20 Rigid transformations of lines: metric and reversible displacements of lines that preserve the
definition and the metric properties of the displaced lines, each of whose points moves from an initial to a final
position along a fixed finite line called trajectory, in any of the two opposite directions defined by the endpoints
of the trajectory. If all points of the displaced line, except at most one, move around a fixed point and their
trajectories are arcs of concentric and coplanar circles whose centre is the fixed point, the rigid transformation
is called rotation.

Definition 21 Superpose two adjacent lines: to place them with at least two common points by means of
rotations around their common endpoint. Lines with at least two common points are said superposed.

Definition 22 Angle.-Two straight lines are said to make an angle greater than zero iff they are adjacent, one
of them can be superposed on the other by two opposite rotations around their common endpoint, and the other
can be superposed on the one by the same two rotations, though in opposite directions. The least of the rotations,
of both if they are equal, is said (convex) angle, the greater one is said concave angle. The angle is said to be
in the side of one of the adjacent straight lines where the other adjacent straight line lies. The straight lines
and their common endpoint are said respectively sides and vertex of the angle. A side is said to make an angle
with the other side at their common vertex. A line joining a different point on each side of the angle is said to
subtend the angle, its points are called interior to the angle. The non-interior points are called exterior to the
angle.

Definition 23 Adjacent angles and union angle.-Two angles are said adjacent iff they have the same vertex,
a common side, the first angle superposes its non-common side on the common side, and the second angle
superposes the common side on its non-common side, both angles in the same directions of rotation. The angle
that superposes the non-common sides of both angles in the same direction of rotation of both angles is their
union angle, which can be concave. If two adjacent angles are equal to each other, they are said to bisect their
union angle.

Definition 24 Straight angle.-Except endpoints, the angle that make the two sides of a point of a straight line
at their common endpoint is said straight angle.

Definition 25 Acute, obtuse and right angles.-If a straight line cuts another given straight line and makes with
it at the intersection point two adjacent angles that are equal to each other, both angles are said right angles, in
which case, and only in it, the two sides of each angle are said perpendicular to each other, and the first straight
line is also said perpendicular to the given one. Angles less (greater) than a right angle are said acute (obtuse).

Definition 26 Interior and exterior points and angles.-If two given coplanar straight lines are intersected by
another coplanar straight line, said common transversal, a point of this transversal, different from the intersec-
tion points, is said interior to the given straight lines if it is between the intersection points of the transversal
with both given straight lines; otherwise it is said exterior to them. Of the angles that a common transversal
makes with the two given coplanar straight lines at their intersection points, those whose sides in the transversal
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have only exterior points are said exterior angles; and those whose sides in the transversal have interior points
are said interior angles.

Definition 27 Alternate, corresponding and vertical angles.-Of the angles that a common transversal makes
with two coplanar straight lines, the angles of a couple of non-adjacent angles are said alternate if they are both
interior, or both exterior, and they are in different sides of the transversal; and corresponding if they are in the
same side of the transversal, being the one interior and the other exterior. Of the angles that two intersecting
straight lines make with each other at their intersection point, the couples of angles with no common side are
said vertical angles.

Axiom 9 It is possible for two adjacent straight line to make any angle at their common endpoint. The angle
is zero iff both straight lines are superposed.

Corollary 37 Two straight lines make an angle greater than zero iff they are adjacent, being equal and unique
the angle that each of the straight lines make with the other at their common endpoint, both rotations in opposite
directions. And the adjacency point is their only common point, even arbitrarily produced from their non-common
endpoints.

✄ Each of two coplanar adjacent straight lines [Cr. 27],

makes with the other the same angle greater than zero at their common endpoint, though in opposite directions
[Df. 22, Ax. 9].

And being a metric transformation, that angle is unique [Dfs. 20, 3].

Moreover, the only common point of both sides, even arbitrarily produced from their non-common endpoints
[Cr. 16],

is the vertex of the angle, otherwise both sides would be superposed [Df. 21],

and they would make an angle zero [Ax. 9].

which is not the case. On the other hand, if two straight lines make an angle zero they will be superposed [Ax.
9]

and they will not be adjacent [Dfs. 21, 4]. �

Corollary 38 The superposition by rotation of two adjacent straight lines around their common endpoint is a
unique straight line.

✄ It is an immediate consequence of [Df. 21, Cr. 18]. �

Corollary 39 An angle does not change by producing arbitrarily its sides from their non-common endpoints.

✄ Let AB and AC be two adjacent straight lines [Cr. 27]

that make an angle α > 0 at their common endpoint A [Cr. 37].

Apart from the common endpoint A, the angle α superposes at least one point P of AB with a point Q of AC
[Dfs. 21, 22].

Produce AB from B and AC from C by any given length respectively to the points B′ and C′ [Cr. 16].

A is a common point of AB′ y CD′; and P and Q are also points respectively of AB′ and AC′ [Cr. 16, Df. 2],

Therefore, the rotation α superposes AB′ and AC′ [Df. 21].

Suppose that a rotation α′ smaller than α superposes two points R and S respectively of AB′ and AC′ but does
not superposes AB and AC. The point R could not be between A and P ; nor S between A and Q, otherwise
α′ would superpose AB and AC [Df. 21],

which is not the considered case. Therefore P is between A and R; and Q is between A and S [Cr. 8].

We would then have two straight lines with non-common points, P and Q, between two common points, the
point A and the superposed R and S, which is impossible [Df. 11].

So, AB′ and AC′ also make at A an angle α. �

Corollary 40 Three adjacent straight lines define three angles at their common endpoint. And two intersecting
straight lines define with each other at most four angles at their intersection point.

✄ Three coplanar straight lines AB, AC and AD adjacent at the same point A [Cr. 29]

define three couples of coplanar straight lines adjacent at that point: AB,AC; AB, AD; and AC, AD [Df. 4].
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So, AB, AC and AD define three angles at that point A [Cr. 37].

For the same reason, two intersecting straight lines define at most four angles whose two sides are not in the
same straight line. �

Corollary 41 (Fig. 11) Three straight lines adjacent at the same point define a couple of adjacent angles at
that point.

Figure 11 – Corollary 41

✄ Three straight lines r1, r2, r3 adjacent at V define three angles α, β and γ at V [Cr. 40],

and then three couples of angles: α and β; α and γ; and β and γ. Being only three sides, the two angles of each
of such couples must have a common side [Df. 22].

The angles of such couples that superpose their common side on their respective non-common sides can only
be rotations in the opposite sense, or in the same sense [Dfs. 1, 20].

In the first case (Fig. 11, left), the angles of the couple, for instance α and β, are adjacent because either of
them also superposes its non-common side on the common side in the same direction as the other superimposes
the common side on its non-common side [Dfs. 22, 23].

In the second case (Fig. 11, right), let r1 be the common side of α and β. Assume α superposes r1 on r2; β
can only superpose r1 on r3; and it will be different from α otherwise r2 would be superposed on r3 and they
would not be adjacent [Dfs. 21, 4].

Since α and β are different, one of them, for instance α, will be less than the other [Ps. A],

in which case γ can only be the angle that, in the same direction of rotation as α, superposes r2 on r3. So, α
and gamma are adjacent [Df. 23].

So, in any case three straight lines adjacent at the same point define a couple of adjacent angles at that point.
�

Corollary 42 Two adjacent straight lines make a straight line iff they make a straight angle at their common
endpoint.

✄ If two adjacent straight lines l1 and l2 [Cr. 27]

make at their common endpoint P a straight angle, they are the two sides of the point P in a straight line l

[Df. 24],

so that l1 and l2 make the straight line l [Cr. 2].

If two straight lines l1 and l2 adjacent at P make a straight line l, l1 and l2 are the sides in l of their common
endpoint P [Df. 5]

so that they make a straight angle at P [Df. 24]. �

Corollary 43 Except for the vertex, no point of either side of an angle is in straight line with the other side of
the angle if the angle is not an straight angle and is greater than zero.

✄ It is an immediate consequence of [Ax. 9, Crs. 42, 24] �

3.7 Fundamentals on polygons

Definition 28 Polygon.-Three or more finite coplanar straight lines, called sides, each of which is adjacent at
each of its two endpoints, called vertexes, to just one of the others, being not in straight line with each other,
and being their common endpoints their only intersection points, are said to make a polygon. Two sides of the
same or of different polygons are said equal iff they have the same length. Two polygons are said adjacent iff
they have a common side; opposite iff they have two opposite angles at a common vertex; similar iff the angles
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of the one are equal to the angles of the other; and equal if they are similar and the sides of each angle of the
one are equal to the sides of the corresponding equal angle of the other. Polygons with at least one concave angle
are said concave. The angle each side makes with the production of another adjacent side is said exterior. A
straight line joining two points each on a different side of a polygon is a divisor of the polygon; if the ends of a
divisor are vertexes, the divisor is called diagonal. A divisor bisects a polygon if it is the common side of two
adjacent polygons with the same area.

Note.-The classical definition of diagonal is a particular case of the above general definition of divisor.

Definition 29 Triangles and quadrilaterals. A polygon of three (four) sides is a triangle (quadrilateral). A
triangle (quadrilateral) is said equilateral if its three (four) sides are equal to one another. A triangle is said
isosceles if it has two equal sides; and scalene if the three of them are unequal. If one of its angles is a right
angle, it is said a right-angled (or simply right) triangle. A rectangle is a quadrilateral all of whose angles are
right angles. An equilateral rectangle is a square. And a parallelogram is a quadrilateral with two couples of
equal and parallel sides. Polygons with more than four sides are named pentagons, hexagons, heptagons etc. A
polygon is said to lie between two given lines iff its vertexes are in the given straight lines or in straight lines
whose endpoints are points of the given straight lines.

Axiom 10 The area of a polygon is greater than zero, and is the sum of the areas of the two adjacent polygons
defined by any of its divisors. Equal polygons have equal areas.

Corollary 44 Any two adjacent sides of a polygon make an angle greater than zero at their common endpoint,
and the polygon has as many angles as sides. And twice as many exterior angles as angles.

