Double Relativity: An Inconsistent reflection of light

(Adapted from a draft chapter of the book Discrete Relativity, in preparation)
Antonio Leon
Instituto F. Salinas (Retired), Salamanca, Spain.

Abstract

This paper discusses the role of Lorentz transformation in two inconsistent changes in the velocity of a photon moving through a standard fluid each time the photon is reflected by a mirror inside the fluid, being the fluid at rest in its container and the container observed at rest and in uniform relative motion.

1.-Conventions

All reference frames (frames hereafter) will be assumed to be inertial. $R F_{o}$ will denote the frame of any object or observer at rest in that frame. $R F_{v}$ will denote another frame in relative motion with respect to $R F_{o}$, whose axes coincide with the corresponding axes of $R F_{o}$ at a certain instant. The axes in the plane $X Y$ of $R F_{o}$ and $R F_{v}$ will be denoted respectively by X_{o}, Y_{o} and X_{v}, Y_{v}. From the perspective of $R F_{v}, R F_{o}$ will be assumed to move at a uniform velocity v parallel to X_{v} and such that $v=k c, 0<k<1$, where c is the speed of light in a vacuum. Lengths, times and refractive indices measured in $R F_{o}$ and $R F_{v}$ will be respectively sub-indexed by o and v. Lorentz transformation will be denoted by LT. And, unless otherwise indicated, the term "velocity" will be used to refer to the module of the vector velocity, i.e. as a synonym of speed.

2.-Double relativity

At the beginning of this century, Amelino Camelia proposed a solution [3] to the problem of the incompatibility of LT with the character of universal constants of Planck length and Planck time, a solution now known as Doubly Special Relativity, so called because it includes a minimum length and a maximum energy as universal constants (apart from a maximum velocity). Though the theory was not enthusiastically received [[5], [2], [1], [4]], it is a well known relativistic refinement associated with its original name (it is also associated with the names Deformed Special Relativity and Extra Special Relativity). It is for this reason that I would like to stress the discussion that follows has nothing to do with Doubly Special Relativity, but it is a discussion on an aspect of the special relativity that should be termed Double Relativity. Indeed, the discussion that follows deals with objects that move inside (through) other objects that in turn are in relative motion with respect certain frames, but focusing the attention on the relative motion of the first objects with respect to second ones. For instance the motion of a photon through a transparent media at rest in its container while the container moves relative to a given frame $R F_{v}$. The calculation of the velocity of the first object with respect to the frame $R F_{v}$ is a classical relativistic problem, but it is not the problem we are here interested in. Here, we are interested in the velocity of the first object with respect to second one calculated by means of the rulers and the clocks of $R F_{v}$, or by making an appropriate use of LT.

A key concept in the discussion that follows will be the concept of velocity: the ratio of the distance an object traverses to the time taken [6, p. 514]. Though in our case the distance can be a moving distance, for example the distance an object O_{1} traverses inside a second object O_{2} in relative motion. But, moving as it may be, it will always be a fixed distance; for example, the length of the traversed object O_{2}. A distance that can be calculated according to all relativistic requirements within a frame, for instance $R F_{v}$, respect to which both objects move. Obviously, the velocity of O_{1} through O_{2} is different from the velocity of O_{1} with respect to $R F_{v}$, which is the relativistic sum of the velocity of O_{1} with respect to O_{2}, plus the velocity of O_{2} with respect to $R F_{v}$. The distance O_{1} traverses through O_{2} (for example the length of O_{2}) is also different from the distance O_{1} traverses with respect to $R F_{v}$. Indeed, the distance O_{1} traverses with respect to $R F_{v}$ is the sum of the distance O_{1} traverses through O_{2} plus the distance O_{2} moves with respect to $R F_{v}$ while O_{1} completes its trip though O_{2} (whenever O_{1} and O_{2} move along parallel trajectories). Obvious as it may seem, it will be proved the time elapsed while traversing both distances is the same and equal to the time given by LT for the second of them. On the other hand, if the definition of speed through an object only holds for objects observed at rest, this ad hoc restriction should be explicitly declared in both the physical definition of speed and the First Principle of relativity: the laws of physics are the same in all frames, unless the involved speeds are speeds through objects in relative motion. Evidently, according to this restriction of the First Principle of relativity, certain physical phenomena as the reflection or the refraction of light moving through two transparent media, air and water for instance, could only be examined and interpreted in physical terms in the rest frame of the corresponding transparent media.

