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This paper uses transfinite ordinals to prove the distance between any two given points
and the interval of time between any two given instants can only be finite, and that,
under certain conditions, the number of events between any two events is always fi-
nite. It also proves a contradiction involving the actual infinity hypothesis on which the
spacetime continuum is grounded. The alternative of a discrete spacetime is then con-
sidered, and the consideration leads, via Pythagoras digital theorem, to the conclusion
that the factor for converting between continuous and digital geometries is the relativis-
tic Lorentz factor if length is replaced with the product of speed and time in a isotropic
space. These finitist results suggest the convenience to consider the possibility of a
digital interpretation of special relativity.

1. Actual and Potential infinity

According to the hypothesis of the actual infinity the elements
of an infinite collection exist all at once,in the act, as a com-
plete totality. Subsumed into the Axiom of Infinity, this hypoth-
esis is one of the pillars supporting the mainstream of contem-
porary mathematics. According to G. Cantor, Platonism (even
theo-Platonism [22]) is behind the concept of the actual infin-
ity:

. . . in my opinion the absolute reality and legality of the
natural numbers is much higher than that of the sensory
world. This is so because of a unique and very simple
reason, namely, that natural numbers exist in the high-
est degree of reality, both separately and collectively in
their actual infinitude, in the form of eternal ideas in In-
tellectus Divinus. ([15]; reference and (Spanish) text in
[9])

. . . I am only an instrument of a higher power, which
will continue to work after me in the same way as it
manifested itself thousands of years ago in Euclid and
Archimedes . . . ([5, pp 104-105])

With such convictions, ”as firm as a rock” [6, p. 298], Can-
tor did not need additional hypotheses to found his theory of
transfinite numbers. He simply took it for granted that all finite
cardinals exist as a complete totality: [4, pp 103-104]:

The first example of a transfinite aggregate is given by
the totality of finite cardinal numbers v; we call its car-
dinal number Aleph-zero and denote it byℵo; thus we
defineℵo = {v}.

where{v} is Cantor’s notation for the cardinal of the set{v} of all
finite cardinals (|N| in modern notation). According to Cantor,
the list of natural numbers exists as a complete totality despite
the fact that no last natural number completes the list. To em-
phasize this sense of completeness, consider the task of count-
ing the successive natural numbers 1, 2, 3,. . . In agreement with
the hypothesis of the actual infinity we could countall natural
numbers in any finite interval of time by performing the fol-
lowing supertask (an infinite sequence of actions carried out in
a finite interval of time [12]):

Count each of the successive natural numbers 1,2, 3...
at each of the successive instantst1, t2, t3... of a strictly
increasing sequence of instants〈ti〉 within the finite real
interval (ta, tb), beingtb the limit of the sequence.

In these conditions, attb all natural numbers would have been
counted.All. But the fact of pairing the elements of two in-
finite sequences (of natural numbers and of instants) does not
prove both sequences exist as complete totalities. Both paired
sequences could also be potentially infinite. Indeed, thereis an
alternative to the actual infinity hypothesis: the hypothesis of
the potential infinity (more pragmatic than platonic), which re-
jects the existence ofcompleteinfinite totalities, and then the
possibility of countingall natural numbers. From this perspec-
tive, the natural numbers result from the endless process of
counting: it is always possible to count numbers greater than
any given number. But it is impossible to complete the process
of counting all of them, just because it is an endless process.
So, the complete list of all natural numbers makes no sense.
For this and other reasons, Bolzano, Dedekind and Cantor tried
to prove the existence of actual infinities. Bolzano’s proofgoes
as follow ([16, p 112]):

One truth is the proposition that Plato was Greek. Call
this p1. But then there is another truthp2, namely the
proposition thatp1 is true [But then there is another truth
p3, namely the proposition thatp2 is true]. And soad in-
finitum. Thus the set of truths is infinite.

But the existence of an endless sequence of inferences (p1 is
true, thenp2 is true, thenp3 is true, then . . . ) does not prove
the existence of a complete infinite totality of inferences.It
only proves the existence of an endless (potentially infinite) se-
quence of inferences. Dedekind’s proof is similar (taken from
[16, p 113]):

Given some arbitrary thoughts1, there is a separate
thoughts2, namely thats1 can be object of thought [there
is a separate thoughts3, namely thats2 can be object of
thought]. And so ad infinitum. Thus the set of thoughts
is infinite.