✄ Being coplanar all sides of a polygon [Df. 28],

each couple of its adjacent sides makes a unique angle greater than zero at their common endpoint [Cr. 37].

So, the polygon has as many angles as couples of adjacent sides. Since each couple of adjacent sides is defined
by two adjacent sides, and each side defines two of such couples, one at each of its two endpoints [Df. 28],

the polygon has as many angles as sides. And since each side makes an exterior angle with the production of
each of the other two adjacent sides at each of its two vertices [Df. 28],

the polygon has twice as many exterior angles as angles. �
The last element of this new foundational basis of Euclidean geometry is the following corollary, which is not
strictly geometric because the proof makes use of some basic results of set theory. Although the proof is simple,
and the reader will surely know all involved concepts, the theorem can be omitted and its statement considered
as an additional hypothesis: the length of a line is finite as long as it has two well-defined endpoints.

Corollary 45 In the Euclidean space R3, the length of a line with two endpoints is always finite. And the
distance between any two given points is always finite and unique.

Figure 12 – Proposition 0

✄ Let AB be any line in any metric space. Let P = AP1, P1P2, P2P3 . . . be a partition of AB all of whose parts
have the same finite length λ > 0, except the last one, if any, that can be less than λ. A point X such that
XB < λ will belong to a part that can only be the last part or the penultimate part of P [Cr. 13].

So, P has a last part PφB. Any point Y of the segment APi and any point Z of the segment PiB such that
Y Pi < λ, PiZ < λ can only belong respectively to the parts Pi−1Pi and PiPi+1 of P, for all 1 < i < φ [Cr. 13].

Therefore, each part of P has an immediate predecessor (except the first AP1), and an immediate successor
(except the last PφB). And any subset of P containing any part PvPv+1 will also contain a first part: one of the
parts AP1, P1P2, P2P3, . . . PvPv+1. So P is a well ordered set to which an ordinal number α can be assigned
[2, p. 152].

Assume that, being n < φ, there exists an nth part of P with a finite number of predecessors. The (n + 1)th
part of P will also have a finite number n+ 1 of predecessors (Peano’s Axiom of the Successor [4]). Since P1P2
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has a finite number of predecessors, it can be inductively inferred that each part of P, including its last part
PφB, has a finite number of predecessors. Thus, α can only be finite.

Furthermore, if α were infinite, it would be greater than ω because ω is the least infinite ordinal, and ω-ordered
sets do not have last element. So, P would have at least an ωth part PωPω+1 [2, p. 165, Theorem H], which is
impossible because any point U such that UPω < λ would have to belong to the impossible part Pω−1Pω [Cr.
13].

Therefore, P has a finite number of parts. And being finite the sum of any finite number of finite lengths, AB
has finite length.

Let P and Q be any two points in the continuum spacetime. Join them by any line, straight or not straight.
It has just been proved the line PQ has a finite length. So, the distance from P to Q is also finite, whatsoever
be the line PQ and its assigned metric. Infinite spacetime distances in the spacetime continuum are, then,
inconsistent. �

4 On Angles and Triangles

Proposition 1 (Euclid’s Proposition 3 extended) To take a point in a given finite straight line, produced if
necessary, at any given finite distance from a given point of the given straight line, and in any given direction
of the two opposite directions of the given straight line.

Figure 13 – Proposition 1

✄ Let AB be a finite straight line [Cr. 25];

P the given point of AB [Cr. 5];

CD the given finite distance, which is the length of the straight line CD [Df. 15];

and the give direction in AB, for example,* the direction from B to A [Ax. 2, Df. 1].

Produce AB from A by any length greater than CD to a point A′ [Cr. 16].

With centre P and radius CD draw the circle c [Ax. 8].

P is interior to c [Df. 19],

and being PA′ > AA′ [Cr. 13]

and AA′ = CD, it holds PA′ > CD [Ps. B].

Therefore, A′ is exterior to c [Df. 19].

Hence, there is an intersection point Q of c and BA′ [Cr. 35].

Q is in AB [Df. 3],

whether or not produced, at the given finite distance CD from the point P of AB [Df. 19];

and in the given direction from B to A. �

Note.-From a formal point of view [Pr. 1] is not necessary because of [Crs. 14, 16]. It is included as a
constructive tool. So, from now on, to take a point in a straight line at a given finite distance from one of its
points will always mean to take the point in that straight line produced if necessary [Pr. 1]. And the distance
between two points will always be finite [Cr. 45].

Proposition 2 All straight angles are equal to one another.

✄ Let P and Q be any two points respectively of any two straight lines AB and CD [Crs. 1, 29],

and σ and σ′ the respective straight angles that PA makes at P with PB; and QC makes at Q with QD [Cr.



On Angles and Triangles 21

Figure 14 – Proposition 2

42].

Assume σ′ 6= σ. One of them, for instance* σ′ will be less than the other [Ps. A].

In such a case a straight line PE adjacent at P to PA and making an angle σ′ at P with PA is possible [Ax.
9].

Being each angle unique [Cr. 37],

and σ 6= σ′, PE and PB will not be superposed [Df. 22, Ax. 9]

and they will be adjacent at P [Dfs. 21, 4].

PA and PB are the two sides of σ; and PA and PE the two sides of σ′. Being σ and σ′ straight angles, AB
and AE are straight lines [Cr. 42];

AP is a common segment of them [Cr. 5]

and PE and PB are non-common segments of them [Dfs. 4, 3]

Consequently, AB and AE are locally collinear [Dfs. 2, 3],

which is impossible [Df. 11]

So, it is impossible for PB and PE to be adjacent at P . The assumption σ′ 6= σ is, then, impossible. And it
can be concluded that all straight angles are equal to one another. �

Proposition 3 The union angle of two adjacent angles is the sum of both adjacent angles and is greater than
each of them.

Figure 15 – Proposition 3

✄ Let r1, r2 and r3 be three straight lines adjacent at their common endpoint V [Cr. 29],

where they make a couple of adjacent angles α and β [Cr. 41].

Assume* α superposes r1 on r2, and β superposes r2 on r3 in the same direction of rotation [Df. 23].

The rotation α around V superposes r1 on r2 [Df. 22]

in a unique straight line [Cr. 38],

and then the rotation β around V superposes r1 on r3 in a unique straight line [Df. 22, Cr. 38].

So, the rotation υ = α+ β [Df. 3, Ps. B]

around V in the same direction of rotation as α and β superposes the non-common sides r1 and r3 of α and β.
It is, then the union angle of α and β [Df. 23].

And being α > 0, β > 0 [Ax. 9],
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it holds α+ β > β; β + α > α [Ps. B],

and then υ > β; υ > α [Ps. A]. �

Proposition 4 (A variant of Euclid’s Proposition 13) If a straight line makes with another straight line two
adjacent angles, these angles can be either equal or unequal to each other, and they always sum a straight angle.

Figure 16 – Pr. 4

✄ Let D be the unique intersection point of two straight lines AB and CD [Crs. 21, 27].

DA, DC and DB are straight lines [Cr. 14]

adjacent at D [Df. 4].

So, DA makes at D with DC, and DC at D with DB two adjacent angles α and β [Cr. 41]

of which D is the common vertex and DC the common side [Df. 23];

α and β can be either equal or unequal to each other [Ax. 9, Ps. A],

and their union angle σ is the rotation α+ β around D [Pr. 3]

that in the same direction of rotation of α and β superposes the non-common sides DA and DB respectively
of α and β [Df. 23],

and being DA and DB the two sides of D in the straight line AB [Df. 5, Ax. 4],

σ is a straight angle [Cr. 42, Df. 24].

Therefore α and β sum a straight angle [Pr. 3]. �

Proposition 5 (Euclid’s Proposition 15) The two angles of any couple of vertical angles are equal to each
other.

Figure 17 – Pr. 5

✄ Let P be the unique intersection point of two straight lines AB and CD [Crs. 21, 27].

PA, PC, PB and PD are straight lines [Cr. 14]

adjacent at P [Df. 4].

PC makes at P with AB two adjacent angles α and β [Cr. 37]

that sum a straight angle [Pr. 4].

PB makes at P with CD two adjacent angles β and γ [Cr. 41]

that sum a straight angle [Pr. 4].

PD makes at P with AB two adjacent angles γ and δ [Cr. 41]

that sum a straight angle [Pr. 4].

Therefore α+ β = β + γ = γ + δ [Pr. 2].
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Consequently α = γ and β = δ [Ps. B]. �

Proposition 6 Three given points define a triangle iff they are not in straight line, being the vertexes of the
triangle the given points and its sides the straight lines joining them. A point defines a triangle with any two
points iff it is a non-common points of one of the sides of the straight line joining the points.

Figure 18 – Pr. 6

✄ (Fig. 18, a) Let A, B and C be any three points not in straight line [Cr. 22].

There is a plane Pl that contains them [Ax. 6].

Join A with B; B with C; and C with A [Cr. 15].

AB, BC and CA are in Pl [Cr. 25].

And none of them is in straight line with any of the others, otherwise A, B and C would be in straight line [Df.
12],

which is not the case. B is the only common point of AB and BC, otherwise they would be in straight line [Cr.
18]

and A, B and C would be in straight line [Df. 12],

which is not the case. So, AB and BC are adjacent at B [Df. 4].

For the same reason BC is adjacent at C to CA, and CA adjacent at A to AB. So, each of the straight lines
AB, BC and AC is adjacent at each of its two endpoints to one, and only to one, of the others [Df. 4].

Therefore, A, B and C define a triangle ABC whose vertexes are A, B and C and whose sides are AB, BC

and CA [Dfs. 29, 28].

Alternatively, if ABC is a triangle, its vertexes cannot be in straight line, otherwise they would be in the same
straight line and ABC would not be a triangle [Df. 29, 28].

(Fig. 18, b) On the other hand, if A is any non-common point of one of the sides of a straight line l in the plane
Pl, it cannot be in straight line with any couple of points B and C of l, even arbitrarily produced [Df. 14],

so A, B and C define a triangle, as it has just been proved. And if a point defines a triangle with any two
points, it cannot be in straight line with these two points [Df. 29, 28].