3.-The Scenario of the Discussion

This section defines and prepares the scenario for the discussion that will be developed in the next section: the analysis of the speed of a photon through a standard fluid $F L$ of refractive index $n_{o}>1$ (for instance water at standard conditions) which is at rest in a container $C O$, in turn at rest in a frame $R F_{o}$ that moves relative to another frame $R F_{v}$. As Figures 1 illustrates, the container $C O$ of our discussion has a square section whose sides are placed parallel to the axis X_{o} and Y_{o} of its rest frame $R F_{o}$. $C O$ is equipped with a laser source $L S$ and a laser detector $L D$ on its left side, where they can be adjusted. For the present

Fig. 1 - A section parallel to the plane $X_{o} Y_{o}$ of the standard fluid $F L$ within its container $C O$ in its rest frame $R F_{o}$ (left) and in the frame $R F_{v}$ (right), in which it its parallel to the plane $X_{v} Y_{v} . L S$ adjustable laser source; $L B 1, L B 2$ and $L B 3$ mutually orthogonal parts of the visible laser beam trajectory; $M 1$ and $M 2$ adjustable mirrors; $L D$ adjustable laser detector.
discussion, $L S$ will be assumed to emit a visible laser beam $L B 1$ parallel to X_{o} and so that it impacts on an adjustable mirror $M 1$ that reflects it in a ray $L B 2$ perpendicular to the incident $L B 1$, i.e $L B 2$ is parallel to Y_{o}. This ray $L B 2$ reaches a second adjustable mirror $M 2$ that reflects it in a third ray $L B 3$ perpendicular to $L B 2$, and then parallel to X_{o}. Finally, LB3 impacts on an the detector $L D$ which emits an appropriate signal visible in all frames, whether at rest or in relative motion. The laser source $L S$, the mirrors $M 1$ and $M 2$ and the laser detector $L D$ are adjusted in their rest frame $R F_{o}$ in such a way that:

1. The trajectories $A_{o} B_{o}$ and $C_{o} D_{o}$ respectively of $L B 1$ and $L B 3$ are parallel to X_{o} and have the same length x_{o}.
2. The trajectory $B_{o} C_{o}$ of $L B 2$ is parallel to Y_{o} and has a length $y_{o}=x_{o}$.

According to the above established conventions, $R F_{v}$ is a frame that coincides at a certain instant with $R F_{o}$, and from whose perspective $R F_{o}$ moves parallel to X_{v} at a velocity $v=k c, 0<k<1$. Therefore, and according to LT, from the perspective of $R F_{v}$:

1. The trajectories $A_{v} B_{v}$ and $C_{v} D_{v}$ respectively of $L B 1$ and $L B 3$ are parallel to X_{v} and have the same length $x_{v 1}=x_{v 2}=$ $\gamma^{-1} x_{0}$.
2. The trajectory $B_{v} C_{v}$ of $L B 2$ is parallel to Y_{v} and has a length $y_{v}=y_{o}=x_{o}$.

The next section analyses the speed of a photon of the laser beam $L B$ moving through the fluid $F L$, which, being a standard fluid, is an amorphous (non-crystalline) material and then isotropic with respect to the refractive index: the refractive index n_{o} of $F L$ is the same in all directions through which light moves. Or in other words, light moves with the same velocity in all directions through $F L$, a conclusion of which we have the highest theoretical and empirical evidence. In particular, we will analyze the velocity of a photon ϕ of the laser beam $L B$ through $F L$ from the perspective of both $R F_{o}$ and $R F_{v}$. But while the velocity c / n_{o} of ϕ through $F L$ is the same as the velocity of ϕ with respect to $R F_{o}$, the velocity of ϕ through $F L$ is different from the velocity of ϕ with respect to $R F_{v}$, which is the relativistic sum of the velocity c / n_{o} and the velocity $k c$ of the container $C O$, and then of $F L$, with respect to $R F_{v}$.