The above comment on Bolzano proof also applies to
Dedekind’s. Dedekind gave another proof a little more detailed,
albeit with the same formal defect, based on his definition ofin-
finite set [7, p. 112]. And finally, Cantor’s proof: ([11, p 25],
[16, p. 117]):

Each potential infinite presupposes an actual infinity.

or ([3, p. 404] English translation [20, p. 3]):

... in truth the potential infinity has only a borrowed real-
ity, insofar as a potentially infinite concept always points
towards a logically prior actually infinite concept whose
existence it depends on.
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It is then clear why the existence of an (actual) infinite set had
to be finally established by means of an axiom, the Axiom of
Infinity. The following two sections make use of the subse-
quent infinitist mathematics in two opposite directions. Their
respective conclusions could benefit physics.

2. On infinite distances, times and sequences of events

Transfinite ordinals are used here to prove a result relevantto
physics: that distances, times and sequences of events can only
be finite (the proof makes use of some basics of Euclidean ge-
ometry not referred to in the proof).

Proposition-The length of a straight line with two endpoints is
always finite. And the distance between any two given points is
always finite.
Proof.-Let A andB be any two points;AB the unique straight
line joining them; andP1 a point ofAB at any finite distance
AP1 (length ofAP1) from A. Let P be the sequence of all suc-
cessive pointsP1, P2, P3 . . . of ABdefined according to:∀Pi≥1:
iff Pi B ≥ AP1, take a pointPi+1 in Pi B separated fromPi by a
distanceAP1. Consider the closed segment [Q, B] whose length
is alsoAP1. It holds:∀Pα ∈ P andPα ∈ [A,Q], there will be a
point Q′ ∈ [Q, B] such thatPαQ′ ≥ AP1 becausePαB ≥ AP1.
In consequence, there must be in [Q, B] one point (and only one
becauseQB= AP1) Pφ of P, otherwiseP would not contain all
pointsPi of AB such thatPi−1Pi = AP1, which is not the case.
So, the sequenceP has a last elementPφ. The endpointsA and
B and the sequenceP define inAB a sequenceS of successive
adjacent segments: [A,P1], (P1,P2], (P2,P3] . . . (PφB] of the
same lengthAP1 , except at most the last onePφB ≤ AP1. In
the orderingO of S, there is a first element [A,P1]; a last ele-
ment (Pφ, B]; each element (Pi ,Pi+1] has an immediate prede-
cessor (Pi−1,Pi ] (or [A,P1]), except [A,P1], and an immediate
successor (Pi+1,Pi+2] (or (Pφ, B]), except (Pφ, B]; no element
exists between any two of its successive elements; and any non
empty subsequenceS’ of S, containing, for instance, (Pv,Pv+1],
will also contain an element that precedes in the orderingO of
S all elements ofS’ except itself: one of the elements [A,P1],
(P1,P2], (P2,P3]. . . (Pv,Pv+1]. Therefore,S is a well ordered
sequence, to which an ordinal number can be assigned [4, p.
152]. In addition,S cannot be non-denumerable [2]. The or-
dinal of S cannot be the least transfinite ordinalω because the
sequences whose ordinal isω (as theω-ordered sequence of all
finite ordinals 1, 2, 3,. . . ) have not a last element, which is not
the case ofS. So, if the ordinal ofS were infinite, it would
be greater thanω, in which case there would be a first element
succeeding all elements [A,P1], (P1,P2], (P2,P3]. . . indexed by
the sequence of all finite ordinals 1, 2, 3,. . . which can only be
the limit of all them (PωPω+1] [4, Theorem I, p. 158] (Pw+1

could beB). Take inAB a pointR at any given distance from
Pω less thanAP1, and in the direction fromPω to A. The point
Rcould only belong to a segment (Pv,Pω] immediately preced-
ing (Pω,Pω+1] (or (Pω, B]). But (Pv,Pω] is impossible because
there is not a last finite ordinalv whose immediate successor
v + 1 is ω. Hence, the ordinal ofS cannot be infinite but fi-
nite. S can only have a finite number of elements. And being
finite the sum of any finite number of finite lengths,AB has a
finite length. And the distance between any two given points
(the length of the straight line joining them) is always finite.�

The same above argument proves the time elapsed between any
two given instants can only be finite. And that the number of

events between any two events is always finite if the interval
of time between any two of them is equal or greater than any
given finite interval of time.