So, that point cannot be a common point of the sides of the straight line through those points [Df. 12],

and it must be a non-common point of one of such sides [Cr. 26]. �

Corollary 46 The intersection point of two intersecting straight lines defines a triangle with any two different
points, each of a different straight line.

✄ (Fig. 18, c) It is an immediate consequence of [Cr. 21, Df. 12, Pr. 6]. �

Corollary 47 A point of a side between two vertexes of a triangle is not in straight line with any of the other
sides of the triangle, even arbitrarily produced.

✄ (Fig. 18, d) If a point P of a side* AB of a triangle ABC were in straight line with the side* BC, these two
sides would have two common points, B and P , and they would belong to the same straight line [Cr. 18],
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which is impossible [Pr. 6].

The same argument applies to P and the side AC. �

Proposition 7 If the length of a given line joining the centers of two circles is less than the sum of their radii,
and each radius is less than the sum of the other radius and the length of the given line, then the circles intersect
at two points, each on a different side of the given line and not in a straight line with it.

Figure 19 – Proposition 7

✄ Let AB be any straight line [Cr. 25],

P any point of AB different from A, and Q any point of AP different from P [Cr. 5].

Consider first the case P 6= B; Q 6= A. In this case, A, B,P and Q satisfy AP < AB, BQ < AB; and also
AB = AQ+QB < AQ +QP +QB = AP +QB [Cr. 13, Pss. B, A].

Draw the circle c1 with centre A and radius AP ; and the circle c2 with centre B and radius BQ [Ax. 8].

Produce AB from A to a point P ′ such that AP ′ = AP [Pr. 1].

P ′P is a diameter of c1 [Df. 19]

that define two semicircles s and s′ of c1 each on a different side of AP [Cr. 36].

P and P ′ are the only points of PP ′, even arbitrarily produced, at a distance PA from A [[Crs. 33, 13].

So, except P and P ′, no point of s and s′ is in straight line with AB [Dfs. 19, 12].

On the other hand, P is interior to c2 because BP < BQ [Cr. 13, Df. 19],

and P ′ is exterior to c2 because BP ′ > BQ [Cr. 13, Df. 19].

In consequence, s and s′ intersect c2 at two points R and S [Cr. 35],

each on a different side of PP ′, and therefore of AB [Cr. 36, Df. 14],

and none of which is in a straight line with AB [Df. 14].

The same above argument applies to the cases P = B and/or Q = A, i.e the cases in which two, or three, of
the straight lines AB, AP and BQ are equal. �

Proposition 8 Extension of Euclid’s Proposition 1 To construct two equilateral triangles with a common side
equal to a given straight line.

✄ Let AB be the given straight line [Cr. 25].

With centre A and radius r1 = AB, draw the circle c1 [Ax. 8].

And with centre B and radius r2 = AB, draw the circle c2 [Ax. 8].

Assume r1 ≥ r1 + r2. We would have 0 ≥ r2 [Ps. B],

which is impossible [Cr. 13].

Therefore r1 < r1 + r2 [Ps. A].

And being AB = r1, it holds AB < r1 + r2 [Ps. A].

Therefore, c1 and c2 intersect at two points P and Q, each in a different side of AB and not in straight line
with AB [Pr. 7].

In consequence, P , A and B define a triangle PAB, and A, Q and B define a triangle AQB [Pr. 6],

Join P with A and with B; and join Q with A and with B [Cr. 15].
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Figure 20 – Proposition 8

PAB and AQB are a triangles [Pr. 6],

and being PA = r1 = AB; PB = r2 = AB; QA = r1 = AB; QB = r2 = AB [Df. 19],

we will have PA = PB = AB and QA = QB = AB [Ps. B].

Therefore, the triangles PAB and AQB are equilateral with the same side, which is the given straight line AB

[Df. 29] �

Proposition 9 To construct an isosceles triangle whose equal sides have the length of a given straight line.

Figure 21 – Proposition 9

✄ Let AB be the given straight line [Cr. 25].

Take any point P between A and B [Cr. 5].

It holds BP < AB [Cr. 13].

With centre A and radius AB draw the circle c1 [Pr. 1].

With centre B and radius BP draw the circle c2 [Pr. 1].

The points A, B and P satisfy: BP < AB; BP < AB +AB; AB < AB +BP [Cr. 13, Ps. B].

Therefore, the circles c1 and c2 intersect at two points Q and R, each on a different side of AB and not in
straight line with AB [Pr. 7].

In consequence, Q, A and B define a triangle QAB [Pr. 6].

Join Q with A and with B [Cr. 15].

QAB is a triangle [Pr. 6],

and being AB = AQ, the triangle is isosceles [Df. 29]. �

Proposition 10 To construct an scalene triangle with a side equal to a given straight line.

✄ Let AB be the given straight line [Cr. 25].
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Figure 22 – Proposition 10

On AB take any point P and a point P ′ such that BP ′ = AP [Pr. 1].

On PP ′ take any point Q [Cr. 5].

With centre A and radius AP describe the circle c1 [Ax. 8].

With centre B and radius BQ describe the circle c2 [Ax. 8].

The points P and Q on AB satisfy AP < AB, QB < AB and QB 6= AP 6= AB [Cr. 13],

and also AB = AP + PB < AP + PB + PQ = AP +QB [Cr. 13, Pss. B, A].

In consequence, the circles c1 and c2 intersect at two points R and S, each in a different side of AB and not in
straight line with AB [Pr. 7].

So, R, A and B define a triangle RAB [Pr. 6].

Join R with A and with B [Cr. 15].

RAB is a triangle [Pr. 6],

and being unequal its three sides, RA, AB and RB, the triangle RAB is scalene [Df. 29]. �

Proposition 11 If two triangles have equal one of its sides and the two angles whose respective vertexes are
the endpoints of that side, then the other two sides of each triangle are also equal to the corresponding two sides
of the other.

Figure 23 – Pr. 11

✄ Let ABC be any triangle [Prs. 10, 9, 8]

with an angle α at A and an angle β at B [Cr. 44].

Assume it is possible a triangle ABC′ with a side AB; an angle α at A; an angle β at B; and the side BC′ of
β different from BC, for instance* BC′ < BC [Ps. A].

A, C′ and C are not in straight line [Cr. 47, Df. 12].

So, ABC′ y AC′C are triangles [Pr. 6].

And since ABC is also a triangle, AB, AC′ y AC are adjacent at A [Dfs. 29, 28]

where they make the adjacent angles α1 and α2 [Df. 23, Cr. 41]

whose union angle is the angle α that AB makes at A with AC [Pr. 3],
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and α1 < α [Pr. 3].

So, it is impossible a triangle with a side AB, an angle α at A, an angle β at B and a side BC′ 6= BC. The
same argument applies to the side AC. �

Proposition 12 (Hilbert’s Axiom IV.6) If two triangles have equal one of their angles and the two sides of
that angle, then they have also equal their corresponding other two angles.

Figure 24 – Pr. 12

✄ Let ABC be a triangle [Prs. 10, 9, 8],

and α, β and γ its corresponding angles respectively at A, B and C [Cr. 44].

A triangle ABC′ with an angle α at A, a side AB, a side AC and an angle β′ at B different from β is impossible
because, being β unique [Cr. 37],

β′ 6= β implies that β′ will not superpose BA on BC but on a different straight line BC′, where C′ is a point
of AC, whether or not produced, different from C [Df. 21],

otherwise BC and BC′ would be the same straight line [Cr. 15].

So, AC′ 6= AC [Cr. 13].

For the same reasons it is impossible a triangle with a side AB, a side AC an angle α at A and an angle γ′ at
C such that γ′ 6= γ. �

Corollary 48 (Euclid’s Proposition 4) If two triangles have equal one of their corresponding angles and the
two sides of that angle, then they have also equal their corresponding other two angles and their corresponding
third side.

✄ It is an immediate consequence of [Prs. 12, 11]. �

Proposition 13 In Isosceles triangles the productions of the equal sides make equal the exterior angles with
the third side, and the equal sides make also equal the interior angles with the third side.

Figure 25 – Pr. 13

✄ (Fig. 25, left.) Let ABC be an isosceles triangle [Pr. 9]

with the side AB equal to the side AC [Df. 29].

Produce AB and AC from B and C respectively to any two points D and E [Cr. 16].

Let F be any point between A and D [Ax. 2].
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In CE take a point G such that CG = BF [Pr. 1].

Join F with C, and G with B [Cr. 15].

Since AB = AC and BF = CG, it holds AB +BF = AC + CG [Ps. B].

And being AB +BF = AF and AC + CG = AG [Cr. 13],

it holds AF = AG [Ps. A].

Since ABC is a triangle, B is not in a straight line with AE; nor C with AD [Dfs. 29, 28, 12].

Therefore AFC and ABG are triangles [Pr. 6],

with two equal sides: AF = AG y AC = AB; and with the same angle alpha between the equal sides [Cr. 44].

Therefore ǫ = ǫ′ y FC = BG [Cr. 48].

Since AFC and ABG are triangles, F is not in straight line with AG; nor G with AF [Dfs. 29, 28, 12].

Therefore BFC and BGC are a triangles [Pr. 6],

with two equal sides: BF = CG and FC = BG, and with the same angle ′ǫ = ǫ′ between the two equal sides
[Cr. 44].

Therefore, δ = δ′ [Cr. 48],

where δ and δ′ are the exterior angles that the productions of BF and CG of the equal sides of ABC make
with its third side BC [Df. 28, Cr. 44].

Being sides of the triangles ABC and BFC, the sides BA, BC and BF are adjacent at B [Dfs. 4, 29, 28].

And taking into account that BA y BF are the sides of B in the straight line AF [Df. 5],

the angles β y δ sum a straight angle [Pr. 4].

For the same reason, the angles γ and δ′ also sum to a straight angle [Pr. 4].

And being equal all straight angles [Pr. 2],

we will have β + δ = γ + δ′. Therefore, and being δ = δ′, it also holds β = γ [Ps. B]. �

Corollary 49 The three angles of an equilateral triangle are equal to one another.