According to the definition of velocity (scalar velocity, or module of the vector velocity), the velocity of a photon through $F L$ is the ratio of the traversed distance through $F L$ to the time the photon takes to traverse it. Both magnitudes, the distance and the time, can be measured in $R F_{o}$ and in $R F_{v}$ with their respective clocks and rulers. The distances measured in both frames can be directly transformed into each other by LT; and the times the photon travels through $F L$ in $R F_{o}$ and in $R F_{v}$ will be proved to be the same as the respective times the photon travels with respect to $R F_{o}$ and to $R F_{v}$ (obvious as it may seem, it must be proved). In $R F_{o}$ a photon of the laser beam $L B$ always moves from A_{o} to B_{o}; then from B_{o} to C_{o}; and then from C_{o} to D_{o}. In $R F_{v}$ the same photon always moves from A_{v} to B_{v}; then from B_{v} to C_{v}; and then from C_{v} to D_{v}. According to the adjustments in $R F_{o}$, it holds

$$
\begin{align*}
A_{o} B_{o}=C_{o} D_{o} & =x_{o} \tag{1}\\
B_{o} C_{o} & =y_{o} \tag{2}\\
x_{o} & =y_{o} \tag{3}
\end{align*}
$$

In $R F_{v}$, and according to LT , it holds:

$$
\begin{align*}
& A_{v} B_{v}=x_{v 1}=\gamma^{-1} x_{o} \tag{4}\\
& B_{v} C_{v}=y_{v}=y_{o}=x_{o} \tag{5}\\
& C_{v} D_{v}=x_{v 2}=\gamma^{-1} x_{o} \tag{6}
\end{align*}
$$

Since $R F_{o}$ and $R F_{v}$ are inertial reference frames, no force acts on them so that (1)-(3) and (4)-(6) hold wile performing all observations and measurements, and they are constants for each relative uniform velocity. They are, then, the distances a photon traverses through $F L$ when going respectively from the source $L S$ to the mirror $M 1$, from the mirror $M 1$ to the mirror $M 2$, and from the mirror $M 2$ to the detector $L D$. Obviously, these distances are different from the distances the photon traverses with respect to $R F_{v}$, as will be shown later.

With respect to time, and considering the isotropic nature of $F L$, light travels through $F L$ at the same velocity in all directions. So, in $R F_{o}$ a photon of the laser beam $L B$ takes the same time t_{o} to go from A_{o} to B_{o} as to go from B_{o} to C_{o} as to go from C_{o} to D_{o}, i.e. it lasts a time $3 t_{o}$ to go from A_{o} to D_{o} through a distance $3 x_{o}$. In the case of $R F_{v}$, and denoting by $t_{v a b}$, $t_{v b c}$ and $t_{v c d}$ the respective times a photon takes to go from A_{v} to B_{v}, from B_{v} to C_{v} and from C_{v} to D_{v} (times between the events start moving at A_{v}-end at B_{v};start moving at B_{v}-end at C_{v}; start moving at C_{v}-end at D_{v}), all of them of the same duration t_{o} in $R F_{o}$, LT gives:

$$
\begin{align*}
t_{v a b} & =\gamma t_{o}+\frac{\gamma x_{o} k c}{c^{2}} \tag{7}\\
& =\gamma\left(t_{o}+\frac{x_{o} k}{c}\right) \tag{8}\\
t_{v b c} & =\gamma t_{o} \tag{9}\\
t_{v c d} & =\gamma t_{o}-\frac{\gamma x_{o} k c}{c^{2}} \tag{10}\\
& =\gamma\left(t_{o}-\frac{x_{o} k}{c}\right) \tag{11}
\end{align*}
$$

Hence, in $R F_{v}$ a photon of $L B$ lasts a time $3 \gamma t_{o}$ in going from A_{v} to D_{v}. The problem is that in $R F_{v}$ the photon moves through $F L$ a distance that is not $3 \gamma^{-1} x_{o}$, but $\left(1+2 \gamma^{-1}\right) x_{o}$, which is related to the problem the next section examines.