3. A proof of inconsistency
The historical controversy between the potential and the ac-
tual infinity came to a practical end when set theory was for-
mally established, subsuming the hypothesis of the actual in-
finity into the Axiom of Infinity. Since then, the actual in-
finity has been absolutely hegemonic in contemporary mathe-
matics (although some relevant authors as Kronecker, Poincaré,
Brouwer, Wittgenstein, Kleene, among others, rejected it). But
set theory, and other related theories as supertask theory,also
contain the instruments to develop arguments questioning the
consistency the hypothesis of the actual infinity. Over the last
25 years, more than 30 of such arguments have been completed
(pending its publication, a summary is available in [14]). It
would be good news for physicists if at least one of those proofs
were correct, as they would be freed from the tedious calcula-
tions needed to remove the sterile infinities from their equa-
tions. What follows is the shortest of those arguments (halfa
page, including comments). It has been selected as a tributeto
J.J. Thomson (1921-1984) and P. Benacerraf (1931-) for their
seminal debate on supertasks [21, 1].

Supertasks are performed by supermachines: theoretical
devices intended to facilitate the discussions on the actual in-
finity, although their physical possibilities have also been ana-
lyzed (see for instance [19], [8], [13], [18]). So, let SM be a
supermachine that counts natural numbers in such a way that it
counts each of the successive natural numbers 1, 2, 3... at each
of the successive instantst1, t2, t3... of a strictly increasing se-
quence of instants〈tn〉 in the real interval (ta, tb), beingtb the
limit of 〈tn〉. In addition, SM has a red LEDL that turnson
if, and only if, AM counts an even number; and turnsoff if,
and only if, SM counts an odd number, and so that the counting
of the number and the change of state ofL are simultaneous
and instantaneous events. The one to one correspondencef be-
tweenN and〈tn〉 defined byf (n) = tn,∀n ∈ N proves that attb
all natural numbers have been counted by SM. The conclusions
on the state ofL at tb will not be deduced from its successive
states while performing the supertask of counting all natural
numbers, as Thomson did with his lamp [21], otherwise Be-
nacerraf’s criticism would be inevitable [1]. They will deduced
from the fact of being a LED with two, and only two, states,
on andoff, so that no other alternative exist. Thus, if after per-
forming the supertask, SM continues to be the same counting
machine it was before beginning the supertask, i.e. if perform-
ing a supertask does not arbitrarily violate a legitimate formal
definition, as that of SM, then its LEDL can only be eitheron
or off, simply because, according to its legitimate definition,L
can only be eitheron or off, and it will always be eitheron or
off, independently of the number of times it has been turnedon
andoff. Assume, then, that attb, the LEDL is on (the same ar-
gument applies if it isoff ). One of the following two exhaustive
and mutually exclusive alternatives must be true:

1. At tb, L is on because SM counted a last even number
that left it on.

2. At tb, L is onbecause of any other reason.

The first alternative is impossible ifall natural numbers have
been counted: each even number has an immediate odd succes-
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sor and there is not a last natural number, neither even nor odd.
The second alternative implies the formal definition of SM has
been arbitrarily violated:L turnson if, and only if, SM counts
an even number, which excludes the possibility of being turned
onby any other reason. Since the same argument applies ifL is
off at tb, we must conclude that if theω-ordered list of natural
numbers exists as a complete infinite totality, then, once com-
pleted the supertask of counting all of them,L can be neither
onnoroff ; though, by definition, it will be eitheronor off. The
alternative to this contradiction is the arbitrary violation of a
legitimate definition with the only purpose to justify thatL can
change its state by reasons different from the reason defined as
the unique reason by whichL can change its state: if, and only
if, SM counts a natural number, being both events simultane-
ous and instantaneous. But assuming the arbitrary violation of
a definition when convenient means any thing can be proved.
So this alternative is formally unacceptable. Notice againthe
above contradiction on the state ofL at tb has not been drawn
from its successive states while performing the supertask,but
from the fact of being a LED with two definite, precise and
unique states:on andoff, and so that it turnson if, and only if,
SM counts an even number, and it turnsoff if, and only if, SM
counts an odd number. Thus, SM definition forces the actual
infinity to leave a track of its existence through the state ofL
at tb, and what it leaves is an inconsistency. By contrast, from
the hypothesis of the potential infinity, only finite totalities of
numbers can be counted, as large as wished but always finite,
and depending of the parity of the last counted number,L will
be eitheronor off, in agreement with the definition of SM.