✄ (Fig. 25, right.) It is an immediate consequence of [Df. 29, Pr. 13, Ps. B] �

Proposition 14 (Euclid’s Proposition 8) If the three sides of a triangle are equal to the three sides of another
triangle, then the three angles of the one are also equal to the corresponding three angles of the other.

Figure 26 – Pr. 14

✄ Let ABC and ABC′ be two triangles [Prs. 10, 9, 8]

with a common side AB and such that BC = BC′; AC = AC′. Assume β′ 6= β [Crs. 44, Ax. 9]

The angle β′ will not superpose BA on BC but on BC′ [Cr. 37],

where C′ can only be different from C, otherwise BC and BC′ would be superposed and β = β′ [Df. 21, Cr.
37].

Join C and C′ [Cr. 15].

C′ cannot be in straight line with A and C, otherwise it would be a point of AC, whether or not produced [Df.
12, Cr. 16],
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different from C, and then AC 6= AC′ [Cr. 13],

which is not the case. So, AC′C is an isosceles triangle [Cr. 6, Df. 29].

For the same reasons, BC′C is an isosceles triangle. Since ABC′, AC′C and BC′C are triangles [Pr. 6],

C′B, C′A and C′C are adjacent at C′ [Dfs. 29, 28].

Since ABC, AC′C and BC′C are triangles [Pr. 6],

CA, CB and CC′ are adjacent at C [Dfs. 29, 28].

So, γ′ + δ′ > δ′ and γ + δ > δ [[Cr. 41, Pr. 3].

On the other hand, in BC′C it holds γ′ + δ′ = δ [Pr. 13], and in AC′C: γ + δ = δ′ [Pr. 13].

In consequence, δ′ > δ and δ > δ′ [Ps. A],

which is impossible [Ps. A].

Therefore, the initial assumption is false, and the same rotation β that superposes AB on BC superposes AB
on BC′ [Df. 21].

So, that β = β′ [Df. 22].

And the other two angles of ABC′ are equal to the angles α and γ of ABC [Cr. 48]. �

Proposition 15 (Euclid’s proposition 10) To bisect a given finite straight line.

Figure 27 – Pr. 15

✄ Let AB be the given finite straight line [Cr. 25].

Let the equilateral triangles CAB and ADB be constructed on AB, each on a different side of AB [Pr. 8].

Join C and D [Cr. 15]

Since C and D are in different sides of AB, CD intersects AB, whether produced or not, at a unique point P
[Cr. 31].

Being in different sides of AB, the points C and D are not in straight line with A and B [Df. 14],

and CAD, CDB, CAP , CPB, ADP and PDB are triangles [Pr. 6].

Consequently, AC, AP and AD are adjacent at A [Dfs. 29, 28]

and α = α1 + α2 [Cr. 41, Pr. 3].

For the very reason, β = β1 + β2. Since the triangles CAB and ADB are equilateral and they have a common
side AB, the three sides of CAB are equal to the three sides of ADB [Df. 29, Ps. A].

Therefore, α1 = α2; β1 = β2 [Pr. 14].

And being the three angles of an equilateral triangle equal to one another, we have α1 = β1, α2 = β2 [Cr.
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49],[Cr. 49],

and then α = α1 + α2 = β1 + β2 = β [Ps. A].

The triangles CAD and CDB satisfy CA = CB, DA = DB and α = β. So, γ1 = γ2 [Cr. 48].

The triangles CAP and CPB have a common side CP and also AC = CB and γ1 = γ2. Therefore, AP = PB

[Cr. 48].

So, the point P bisects the given finite straight line AB. �

Proposition 16 (Euclid’s proposition 16) In any triangle, if one of the sides is produced, the corresponding
exterior angle is greater than each of the two the interior and opposite angles.

Figure 28 – Pr. 16

✄ (Fig.28, left) Let ABC be any triangle [Prs. 10, 9, 8].

Let any of its sides, for instance* the side BC, be produced to any point D [Cr. 16].

BC and CD are adjacent at C [Cr. 16].

Let AC be bisected at E [Pr. 15].

Joint B with E [Cr. 15],

and produce BE to a point F such that EF = BE [Cr. 16, Pr. 1].

Join F and C [Cr. 15].

E is the only point of FB in straight line with AC, otherwise FB and AC would belong to the same straight
line [Cr. 18]

and A, B and C would be in straight line, which is impossible [Pr. 6].

So, ABE, FEC y FBC are triangles [Pr. 6].

The triangles ABE and FEC satisfy AE = CE; EB = EF ; and ǫ = ǫ′ [Pr. 5].

Therefore, α = φ [Cr. 48].

Since CE, CF and CD are adjacent at C [Dfs. 28, 29, Cr. 24],

they define the adjacent angles µ and φ [Cr. 41],

whose union angle is the exterior angle δ [Pr. 3, Cr. 44].

Therefore, φ < δ [Pr. 3].

Being δ an angle exterior to the triangle ABC [Df. 28],

And being φ equal to α, we conclude that α is less than δ [Ps. B].

A similar argument proves the same conclusion for the the angle β. �

Proposition 17 (Euclid’s Propositions 18 and 19) A side is the greatest of a triangle iff it subtends its greatest
angle.

✄ (Fig. 29, left) Consider any two sides AB and AC of a triangle ABC [Prs. 10, 9, 8],

and assume* AB < AC [Ps. A].

On AC take a point D such that AD = AB [Pr. 1]

and join D with B [Cr. 15].

D is not in straight line with AB or with BC [Cr. 47].
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Figure 29 – Pr. 17

So, ABD and DBC are triangles [Pr. 6].

ABD is isosceles [Df. 29],

and then δ = δ′ [Pr. 13].

It also holds δ > γ [Pr. 16].

Since ABC, ABD and DBC are triangles, BA, BD and BC are adjacent at B [Dfs. 29, 28],

where they make the adjacent angles δ′ and ǫ [Cr. 41]

whose union angle is β [Df. 23, Pr. 3].

Therefore, β > δ′ [Pr. 3].

From β > δ′, δ′ = δ and δ > γ, it follows β > γ [Ps. B].

Being AB and AC any two sides of ABC, it can be concluded that in a triangle the greatest side subtends the
greatest angle [Df. 22, Ps. B].

Let now φ and ϕ (Fig. 29, right) be any two angles of a triangle EFC [Prs. 10, 9, 8]

and assume* φ > ϕ [Ps. A].

EG cannot be equal to EF , otherwise φ = ϕ [Pr. 13],

which is not the case. Nor can it be less than EF , because in such a case the least side would subtend the
greatest angle, which is impossible, as just proved. Therefore, EG must be greater than EF [Ps. A].

Being φ and ϕ any two angles of a triangle [Cr. 44],

we conclude that the greatest angle is subtended by the greatest side [Ps. B]. �

Proposition 18 (Euclid’s Proposition 20) In a triangle the sum of the lengths of any two of its sides is greater
than the length of the remaining one.

Figure 30 – Pr. 18

✄ Let ABC be a triangle [Prs. 10, 9, 8].

Produce AB from A to a point D such that AD = AC [Cr. 16, Pr. 1].

Join D and C [Cr. 15]. B is the only intersection point of BD and BC; and A the only intersection point of
BD and AC, otherwise A, B and C would be in straight line, which is impossible [Pr. 6].

In consequence D is not in straight line with B and C, and DBC is a triangle [Pr. 6].

For the same reasons, DAC is a triangle. And being DAC isosceles [Df. 29], it holds δ = δ′ [Pr. 13].
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Since ABC, DBC and DAC are triangles, CB, CA and CD are straight lines adjacent at C [Dfs. 29, 28];

where they make the adjacent angles γ and δ′ [Cr. 41]

whose union angle is φ [Df. 23, Pr. 3].

Therefore, φ > δ′ [Pr. 3].

And since δ = δ′, it holds φ > δ [Ps. A].

In consequence DB > BC [Pr. 17],

and then AB +AD > BC; AB +AC > BC [Ps. A].

The same argument proves the sum of the lengths any other couple of sides of ABC is greater than the length
of the remaining one. �

5 On distances and perpendiculars

Proposition 19 The length of straight line joining any two points interior to a circle is less than the sum of
the lengths of two radii of the circle.

Figure 31 – Pr. 19

✄ Let c be a circle whose centre is O and whose finite radius is OA [Ax. 8, Cr. 45],

and P and Q any two points interior to c [Cr. 34].

It must be OA < OA+OA, otherwise OA ≥ OA+OA [Ps. A],

and 0 ≥ OA [Ps. B], which is impossible [Cr. 13].

Join O with P and with Q; and join P with Q [Cr. 15].

If O, P and Q are in straight line (Fig. 31, left), one of them will be between the other two [Df. 11, Cr. 9].

If O is between P and Q then PQ = OP +OQ [Cr. 13].

And being OP < OA, OQ < OA, it holds: OP +OQ < OA +OQ; OQ+OA < OA+OA [Ps. B].

Therefore, OP +OQ < OA+OA, PQ < OA+OA [Pss. B, A].

If P is between O and Q it holds PQ < OQ [Cr. 13]

and being OQ < OA [Df. 19]

and OA < OA +OA, it must be PQ < OA +OA [Ps. B].

The same argument applies if Q is between O and P . If O, P and Q are not in straight line (Fig. 31 right)
they define a triangle OPQ [Pr. 6]

in which it holds PQ < OP +OQ [Pr. 18].

Being OP < AO; OQ < AO [Df. 19],

and for the same reasons above, PQ < OA+OA [Ps. B].

In consequence, the length PQ is always less than the sum of the lengths of two of its radii. �

Proposition 20 (Euclid’s Proposition 11) Through a given point of a given straight line to draw a perpendicular
to the given straight line.

✄ Let AB be any given straight line [Cr. 25]

and P any given point of AB [Cr. 1].
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Figure 32 – Pr. 20

Assume* PB < PA. Take a point C in PA such that PC = PB [Pr. 1].

With centers C and B and the same radius CB draw the respective circles c1 and c2 [Ax. 8].