Unnecessary as it may seem, it will be proved now the time $t_{v a b}$ a photon travels at a velocity c / n_{v} through $F L$ when going from A_{v} to B_{v}, is the same as the time t_{v} it lasts in traversing the distance $A_{v} B_{v}+k c t_{v}$ at the velocity c_{v} with respect to $R F_{v}$, which is the velocity resulting from the relativistic sum of the velocities c / n_{o} and $k c$, which is given by:

$$
\begin{equation*}
c_{v}=\frac{\frac{c}{n_{o}}+k c}{1+\frac{k c c / n_{o}}{c^{2}}}=\frac{\frac{c+n_{o} k c}{n_{o}}}{\frac{n_{o}+k}{n_{o}}}=\frac{c\left(1+n_{o} k\right)}{n_{o}+k} \tag{12}
\end{equation*}
$$

In consequence, it can be written:

$$
\begin{align*}
& t_{\text {vab }}=\frac{\gamma^{-1} x_{o}+k c t_{\text {vab }}}{\frac{c\left(1+n_{o} k\right)}{n_{o}+k}}=\frac{\left(\gamma^{-1} x_{o}+k c t_{v a b}\right)\left(n_{o}+k\right)}{c\left(1+n_{o} k\right)} \tag{13}\\
& c t_{\text {vab }}\left(1+n_{o} k\right)=\left(\gamma^{-1} x_{o}+k c t_{v a b}\right)\left(n_{o}+k\right) \tag{14}\\
& c t_{v a b}\left(1+n_{o} k\right)=\gamma^{-1} x_{o}\left(n_{o}+k\right)+k c t_{v a b}\left(n_{o}+k\right) \tag{15}\\
& c t_{\text {vab }}\left(1+n_{o} k-n_{o} k-k^{2}\right)=\gamma^{-1} x_{o}\left(n_{o}+k\right) \tag{16}\\
& c t_{\text {vab }}\left(1-k^{2}\right)=\gamma^{-1} x_{o}\left(n_{o}+k\right) \tag{17}\\
& c t_{v a b} \gamma^{-2}=\gamma^{-1} x_{o}\left(n_{o}+k\right) \tag{18}\\
& t_{v a b}=\gamma\left(\frac{n_{o} x_{o}}{c}+\frac{k x_{o}}{c}\right) \tag{19}
\end{align*}
$$

And being $c / n_{o}=x_{o} / t_{o}$:

$$
\begin{equation*}
t_{v a b}=\gamma\left(t_{o}+\frac{x_{o} k}{c}\right) \tag{20}
\end{equation*}
$$

that coincides with (8). For the case of $t_{v b c}$ in which the photon moves at a velocity c / n_{o} parallel to Y_{v}, while the relative velocity $k c$ is parallel to X_{v}, we will have a vector velocity $\overrightarrow{c_{v}}$ whose components result from the relativistic sum of the vectors $(k c, 0,0)$ and $\left(0, c / n_{o}, 0\right)$:

$$
\begin{align*}
\vec{c}_{v} & =\left(\frac{0+k c}{1+\frac{k c \times 0}{c^{2}}}, \frac{\gamma^{-1} \frac{c}{n_{o}}}{1+\frac{k c \times 0}{c^{2}}}, \frac{\gamma^{-1} 0}{1+\frac{k c \times 0}{c^{2}}}=0\right) \tag{21}\\
& =\left(k c, \gamma^{-1} c / n_{o}, 0\right) \tag{22}
\end{align*}
$$

whose module c_{v} is

$$
\begin{align*}
c_{v} & =\sqrt{k^{2} c^{2}+\gamma^{-2} \frac{c^{2}}{n_{o}^{2}}}=\sqrt{\frac{n_{o}^{2} c^{2} k^{2}+\gamma^{-2} c^{2}}{n_{o}^{2}}}=\frac{c}{n_{o}} \sqrt{n_{o}^{2} k^{2}+\gamma^{-2}}=\frac{c}{n_{o}} \sqrt{n_{o}^{2} k^{2}+1-k^{2}} \tag{23}\\
& =\frac{c}{n_{o}} \sqrt{1+k^{2}\left(n_{o}^{2}-1\right)} \tag{24}
\end{align*}
$$