4. Digital relativity

Most of decimal expansions of the real numbers areω−orde-
red sequences of decimals that, according to the hypothesisof
the actual infinity, exist all at once, as complete totalities of
ℵo decimals each. Consider the firsts 1.76× 1079 decimals of
any of them. In standard text of 5mm per numeral, thismi-
nusculenumber (compared withℵo) of decimals would be a
lineal string of numerals longer than the diameter of the vis-
ible universe. It is not hard to imagine Ockham opinion on
a physical constant (and on the corresponding universe) whose
decimal expansion is a string of numerals longer than the diam-
eter of the universe. Andℵo is minuscule compared with 2ℵo,
the power of the continuum, the cardinal of the set of real num-
bers; or the number of points of any segment of the real line;
or the number of points of the whole tridimensional universe.
Recall that a lineal interval trillions of times less than Planck
length has the same number of points (2ℵo) as the whole tridi-
mensional universe. Formal physics is made of this infinitist
mathematics. Particularly one of its most successfully theories:
the theory of special relativity, a theory on the spacetime con-
tinuum. But space and time could also be discontinuous, dig-
ital, even if the hypothesis of the actual infinity is consistent.
Let alone if it is not, as the above argument of the counting
supermachine suggests. If it is not, space and timecould only
beof a discrete nature. Surprisingly, if that were the case, the
theoretical and experimental success of special relativity could
be explained in terms of a coincidence: Lorentz factor has the
same algebraic form as the factor for converting continuousin
discrete geometries. This section proves that is the case ina
isotropic spacetime.

At least since Heisenberg [10, pp. 68-72], there has been

a growing interest in discrete spacetimes (DST), even in ex-
perimental terms [17], although all attempts to approach this
digital vision of space and time have been made within the
framework of infinitist mathematics, the hegemonic, and prac-
tically unique, stream of mathematics from the beginning of
XX century. Though for the reasons given in the precedent
section, that could not be the best framework. In any case, at
the moment we must accept we know nothing on the actual ge-
ometry of DST. Notwithstanding, some elementary conclusions
can be logically drawn from the own concept of discreteness.
For instance, DST should be made of indivisible units of space
(geons) and of time (chronons); the distance between two geons
should be an integer number of geons; the interval between two
chronons an integer number of chronons; the number of geons
of the hypotenuse of a right triangle should be equal to the num-
ber of geons of its greater leg (Pythagoras digital theorem);
nothing can move a distance less than one geon; nothing can
last less than one chronon; integer numbers should play in DST
the same role as the real numbers play in the continuum; speed
should be defined as the ratio of the integer number of geons
an object traverses to the integer number of elapsed chronons;
there would be a maximum speed of one geon per chronon. In
addition, if DST is isotropic, as physical space seems to be,its
geons should be anyway isometric. Under this last assumption
it is possible to convert between continuous and discrete hy-
potenuses. Indeed, leth, x andy be the respective number of
geons of the hypotenuse and legs of a right triangle in DST,
and letλ be the length of a geon in the continuous geometry.
Assumex < y. In the discrete geometry of DST we will have:
h = y. In classical Euclidean geometry the length of the hy-
potenuse will no longer behλ but h′λ, beingh′ > h, because it
is greater than the lengthyλ of the greatest leg (note that while
h, x andy are natural numbers,λ andh′ are real numbers). Ac-
cording to classical Pythagoras theorem, it can be written:

(h′λ)2 = (xλ)2 + (yλ)2; y =
√

h′2 − x2 (1)

The ratio between the continuous and the discrete hypotenuse
can be written:

h′λ
hλ
=

h′

h
=

h′

y
=

h′
√

h′2 − x2
=

1
√

1−
( x
h′

)2
(2)

where the last term on the right side of (2) as the algebraic form
of the relativistic Lorentz factorγ. It can ve rewritten as:

h′λ
hλ
=

1
√

1−
( xλ
h′λ

)2
(3)

Let φ be a photon that moves through a vertical distanceyλ in
the rest frameRFo of its source. Assumeφmoves the same ver-
tical distanceyλ from the perspective of another inertial frame
RFv while RFo moves with respect toRFv the horizontal dis-
tancexλ at a uniform velocityv parallel toXv for a timetv. So,
φ moves with respect toRFv along the hypotenuse of a right
triangle whose legs areyλ andxλ = vtv, i.e. alongh′λ. And it
will hold h′λ = ctv. Therefore, (3) can be rewritten:

h′λ
hλ
=

1
√

1−
(

vtv
ctv

)2
=

1
√

1−
(

v

c

)2
= γ (4)
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which proves the ratio between the continuous hypotenuse and
its corresponding discrete alternative is the relativistic Lorentz
factorγ.

In conclusion, the above finitist conclusions suggest the
convenience to consider the possibility of a digital interpre-
tation of spacetime and of its main physical theory, though
the new interpretation should be developed within a new fini-
tist mathematics framework, of which everything is to be done
(current discrete mathematics are infinitist). In these newcon-
ditions, discreteness could surely account for the weirdness of
relativity related to the universal character of the speed of light.
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