It must be CB < CB + CB, otherwise 0 ≥ CB [Ps. B],

which is impossible [Cr. 13].

Thus, c1 y c2 intersect at two points Q and R, none of which in straight line with CP [Pr. 7].

Join Q with C, with P and with B [Cr. 15].

Since Q is not in straight line with C, P and B, these four points define the triangles QCP and QPB [Pr. 6],

and the three sides of QCP are equal to the three sides of QPB [Df. 19].

Therefore ρ = ρ′ [Pr. 14].

And being PC, PQ and PB adjacent at P [Dfs. 28, 29],

P is the common vertex and PQ the common side of ρ y ρ′. So, ρ y ρ′ are adjacent angles [Cr. 41, Df. 23],

and since they are equal to each other, they are right angles [Df. 25].

And PQ is perpendicular to AB through the given point P [Df. 25]. �

Proposition 21 (A variant of Euclid’s Proposition 12) From a given point not in straight line with a given
straight line, to draw a perpendicular to the given straight line, produced if necessary.

Figure 33 – Pr. 21

✄ Let AB be a straight line [Cr. 25]

and P a point not in straight line with AB [Cr. 22].

Take any point Q in AB [Cr. 1].

Join P and Q [Cr. 15]

and produce PQ from Q by any given length to a point R [Cr. 16].
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With centre P and radius PR draw the circle c [Ax. 8].

Since PQ is less than PR [Cr. 13],

Q is interior to c [Df. 19].

In AB and in the direction from B to A, take a point A′ at a distance PR+ PR from Q [Pr. 1].

Being QA′ = PR+ PR and Q interior to c, A′ cannot be interior to c [Pr. 19].

So, it will be either a point of c or exterior to c [Cr. 34],

and in both cases there will be an intersection point D of c and QA′ [Cr. 35, Df. 3].

The same argument applied to the direction from A to B proves the existence of another intersection point E
of AB, produced from B if necessary, and c. Join P with D and with E [Cr. 15].

Bisect DE at S [Pr. 15],

where S may coincide with the point Q, and join S with P [Cr. 15].

Being not P in straight line with AB, it is not in straight line with any two points of AB [Df. 12],

whether or not produced [Cr. 16].

So, PDS and PSE are triangles [Pr. 6]

with a common side PS, being also SD = SE and PD = PE [Df. 19],

So, ρ = ρ′ [Pr. 14].

SD, SP and SE are adjacent at S because PDS and PSE are triangles [Dfs. 29, 28].

So, SD, SP y SE make two adjacent angles ρ and ρ′ at their common point S [Cr. 41],

which being equal, are right angles [Df. 25],

and SP is the perpendicular from P to AB [Df. 25],

produced if necessary. �

Proposition 22 (Euclid’s Postulate 4) All right angles are equal to one another, and greater than zero

Figure 34 – Pr. 22

✄ (Fig. 34, top) Let DC be a straight line perpendicular to another straight line AB at any point D of AB [Pr.
20],

and let ρ1 and ρ′1 be the respective adjacent right angles [Df. 25]

that DC makes at D with DA, and DC at D with DB [Cr. 41].

Since DA, DC and DB are adjacent at D [Cr. 37],

the union angle of ρ1 and ρ′1 is the angle that, in the same direction of rotation of ρ and ρ′1, superposes the
non-common sides DA and DB respectively of ρ1 and ρ′1 [Df. 23, Pr. 3],

which are the sides of the straight angle σ1 that DA makes at D with DB [Df. 24],

and then σ1 = ρ1 + ρ′1 [Pr. 3].

So then, any two adjacent right angles sum a straight angle [Pr. 2].

Let ρ2, ρ
′

2 be any other couple of adjacent right angles (Fig 34, bottom). As just proved, they sum a straight
angle σ2. Since σ1 = σ2 [Pr. 2],

it holds ρ1 + ρ′1 = ρ2 + ρ′2 [Ps. B].

Assume ρ1 < ρ2. We would have ρ1 + ρ′1 < ρ2 + ρ′1 [Ps. B],

and being ρ1 + ρ′1 = ρ2 + ρ′2 [Pr. 2],
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we can write ρ2 + ρ′2 < ρ2 + ρ′1 [Ps. A],

and then ρ′2 < ρ′1 [Ps. B].

And being ρ′1 = ρ1 and ρ′2 = ρ2 [Df. 25],

we get ρ2 < ρ1 [Ps. A],

which contradicts our assumption. So, ρ1 cannot be less than ρ2. The same argument applied to the assumption
ρ1 > ρ2 proves ρ1 cannot be greater than ρ2 either. So it must be equal to ρ2 [Ps. A].

Hence, all right angles, whether or not adjacent, are equal to one another. And two adjacent right angles being
equal, their common side cannot be superposed on any of the non-common ones, for in that case there would
be only two sides and only one angle [Cr. 38, Df. 22].

Therefore all right angles are greater than zero [Df. 22, Ax. 9]. �

Corollary 50 Two right angles sum a straight angle.

✄ It is an immediate consequence of [Prs. 4, 22] �

Corollary 51 If one of the four angles that two intersecting straight lines make with each other at their inter-
section point is a right angle, then the other three angles are also right angles; the two sides of each angle are
perpendicular to each other; and each straight line is perpendicular to the other.

✄ It is an immediate consequence of [Df. 25, Prs. 22, 5]. �

Corollary 52 The two opposite rotations that superpose the two sides of a straight angle are equal to each
other.

✄ It is an immediate consequence of [Crs. 50, 51]. �

Proposition 23 Each point of the perpendicular, produced or not, to a given straight lines through the point
of bisection of the given straight line is at the same distance from each endpoint of the given straight line.

Figure 35 – Pr. 23

✄ Let P be the point of bisection of a straight line AB [Pr. 15].

Through P draw the perpendicular PQ to AB [Pr. 20],

and produce PQ from P to any point R [Cr. 16].

QR is perpendicular to AB [Cr. 51].

Let S be any point of QR [Cr. 1].

Join S with A and with B [Cr. 15].

Since ρ is not an straight angle and it is greater than zero [Cr. 50, Pr. 22],

QP and AB are not in straight line [Cr. 42].

Therefore, SAP y SPB are triangles [Pr. 6],

with a common side SP , being also AP = PB and ρ = ρ′ [Pr. 22].

Therefore SA = SB [Cr. 48].

The same argument applies to any point T of the extension PR. �
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Proposition 24 If the two adjacent angles that a straight line makes with another intersecting straight line at
their unique intersection point are different from each other, then the one is acute and the other is obtuse.

✄ Let D be the unique intersection point of two straight lines AB and CD [Cr. 21].

DA, DC and DB are straight lines [Cr. 14]

adjacent at D [Df. 4],

where they make two adjacent angles α and β [Cr. 41]

that sum two right angles [Pr. 4].

If α 6= β one of them, for example* α, will be less than the other, α < β [Ps. B].

and then α+ α < β + α, and also α+ β < β + β [Ps. B].

Being rho a right angle [Prs. 20, 21, 22],

if ρ ≤ α, we would have ρ+ ρ ≤ α+ ρ; ρ+ α ≤ α+ α, and ρ+ ρ ≤ α+ α [Ps. B].

And being α+ α < β + α, we would have ρ+ ρ < β + α [Ps. B],

which is impossible [Pr. 4].

Therefore, it must be α < ρ, and α is an acute angle [Df. 25].

If β ≤ ρ, we would have β + β ≤ ρ+ β; β + ρ ≤ ρ+ ρ, and β + β ≤ ρ+ ρ [Ps. B].

And being α+ β < β + β, we would have β + α < ρ+ ρ [Ps. B],

which is impossible [Pr. 4].

Therefore, it must be β > ρ, and β is an obtuse angle [Df. 25]. �

Proposition 25 (Euclid’s Proposition 17) Any two angles of a triangle sum less than two right angles.

✄ Let ABC be any triangle [Prs. 10, 9, 8].

Figure 36 – Pr. 25

Produce the side BC from C by any given length to a point D [Cr. 16].

CB and CA are adjacent at C [Dfs. 28, 29].

CB and CD are adjacent at C [Cr. 16].

C is the only common point of AC and BD, otherwise CB and CA would be superposed in a unique straight
line [Df. 21, Cr. 18],

which is impossible because ABC is a triangle [Pr. 6].

So, CA and CD are adjacent at C [Df. 4].

Consider the exterior angle δ [Df. 28, Cr. 44].

It holds β < δ [Pr, 16].

Hence, β + γ < δ + γ [Ps. B].

And being δ + γ a straight angle [Pr. 4],

which equals two right angles [Cr. 50],

we conclude that β and γ sum less than two right angles. The same argument proves that any other couple of
angles of ABC sum less than two right angles. �

Proposition 26 From a point, whether or not in straight line with a given straight line, only one perpendicular
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can be drawn to the given straight line.

Figure 37 – Pr. 26

✄ Let AB be a straight line [Cr. 25]

and P any point not in straight line with AB [Cr. 22].

P will be a non-common point of one of the sides, for example Pl1 of AB [Ax. 6, Df. 14].

So, P is in straight line with no couple of points of AB [Df. 14].

A perpendicular PQ from P to AB can be drawn [Pr. 21].

Assume a second perpendicular PR from P to AB can be drawn. We would have a triangle PQR [Pr. 6]

with two right angles, ρ and ρ′, which is impossible [Pr. 25].

PR is then impossible. Let now E be any point of AB, whether or not produced. Draw the perpendicular EF

to AB from E [Pr. 20]

and assume a second perpendicular EG from E to AB can be drawn in the same side Pl1 of AB [Cr. 29].

EF y EG will adjacent at E where they make and angle α > 0, if not they would be superposed with two
common points [Ax. 9, 21]

and they would belong to the same straight line [Cr. 18].

Being EF , EG and EB straight lines adjacent at E [Cr. 37],

α and ρ′1 are adjacent angles [Cr. 41]

and ρ1 is the union angle of them [Df. 23, Pr. 3].

Therefore, ρ1 > ρ′1 [Pr. 3],

which is impossible [Pr. 22].