In this case, the photon moves with respect to $R F_{v}$ a distance d_{v} :

$$
\begin{equation*}
d_{v}=\sqrt{k^{2} c^{2} t_{v b c}^{2}+y_{o}^{2}} \tag{25}
\end{equation*}
$$

at the velocity c_{v} given by (24). Hence, it holds:

$$
\begin{align*}
& t_{v b c}=\frac{\sqrt{k^{2} c^{2} t_{v b c}^{2}+y_{o}^{2}}}{\frac{c}{n_{o}} \sqrt{1+k^{2}\left(n_{o}^{2}-1\right)}} \tag{26}\\
& t_{v b c}^{2} \frac{c^{2}}{n_{o}^{2}}\left(1+k^{2}\left(n_{o}^{2}-1\right)\right)=k^{2} c^{2} t_{v b c}^{2}+y_{o}^{2} \tag{27}\\
& t_{v b c}^{2} c^{2}\left(1+k^{2}\left(n_{o}^{2}-1\right)\right)=n_{o}^{2} k^{2} c^{2} t_{v b c}^{2}+n_{o}^{2} y_{o}^{2} \tag{28}\\
& \left.t_{v b c}^{2} c^{2}\left(1+k^{2}\left(n_{o}^{2}-1\right)\right)-n_{o}^{2} k^{2}\right)=n_{o}^{2} y_{o}^{2} \tag{29}\\
& t_{v b c}^{2} c^{2}\left(1+n_{o}^{2} k^{2}-k^{2}-n_{o}^{2} k^{2}\right)=n_{o}^{2} y_{o}^{2} \tag{30}\\
& t_{v b c}^{2} c^{2}\left(1-k^{2}\right)=n_{o}^{2} y_{o}^{2} \tag{31}\\
& t_{v b c}^{2} c^{2} \gamma^{-2}=n_{o}^{2} y_{o}^{2} \tag{32}\\
& t_{v b c} c \gamma^{-1}=n_{o} y_{o} \tag{33}\\
& t_{v b c}=\gamma \frac{n_{o} y_{o}}{c}=\gamma \frac{y_{o}}{c / n_{o}} \tag{34}\\
& t_{v b c}=\gamma t_{o} \tag{35}
\end{align*}
$$

that coincides with (9). Finally, in the case of the trajectory $C_{v} D_{v}$, the velocity c / n_{o} is parallel but in the opposite sense of $k c$, so that their relativistic sum is.

$$
\begin{equation*}
c_{v}=\frac{\frac{c}{n_{o}}-k c}{1-\frac{k c c / n_{o}}{c^{2}}}=\frac{\frac{c-n_{o} k c}{n_{o}}}{\frac{n_{o}-k}{n_{o}}}=\frac{c\left(1-n_{o} k\right)}{n_{o}-k} \tag{36}
\end{equation*}
$$

and the distance with respect to $R F_{v}$ the photon traverses is $\gamma^{-1} x_{o}-k c t_{v c d}$. So then, it can be written:

$$
\begin{align*}
& t_{v c d}=\frac{\gamma^{-1} x_{o}-k c t_{v c d}}{\frac{c\left(1-n_{o} k\right)}{n_{o}-k}}=\frac{\left(n_{o}-k\right)\left(\gamma^{-1} x_{o}-k c t_{v c d}\right)}{c\left(1-n_{o} k\right)} \tag{37}\\
& c t_{v c d}\left(1-n_{o} k\right)=\left(n_{o}-k\right)\left(\gamma^{-1} x_{o}-k c t_{v c d}\right)=\left(n_{o}-k\right) \gamma^{-1} x_{o}-\left(n_{o}-k\right) k c t_{v c d} \tag{38}\\
& c t_{v c d}\left(1-n_{o} k+\left(n_{o}-k\right) k\right)=\left(n_{o}-k\right) \gamma^{-1} x_{o} \tag{39}
\end{align*}
$$