So, the second perpendicular EG to AB in Pl1 is impossible. A perpendicular EH from E to AB in Pl2 can
only be adjacent at E to EF because all points of EF and EH , except E, are non-common points respectively
of Pl1 and Pl2 [Ax. 6, Df. 14].

So, EF , EB and EH can only be three adjacent straight lines [Cr. 37]

that make at their common endpoint E two adjacent angles ρ1 and ρ2 [Cr. 41]

whose union angle is the straight angle ρ1 + ρ2 [Cr. 50].

So then, EF and EH make a unique straight line [Cr. 42].

Therefore, from a point, whether or not in straight line with a straight line, only one perpendicular to the
straight line can be drawn. �

Proposition 27 The distance from a given point not in straight line with a given straight line to the given
straight line is the length of the perpendicular from the given point to the given straight line, produced if necessary.
And that distance is unique.

✄ Let AB be a straight line [Cr. 25]

and P a point not in straight line with AB [Cr. 22].

From P draw the perpendicular PQ to AB [Pr. 21].

Let R be any point of AB, whether or not produced, different from Q [Cr. 1].
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Figure 38 – Pr. 27

Join P and R [Cr. 15].

P is not in straight line with R and Q, otherwise P would be in a straight line with AB [Df. 12],

which is not the case. Therefore, P , R and Q define a triangle PRQ [Pr. 6].

Since ρ is a right angle [Df. 25],

ρ is the greatest angle of PRQ [Pr. 25].

And the side PR is greater than the side PQ [Pr. 17].

Since the distance between two points is unique [Cr. 33];

R is any point of AB, whether or not produced, different from Q; and PQ is less than PR; it can be concluded
that PQ is the shortest of the distances [Df. 15]

between P and any point in AB, whether or not produced. So, the length of the perpendicular PQ is the
distance from the point P to the straight line AB [Df. 16],

and this distance is unique [Pr. 26, Cr. 33]. �

Hereafter, a perpendicular to a straight line drawn from a point that is not in straight line with that straight
line, will be drawn by producing the straight line if necessary [Pr. 21]. And, unless otherwise indicated, when
considering more than one perpendicular to a given straight line, all of them will be assumed to be in the same
side of the given straight line [Ax. 6, 21].

6 On Parallelism and Convergence

Proposition 28 Draw three points on the same side of a given straight line, two of them equidistant and two
of them non-equidistant from the given line. Draw a straight line non-parallel to the given straight line, and
that does not intersect the given straight line.

Figure 39 – Pr. 28

✄ Through two points C and D of a given straight line AB [Cr. 1]

draw the perpendiculars CE and DF to AB [Pr. 20].

All points of CE and DF are on the same side of AB [Cr, 28].

Take any point P in CE [Cr. 1];
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in DF take a point Q such that DQ = CP [Pr. 1];

and in DQ take any point R [Cr. 1].

It holds DR < DQ [Cr. 13].

Join P and R [Cr. 15].

P and Q are equidistant from AB [Pr. 27],

P and R are non-equidistant from AB [Pr. 27],

P , Q and R are in the same side of AB; and PR is not parallel to AB [Df. 18, Pr. 27],

and it is in the same side of AB [Cr, 28].

Therefore, PR does not cut the straight line AB [Cr. 30]. �

Note.-From now on, all of points equidistant from a straight line, whether or not in another straight line, will
be assumed to be in the same side of the straight line and at a distance from the straight line greater than zero.

Proposition 29 (Khayyām-Cataldi’s Axiom extended) All segments of a given straight line in the same side
of a second straight line have the same distancing direction with respect to the second straight line as the given
straight line. And if the endpoints of the given straight line are equidistant from the second straight line then the
given straight line is parallel to the second straight line, being all points of the given straight line non-common
points of the same side of the second straight line.

Figure 40 – Pr. 29

✄ (Fig. 40, left.) Let l be a straight line in a plane Pl [Cr. 25],

and A and B any two non-common points in the same side, for example* Pl1, of l in Pl [Cr. 28],

so that A and B are non-equidistant from l [Pr. 28].

Draw the perpendiculars AP and BQ to l respectively from A and B [Pr. 21],

and assume* AP < BQ. Join A and B [Cr. 15].

The points A and B define a distancing direction, from A to B, of the straight line AB [Dfs. 1, 17]

with respect to the straight line l [Df. 16].

All segments of AB must have the same distancing direction with respect to l as AB, otherwise there would be
at least one segment whose distancing direction with respect to l would be opposite to that of AB [Dfs. 1, 17].

And then, either the endpoints of that segment are given before drawing AB, which is not the case [Ax. 5, Cr.
15],

or they are unknown before drawing AB, in which case they could only be a consequence of the operation, as
such an operation, of drawing AB, which is impossible [Df. 4, Ax.1, Cr. 15],

or the straight line AB cannot be drawn, which is also impossible [Ax. 5, Cr. 15].

Assume now (Fig. 40, right.) that A and B are equidistant from l [Pr. 28].

Join A with B [Cr. 15].

Let R be any point between A and B [Crs. 5, 4],

and assume its distance to l [Pr. 27]

is different from the equidistance of A and B. The segments AR and RB [Cr. 5]

would have different distancing directions with respect to l [Df. 17, Pr. 27],

So, either the point R and the distancing directions of AR and of RB with respect to l are given before drawing
AB, which is not the case [Ax. 5, Cr. 15],



On Parallelism and Convergence 40

or they are unknown before drawing AB, in which case they could only be a consequence of the operation, as
such an operation, of drawing AB, which is impossible [Df. 4, Ax.1, Cr. 15],

or the straight line AB cannot be drawn, which is also impossible [Ax. 5, Cr. 15].

Therefore, R can only be at the same distance from CD as A and B. Consequently, AB is parallel to l [Df. 18].

And being A and B non common points in the same side of l, all points of AB are non common points of the
same side of l [Ax. 6, Df. 14]. �

Note.-Though a straight line could be considered parallel to itself by a zero equidistance, hereafter only parallel
straight lines whose equidistance is greater than zero will be considered.

Proposition 30 (A variant of Tacquet’s Axiom 11) If a straight line is parallel to another straight line, then
the perpendicular from any point of any of the two straight lines to the other straight line is also perpendicular
to the first straight line.

Figure 41 – Pr. 30

✄ Let AB be a straight line parallel to another straight line CD [Pr. 29].

All points of AB are at the same distance greater than zero from CD [Df. 18].

From a point P of AB draw the perpendicular PE to CD [Pr. 21].

Draw the perpendicular from E to AB [Pr. 21]

and assume it is not EP but EF . From F draw the perpendicular FG to CD [Pr. 21].

It will be different from FE, otherwise there would be two perpendiculars to CD from the same point E, namely
PE and FE, which is impossible [Pr. 26].

Consider the triangle FGE [Prs. 29, 6].

The right angle ρ [Df. 25]

is the greatest angle of FGE [Pr. 25].

So, EF is greater than FG [Pr. 17],

and FG is equal to PE because AB is parallel to CD [Df. 18].

In consequence, the shortest distance from E to AB would not be the length of the perpendicular EF , but that
of EP [Ps. B],

which is impossible [Pr. 27].

So, EP is also perpendicular to AB. Let now Q be any point in CD. Draw the perpendicular QH to AB [Pr.
21].

Assume the perpendicular from H to CD is not HQ but HJ . It has just been proved that HJ is also
perpendicular to AB. So, there would be two different perpendiculars, HJ and HQ, to AB from the same
point H , which is impossible [Pr. 26].

Hence, the perpendicular QH is also perpendicular to CD. �

Proposition 31 A straight line parallel to another given straight line can only be produced as a straight line
parallel to the given straight line.

�✄ Let AB be a straight line parallel to another straight line CD [Pr. 29],

and PQ any given finite distance [Df. 15, Cr. 45].

Draw the perpendicular BE from B to CD [Pr. 21].

In CD and in the direction from C to D take a point F such that EF = PQ [Pr. 1].
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Figure 42 – Pr. 31

From F draw the perpendicular FG to CD [Pr. 20].

Take a point B′ in FG such that B′F = BE [Pr. 1].

Join B and B′ [Cr. 15].

BB′ is parallel to CD [Pr. 29].

And BE is perpendicular to AB and to BB′ through their common endpoint B [P. 30].

AB and BB′ are, then, the two sides of a straight angle [Cr. 50],

and they make the straight line AB′ [Cr. 42],

which is parallel to CD [Pr. 29].

Assume now BB′ 6= EF , for instance* BB′ > EF [Ps. A].

Take a point H in BB′ such that BH = EF [[Pr. 1].

Join H and F [Cr. 15].

BE is parallel to HF [Pr. 29];

CF is perpendicular to HF [Pr. 30];

and HF is perpendicular to CF [Cr. 51].

So, if BB′ 6= EF there would be two different perpendiculars, B′F and HF , to CF from the same point F ,
which is impossible [Pr. 26].

In consequence BB′ = EF . So, BB′ is the only production of AB from B by the given length EF = PQ [Cr.
16],

and it is parallel to CD [Pr. 29].

The same argument applies to the endpoint A.

Proposition 32 (Posidonius-Geminus’ Axiom) If two points of a given straight line are equidistant from a
second straight line, then the given straight line is parallel to the second straight line.

✄ Let AB and CD be two straight lines such that two points P and Q of AB are equidistant from CD [Pr. 29].

The segment PQ, which is the only straight line joining P and Q [Cr. 15],

is parallel to CD [Pr. 29].

If PA were not parallel to CD, the straight line PQ [Cr. 14]

could be produced from P by a length PA as a straight line PA [Cr. 16]

non parallel to CD, which is impossible [Pr. 31].

The same applies to QB. AB is then parallel to CD. �

Proposition 33 If a straight line is parallel to another straight line, this second straight line is also parallel,
and by the same equidistance, to the first straight line.

✄ Let AB be a straight line parallel to another straight line CD [Cr. 32].

Let E and F be any two points of CD [Cr. 1].

From E and from F draw the respective perpendiculars EG and FH to AB [Pr. 21].

These perpendiculars are also perpendicular to CD [Pr. 30].
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So, the distance from E to AB is the same as the distance from G to CD [Pr. 27];

and the distance from F to AB is the same as the distance from H to CD [Pr. 27].

Since AB is parallel to CD, the distances to CD from G and H are equal to each other [Df. 18].

Hence, the distances to AB from E and F are also equal to each other [Ps. B].

E and F are, then, two points in CD at the same distance from AB. Therefore, CD is parallel to AB [Cr. 32],

and by the same equidistance GE. �

Proposition 34 To draw a straight line parallel to a given straight line through a given point not in straight
line with the given straight line.

✄ Let CD be a straight line [Cr. 25],

and P a point not in straight line with CD [Cr. 22].

From P draw the perpendicular PQ to CD [Pr. 21].

Take a point R in CD different from Q [Cr. 1].

From R draw the perpendicular RS to CD [Pr. 20].

And in RS take a point T such that RT = QP [Pr. 1].

Join P and T [Cr. 15]

and produce PT respectively from P and from T to any two points A and B [Cr. 16].

The straight line AB has two points, P and T , equidistant from CD. Therefore, AB is a parallel to CD [Cr.
32]

through the point P . �

Proposition 35 (Playfair’s Axiom 11) Through a given point not in straight line with a given straight line,
one, and only one, parallel to the given straight line can be drawn.

Figure 43 – Pr. 35

✄ Let AB be a straight line [Cr. 25]

and P a point not in straight line with AB [Cr. 22].

Through P a parallel CD to AB can be drawn [Pr. 34].

Assume that through P more than one parallel to AB can be drawn. From P draw the perpendicular PQ to
AB [Pr. 21].

PQ is also perpendicular from P to each of the assumed parallels to AB [Pr. 30].

And each of these assumed parallels would be a different perpendicular to PQ through the same point P [Cr.
51],

which is impossible [Pr. 26].

Therefore, through a given point not in straight line with a given straight line, one [Pr. 34],

and only one, parallel to a given straight line can be drawn. �

Proposition 36 For any given straight line and through different points, a number of parallels to the given
straight line greater than any given number can be drawn.

✄ Let AB be a straight line [Cr. 25]

and P a point not in a straight line with AB [Cr. 22].
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Join P with any point Q of AB [Cr. 15].

PQ has a number of points greater than any given number n [Cr. 1],

none of which, except Q, is in straight line with AB, even arbitrarily producing AB and PQ [Cr. 21].

Through each of those n points of PQ one, and only one, parallel to AB can be drawn [Prs. 34, 35].

Therefore, it is possible to draw a number greater than any given number of parallels to a given straight line,
each one through a different point.. �

Proposition 37 If two straight lines have a common perpendicular, then they are parallel to each other.

✄ Let AB be a straight line in the same side of another straight line CD [Cr. 29].

From a point P of AB draw the perpendicular PQ to CD [Pr. 21].

If PQ is also perpendicular to AB, then AB must also be parallel to CD, otherwise through P a parallel EF

to CD could be drawn [Pr. 34],

PQ would be perpendicular to EF [Pr. 30],

and EF would be perpendicular to PQ [Cr. 51],

and there would be two perpendicular to PQ, namely AB and EF , through the same point P , which is
impossible [Pr. 26]. �

Proposition 38 Two parallel straight lines cannot intersect.

✄ Assume two parallel straight lines AB and CD [Cr. 36]

intersect at a point P . From a point Q of AB different from P [Cr. 1]

draw the perpendicular QR to CD [Pr. 21].

QR is also perpendicular to AB [Pr. 30].

And PQ and PR would be two perpendiculars to QR [Cr. 51]

through the same point P , which is impossible [Pr. 26]. �

Note. The fact that two parallel straight lines cannot intersect with each other, does not imply that non
parallel straight lines have to intersect, as Posidonius defended. His pupil Geminus of Rhodes discovered the
flaw [3, p. 40, 190], [1, pp. 58-59].

Proposition 39 If a common transversal cuts two straight lines and makes with them equal the angles of a
couple of alternate angles, or of corresponding angles, then the two angles of each couple of alternate angles,
and of corresponding angles, are also equal. And the interior angles of the same side of the transversal sum two
right angles. If the interior angles of the same side of the transversal sum two right angles, then the two angles
of each couple of alternate angles, and of corresponding angles, are equal to each other.

Figure 44 – Pr. 39

✄ Let AB and CD be two straight lines that are intersected by a common transversal EF [Df. 26, Cr. 32]

at P and Q respectively. On the one hand we have: αi = αe; βi = βe; γi = γe; δi = δe [Pr. 5].

On the other, and being ρ a right angle: ρ+ ρ = αe + βe = αi + βi = γi + δi = γe + δe = αe + βi = βe + αi =
γi + δe = δi + γe [Pr. 4].

So, if αi = γi, and being αi = αe and γi = γe, we immediately get αe = γe; αi = γe; αe = γi [Ps. A].

A similar argument proves that the two angles of any other couple of alternate angles, or of corresponding angles
[Df. 27],
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are equal to each other. In addition, from αi + βi = ρ+ ρ [Pr. 4],

αi = γi and βi = δi, it follows γi + βi = ρ+ ρ; αi + δi = ρ+ ρ [Ps. A].

On the other hand, if αi + δi = ρ+ ρ, and being ρ+ ρ = γi + δi [Pr. 4],

we immediately get αi + δi = γi + δi [Ps. B].

Therefore, αi = γi [Ps. B],

and the same argument above proves that the two angles of each couple of alternate angles, and of corresponding
angles, are equal. �

Proposition 40 A common transversal makes with two parallel straight lines equal the two angles of each
couple of alternate angles and of corresponding angles.

Figure 45 – Pr. 40

✄ Let AB and CD be any two parallel straight lines [Cr. 36].

And EF any common transversal [Df. 26, Cr. 32]

that cuts them at P and Q respectively [Cr. 32].

(Fig. 45, left.) If EF is perpendicular to AB, it is also perpendicular to CD [Pr. 30],

and the eight angles it makes with AB and CD at its corresponding intersection points are right angles [Cr.
51],

in which case the two angles of each couple of alternate and of each couple of corresponding angles are equal
[Pr. 22, Df. 27].

(Fig. 45, right.) If EF is not perpendicular to AB, draw the perpendicular PR to CD [Pr. 21],

which is also perpendicular to AB [Pr. 30].

And AB and CD are perpendicular to PR [Cr. 51].

Therefore ρ1 and ρ2 are right angles [Df. 25].

Take a point S in PB such that PS = RQ [Pr. 1].

Join S and Q [Cr. 15].

SQ and PR are parallel [Cr. 32, Pr. 33].

Hence, AB and CD are perpendicular to SQ [Pr. 30],

and SQ is perpendicular to AB and to CD [Cr. 51].

Therefore, ρ3 and ρ4 are right angles [Df. 25, Cr. 51].

And being AB parallel to CD, it holds PR = SQ [Df. 18].

Consider the triangles PRQ and PQS [Prs. 29, 6].

The three sides of PRQ are equal to the three sides of PQS. So, α = α′ [Pr. 14].

Therefore, the two angles of any other couple of alternate angles, and of corresponding angles [Df. 27],

are also equal [Pr. 39]. �

Proposition 41 If a common transversal makes with two straight lines equal the angles of a couple of alternate
angles, then both straight lines are parallel to each other.

✄ Let EF be a common transversal [Df. 26, Cr. 32]
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Figure 46 – Pr. 41

that intersects two straight lines AB and CD respectively at P and Q, where EF makes with AB and CD

equal the two angles of a couple of alternate angles α and α′ [Df. 27].

The two interior angles of the same side ofEF , α and β in one side, or α′yβ′ in the other, sum two right angles
[Pr. 39].

Therefore, AB and CD cannot intersect each other, otherwise there would be a triangle with two angles that
sum to two right angles, which is impossible [Pr. 25].

Therefore, AB and CD are each on the same side of the other [Cr. 31].

(Fig. 45, left.) If α and α′ are right angles, EF will be perpendicular to AB and to CD [Cr. 51],

and AB and CD will be parallel [Pr. 37].

(Fig. 45, right.) If α and α′ are not right angles, EF is not perpendicular to AB or to CD [Df. 25].

In this case, draw the perpendicular PR from P to CD [Pr. 21].

On AP take a point S such that PS = RQ [Pr. 1].

Join S and Q [Cr. 15].

SQ and PR are parallel [Cr. 32, Pr. 33],

and then CD is perpendicular to SQ [Pr. 30],

and SQ is perpendicular to CD [Cr. 51].

and being SQ and PR parallel, SQP and PQR are triangles [Prs. 29, 6].

They have a a common side PQ, and also PS = RQ, and α = α′. Therefore SQ = PR [Cr. 48].

Since SQ and PR are perpendicular to CD, S and P are at the same distance from CD [Pr. 27].

So, AB and CD are parallel to each other [Cr. 32, Pr. 33]. �

Proposition 42 Two straight lines are parallel to each other if, and only if, a common transversal makes with
them two interior angles in the same side of the transversal that sum two right angles.

✄ If a common transversal EF makes with two straight lines AB and CD [Df. 26, Cr. 32]

two interior angles α and β [Df. 26]

on the same side of the transversal [Df. 22]

that sum two right angles, then the two angles of any couple of alternate angles α and α′ are equal to each
other [Pr. 39]

and both straight lines are parallel [Pr. 41].

(Fig. ??, bottom) If a transversal cuts two parallel straight lines [Df. 26, Cr. 32],

it makes with them equal the two angles of each couple alternate angles, for instance α and α′ [Pr. 40]

and then the two interior angles of the same side of the transversal [Dfs. 22, 26]

sum two right angles [Pr. 39]. �

Proposition 43 (Proclus’ Axiom) If a first straight line is parallel to a second straight line and the second
straight line is parallel to a third straight line, then the first straight line is also parallel to the third straight line.
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Figure 47 – Pr. 43

✄ (Fig. 47, left) Let AB be a straight line parallel to another straight line CD [Cr. 36],

which is parallel to another straight line EF [Cr. 36].