$$
\begin{align*}
& c t_{v c d}\left(1-n_{o} k+n_{o} k-k^{2}\right)=\left(n_{o}-k\right) \gamma^{-1} x_{o} \tag{40}\\
& c t_{v c d}\left(1-k^{2}\right)=\left(n_{o}-k\right) \gamma^{-1} x_{o} \tag{41}\\
& c t_{v c d} \gamma^{-2}=\left(n_{o}-k\right) \gamma^{-1} x_{o} \tag{42}\\
& t_{v c d}=\gamma\left(\frac{n_{o} x_{o}}{c}-\frac{k x_{o}}{c}\right) \tag{43}
\end{align*}
$$

And being $c / n_{o}=x_{o} / t_{o}$:

$$
\begin{equation*}
t_{v a b}=\gamma\left(t_{o}-\frac{x_{o} k}{c}\right) \tag{44}
\end{equation*}
$$

that coincides with (11)

Fig. 2 - Top: the velocity of a photon through $F L$ calculated from $R F_{v}$ in each of its three mutually orthogonal trajectories. Bottom: Instantaneous changes of velocities of the photon ϕ after each reflection, as observed from $R F_{v}$.

4.-InCONSISTENT CHANGES OF VELOCITY

This section examines the velocity of a photon ϕ of the laser beam $L B$ from its emission by the source $L S$, which takes place at point A_{o} of $R F_{o}\left(A_{v}\right.$ in $R F_{v}$), to its detection by $L D$, which takes place at point D_{o} of $R F_{o}$ (D_{v} in $R F_{v}$). To begin with, recall that what will be examined here is the velocity of a photon through a standard fluid $F L$ with a refractive index $n_{o}>1$, for instance water ($n_{o}=1.333$) at standard conditions of pressure and temperature (obviously, $F L$ could be any other fluid at many other thermodynamic conditions). As a standard fluid, $F L$ is an amorphous material, i.e. a material without internal crystalline structure (without long-range order) and whose molecules move randomly. In consequence they are randomly distributed in its container $C O$, and the Law of Large Numbers ensures there is the same number of them in any direction (structural isotropy). Therefore, the number and types of the electromagnetic interactions between light and $F L$, responsible for the speed of the photon through $F L$, are the same in all directions. It is for this well known reason that fluids are isotropic with respect to the refractive index: the index of refraction is the same in all directions along which light propagates through them, obviously including the two senses of each direction (the refractive index is the same in both directions of any give direction even in anisotropic media). From the perspective of $R F_{o}$, the photon ϕ moves with the same velocity c / n_{o} along the three mutually orthogonal sections of its trajectory: $A_{o} B_{o}, B_{o} C_{o}$ and $C_{o} D_{o}$. Things are quite different from the perspective of $R F_{v}$. Indeed, in the first part of its trajectory, from A_{v} to B_{v}, the photon travels with a velocity $c_{v a b}$ given by:

$$
\begin{align*}
c_{v a b} & =\frac{\gamma^{-1} x_{o}}{\gamma\left(t_{o}+\frac{k c x_{o}}{c^{2}}\right)}=\frac{\gamma^{-1}}{\gamma\left(\frac{t_{o}}{x_{o}}+\frac{k}{c}\right)} \tag{45}\\
& =\frac{\gamma^{-2}}{\frac{n_{o}}{c}+\frac{k}{c}}=\frac{\gamma^{-2} c}{n_{o}+k} \tag{46}\\
& =c \frac{1-k^{2}}{n_{o}+k} \tag{47}
\end{align*}
$$

In the second part of its trajectory, ϕ moves with a velocity $c_{v b c}$ given by:

$$
\begin{equation*}
c_{v b c}=\frac{y_{v}}{\gamma t_{o}}=\frac{y_{o}}{\gamma t_{o}}=\frac{c}{\gamma n_{o}}=\frac{c \sqrt{1-k^{2}}}{n_{o}} \tag{48}
\end{equation*}
$$