Assume first that AB and EF are in different sides of CD [Ax. 6] (Fig. 47, left).

From any point P of CD draw the perpendicular PQ to AB and the perpendicular PR to EF [Pr. 21].

PQ and PR are also perpendicular to CD [Pr. 30].

So, ρ1, ρ2, ρ3 and ρ4 are right angles [Df. 25].

PQ and PR cannot be two different perpendiculars to CD from P [Pr. 26].

So, QR is a unique straight line, which is a common transversal of AB and EF , and makes with them in the
same side of QR two interior angles ρ1 and ρ3 [Df. 26]

that sum two right angles. Therefore AB is parallel to EF [Pr. 42].

If AB and EF are in the same side of CD [Cr. 29] (Fig. 47, right),

then draw the perpendicular PQ from any point P of AB to EF , and from Q the perpendicular QR to CD

[Pr. 21].

So, ρ1 and ρ2 are right angles [Df. 25].

Since EF is parallel to CD, QR is also perpendicular to EF [Pr. 30],

and ρ3 is a right angle [Df. 25].

And, for the same reasons above, PR is a unique straight line, which is perpendicular to EF through Q. And
being perpendicular to CD, PR is also perpendicular to AB [Pr. 30],

and then ρ4 is a right angle [Df. 25].

In consequence, PQ is a transversal of AB and EF that make two interior angles, ρ1 and ρ4 [Df. 26],

on the same side of PQ that sum two right angles. So, AB is also parallel to EF [Pr. 42]. �

Proposition 44 If a common transversal makes with two straight lines two interior angles in the same side of
the transversal that sum less (more) than two right angles, the interior angles in the other side of the transversal
sum more (less) than two right angles.

Figure 48 – Pr. 44

✄ Let EF be a common transversal of two straight lines AB and CD [Df. 26, Cr. 32]

that cuts them respectively at P and Q and makes with them the interior angles α and β [Df. 26]

on the same side of EF [Ax. 6, Df. 22]

so that α+ β < ρ+ ρ, where ρ is a right angle [Pr. 22].

AB and CD are not parallel [Pr. 42].

Let γ and δ be the interior angles that AB and CD make with EF on the other side of EF [Dfs. 22, 26].
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On the one hand we have: α+ γ = β + δ = ρ+ ρ [Pr. 4],

so that α+ γ + β + δ = ρ+ ρ+ ρ+ ρ [Ps. B].

On the other hand γ + δ ≶ ρ+ ρ, otherwise AB and CD would be parallel [Pr. 42].

But if γ + δ < ρ+ ρ, we would have γ + δ + ρ+ ρ < ρ+ ρ+ ρ+ ρ [Ps. B];

and being α+ β < ρ+ ρ, we also have α+ β + γ + δ < ρ+ ρ+ γ + δ [Ps. B].

Therefore α+ β + γ + δ < ρ+ ρ+ ρ+ ρ [Ps. B], which is not the case.

So, it must be γ + δ > ρ+ ρ. A similar argument applies to the case α+ β > ρ+ ρ. �

Proposition 45 All segments with the same length of a given straight line have the same distancing direction
and the same relative distancing with respect to any other non-parallel straight line in the same side of the given
straight line.

Figure 49 – Pr. 45

✄ Let AB be a straight line in the same side of another straight line CD [Cr. 29]

to which it is not parallel [Pr. 28].

All segments of AB have the same distancing direction, for instance* from B to A with respect to CD [Pr. 29].

Let P , Q and R be any three points of AB [Cr. 1].

Assuming* Q is between P and R [Cr. 9],

take in AB a point S at a distance PQ from R in the direction from A to B [Pr. 1],

so that PQ = RS. (Fig. 49, left) If AB were perpendicular, or a segment of the perpendicular AE, to CD [Pr.
21],

the relative distancing of any segment of AB [Df. 17]

with respect to CD would be the length of the segment [Cr. 13, Pr. 27].

So, PQ and RS would have the same relative distancing with respect to CD [Dfs. 17, 9, 3].

Assume AB is not perpendicular to CD (Fig. 49, right). From P , Q, R and S draw the perpendiculars PE,
QF , RG and SH to CD [Pr. 21].

And from P and R draw the perpendiculars PT to QF , and RU to SH [Pr. 21].

PT is parallel to CD, and PE to QF [Pr. 37].

Since right angles are not straight angles and are greater than zero [Cr. 50, Pr. 22],

P is not in straight line with QT [Cr. 43].

So, QPT is a triangle [Pr. 6].

For the same reason SRU is also a triangle. PT and RU are parallel to CD [Pr. 42],

and then they are parallel to each other [Pr. 43].

Therefore α = α′ [Pr. 40].

QF and SH are parallel to each other [Pr. 37],

and then β = β′ [Pr. 40].

The triangles QPT and SRU verify: α = α′; β = β′ [Pr. 40],
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and PQ = RS. Consequently, QT = SU [Pr. 11].

Being PE = TF [Df. 18]

and QT = QF − TF [Cr. 13],

it will be QT = QF − PE [Ps. A].

QT is, then, the relative distancing of the segment PQ with respect to CD [Df. 17].

For the same reasons SU is the relative distancing of the segment RS with respect to CD [Df. 17].

Since QT = SU , and PQ and RS are any two segments of AB with the same length, we conclude that all
segments of AB with the same length have the same relative distancing with respect to CD [Df. 17].

in the same distancing direction [Pr. 29]. �

Proposition 46 If a straight line cuts a second straight line, then it can be produced from either endpoint to a
new endpoint whose distance to the second straight line is greater than any given distance.

Figure 50 – Pr. 46

✄ Let AB be a straight line that cuts another straight line CD at a point P [Cr. 27].

And let EF be any distance, which is the length of the straight line EF [Df. 15].

AB is not parallel to CD [Pr. 38].

From the endpoint B of AB draw the perpendicular BQ to CD [Pr. 21].

BQ is the relative distancing of the segment PB with respect to the straight line CD [Pr. 27, Df. 17].

If BQ ≤ EF , there will be a number n such that n times BQ is greater than EF , otherwise there would exist
a last natural number, which is impossible according to Peano’s Axiom of the Successor [4, p. 1].

In the direction from P to B [Df. 1],

produce n times (five in Figure 50) the straight line AB in the same direction and by the same length PB up
to the successive extremes B1, B2 . . . , Bn [Cr. 16].

The successive distances to the straight line CD from the successive endpoints B1, B2 . . . , Bn are always
increased by the same distance BQ in each production [Pr. 45].

Therefore, the distance BnQn from Bn to CD is equal to n times the relative distancing BQ [Pr. 45].

And being n times BQ greater than EF , the distance BnQn is greater than the given distance EF . The same
argument applies to the other endpoint A of AB. �

Proposition 47 (Khayyām’s Axiom) Two non intersecting straight lines are either parallel, or they can be
produced to a unique intersection point.

✄ Let AB and CD be any two non-intersecting straight lines [Cr. 32]

If one of them has its two endpoints on different sides of the other, then it is cut by a finite production of the
other at a unique point [Crs. 31, 45] (Fig. 51, a).

If not, AB will be in the same side, for instance* Pl1, of CD [Cr. 30].

In this case, draw the perpendicular AE from A to CD [Pr. 21] (Fig. 51, b, c, d).

If AB is a segment of AE, then the finite production BE of AB cuts CD at a unique point E [Crs. 16, 45, 21]
(Fig. 51, b).
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Figure 51 – Pr. 47

If not, draw the parallel AF to CD and the perpendicular BG to CD [Prs. 34, 21] (Fig. 51, c, d).

If AF = BG, the straight lines AB and CD are parallel to each other [Pr. 32].

If not, the length of one of them, for example* of BG, will be less than the length of other [Ps. A],

and the distancing direction of AB with respect to CD will be from B to A [Df. 17, Pr. 29].

AB can be produced from B to a point B′ such that its distance B′P to AF is greater than AE [Pr. 46].

Therefore, the distance to AP from the points of AB′ vary in a continuous way from zero at A, to B′P > AE

at B′ [Ax. 7].

And there will exist a point H in AB′ such that its distance HQ to AP is the equidistance AE between AP

and CD [Df. 2, Ax. 7].

If H is in CD, the finite production BH of AB cuts CD at a unique point H [Cr. 21] (Fig. 51, c).

If H is not in CD, join D and H [Cr. 15] (Fig. 51, d).

DH is parallel to AP [Cr. 32],

and it must be a production of CD, from D to H [Cr. 16],

otherwise there would be two different parallels, CD and DH , to AF through the same point D, which is
impossible [Pr. 35].

Thus, AB and CD can be produced respectively from B and from D each by a finite length [Crs. 16, 45].

to the point H , which is their unique intersection point [Cr. 21]. �

Proposition 48 (Euclid’s Postulate 5) If a common transversal makes with two given non-intersecting straight
lines two angles in the same side of the transversal that sum less than two right angles, then the given straight
lines can be produced in that side of the transversal by a finite length to a unique point where they intersect with
each other.

Figure 52 – Pr. 48

✄ Let AB and CD be any two non-intersecting straight lines [Cr. 32].
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Each of them will be in the same side of the other [Cr. 31].

Let EF be a common transversal of AB and CD [Cr. 32]

that makes with AB and CD at its respective and unique intersection points P and Q [Cr. 21]

two interior angles α and β on the same side of EF [Dfs. 22, 26]

whose sum is less than two right angles [Ax. 9].

AB and CD are not parallel to each other [Pr. 42].

Therefore, they can be produced [Cr. 16]

by a finite length to a unique intersection point R [Pr. 47].

R is not in straight line with P and Q, otherwise AB, EF y CD would belong to the same straight line [Cr.
18],

which is not the case. Therefore, PQR is a triangle [Pr. 6].

The vertex R can only be a point on the side of EF where α and β are, because in the other side [Ax. 6]

the interior angles sum more than two right angles [Pr. 44],

and PRQ would have two angles whose sum is greater than two right angles, which is impossible [Pr. 25]. �
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