And in the third part of its trajectory, from C_{v} to D_{v}, ϕ moves with a velocity $c_{v c d}$ given by:

$$
\begin{equation*}
c_{v c d}=\frac{\gamma^{-1} x_{o}}{\gamma\left(t_{o}-\frac{k c x_{o}}{c^{2}}\right)}=\frac{\gamma^{-1}}{\gamma\left(\frac{t_{o}}{x_{o}}-\frac{k}{c}\right)} \tag{49}
\end{equation*}
$$

$$
\begin{align*}
& =\frac{\gamma^{-2}}{\frac{n_{o}}{c}-\frac{k}{c}}=\frac{\gamma^{-2} c}{n_{o}-k} \tag{50}\\
& =c \frac{1-k^{2}}{n_{o}-k} \tag{51}
\end{align*}
$$

As Figure 2 (top) shows, the three velocities are different from one another (recall we are using the word "velocity" for the module of the vector velocity). And the differences can be of several thousands of kilometers per second (even more than 150000 kilometers per second), as Figure 2 (bottom) shows. In consequence, from the perspective of the frame $R F_{v}$, the photon ϕ changes instantaneously its velocity after each reflection. But a simple reflection does not change the velocity of the reflected photon, only the direction of its trajectory is modified. And this is, in fact, what happens in the rest frame $R F_{o}$ of the container $C O$. There are only two reason for which a photon freely moving through a standard fluid could change its velocity:

1. An appropriate force acts on the photon.
2. The photon begins to move in a new direction through the medium, in which it travels faster because of a decrement of the refractive index in that direction.

The problem is that none of them is the case. In fact, no force acted on ϕ in any point of its trajectory, nor there are special directions with less refractive indexes in the standard fluid $F L$ through which ϕ moved. Notwithstanding, ϕ changed instantaneously its velocity after each reflection. And it was not an infinitesimal change, but one that could be of several thousand of kilometers per second, depending of the relative velocity $k c$. It is worth noting that these acausal changes are formal consequences of Fitzgerald-Lorentz contraction, time dilation and difference in phase synchronization (lack of simultaneity), i.e. consequences of the whole LT.

5.-Conclusions

The precedent section has proved the existence of unexplained changes in the velocity of a photon moving freely through a standard fluid when observed, via LT, in relative motion. Changes that are not random but regular: under the same conditions (the reflection of the photon by a mirror observed at the same relative velocity) they always happens the same way. But regular as they may be, they should not happen according to the known physical laws; they are incompatible with all of our knowledge on changes of velocity. In addition they do not happen in the rest frame of the mirrors that reflect the photons, which makes them special frames, and then frames that put to test the First Principle of relativity. It could be argued that the world resulting from applying LT to a rest frame is only apparent, unreal, as is unreal the bent of a rod partially and obliquely submerged in water. But even in such a case, the appearances are inconsistent with the known physical laws, at least for photons that are reflected by mirrors while moving freely through standard fluids. In consequence, LT should not be used to get physical conclusions on what happens in reference frames observed in relative uniform motion, in the same way that the observed bending of the rod partially submerged in water should not be used to draw conclusions on the internal structure of the rod. In short, LT gives an inconsistent description of the motion of a photon through a fluid at rest in its container when the container is observed in relative motion, which, at the very least, limits the set of consistent observations that can be transformed by LT.

References

[1] R. Aloisio, A. Galante, A. Grillo, E. Luzio, and F. Méndez, A note on Dsr-like approach to space-time, Phys. Lett. B 610 (2005), 101 - 106.
[2] R. Aloisio, A. Galante, A. F. Grillo, E. Luzio, and F. Méndez, Approaching space-time through velocity in doubly special relativity, Phys. Rev. D 70 (2004), 125012.
[3] Giovanni Amelino-Camelia, A Phenomenological description of quantum gravity induced space-time noise, Nature $\mathbf{4 1 0}$ (2001), 1065-1069.
[4] S. Hossenfelder, Interpretation of quantum field theories with a minimal length scale, Phys. Rev. D 73 (2006), 105013.
[5] N. Jafari and A. Shariati, Projective interpretation of some doubly special relativity theories, Phys. Rev. D 84 (2011), 065038.
[6] Database Oxford University Press, Dictionary of Physics, Oxford University Press, New York, 2009.

