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Abstract——Convolutional Neural Networks have become
state-of-the-art methods for image classification in recent
times. CNNs have proven to be very productive in identifying
objects, human faces, powering machine vision in robots
as well as self-driving cars. At this point, they perform
better than human subjects on a large number of image
datasets. A large portion of these datasets depends on the
idea of solid classes. Hence, Image classification has become
an exciting and appealing domain in Artificial Intelligence
(AI) research. In this paper, we have proposed a unique
framework, FUSIONET, to aid in image classification. Our
proposition utilizes the combination of 2 novel models in
parallel (MainNET, a 3 x 3, architecture and AuxNET,
a 1 x 1 architecture) Successively; these relatively feature
maps, extracted from the above combination are fed as
input features to a downstream classifier for classification
tasks about the images in question. Herein FUSIONET, has
been trained, tested, and evaluated on real-world datasets,
achieving state-of-the-art on the popular CINIC-10 dataset.

Index Terms—Nueral Networks, Image classification, Pat-
tern recognition, state-of-the-art

I. INTRODUCTION

Krig 2014 Convolutional Neural Networks, shortened
as Convnets or CNNs, is a kind of Multilayer Perceptron
(MLP). A synopsis of CNN inspirations is given by LeCun
et al. 1998, who is viewed as one of the pioneers in
this field. Convolution is the essential operation used to
demonstrate an artificial neuron to both learn and distin-
guish the highlights, utilizing a weight network convolved
against an input window of pixels. Convolutions used as
a correlation template or feature identifier. The product
of each convolutional channel is gathered into an output
picture alluded to as a feature ma, wich is sent along as
input to the following layer. One output image is made for
each channel, and there are typically many channels per
layer. Each convolutional channel goes about as both an
feature detector and a channel. The convolutional channels
are formed together into include sets at each degree of the
progression, and each channel is tuned during training.
Convolution Neural Networks are utilized for numerous
ranging from classification of families of objects, recog-
nition of specific objects within a class, localization of
objects to find coordinates, and segmentation of region of

pixels into classes, and general regression analysis. The
Convnet is a feed-forward system, with inputs moving
from through processing to output classification. Be that
as it may, the training phase for feature learning operates
backwards, computing the error between expected results
and computed results, and distributing the errors back to
their source to correct the filter weights (features) is a
method referred to as backpropagation. Nonlinearity or
activation function is accepted to help take care of issues
of input saturation, maybe brought about by numeric over-
flow perhaps due to poor lighting or very strong lighting.
Pooling is referred to as another name for subsampling in
Convolution Neural Network parlance. Pooling is typically
used as the last step, or one of the last steps, in each
convolutional layer Fukushima and Miyake 1982. The
expressed objective for pooling is commonly to include
some translational invariance, or to just subsample the
picture littler to decrease figure what’s more, boundaries.
Notwithstanding, the subsampling strategies utilized in
Neural Networks are different than standard computer
graphics sampling methods such as linear interpolation
and other anti-aliasing methods. In Neural Networks, FC
layers go about as a scaffold between the filtering layers
and a classifier. FC models are flawlessly teachable in
Convolution Neural Network models, since the equivalent
convolutional neural weight model is utilized. Fully Con-
nected layers are inclined to overfitting in this manner,
for high boundary checks, different moderation procedures
are utilized during training to diminish and regularize
the boundaries, for example, haphazardly dropping inputs
with a given rate. A fully connected layer is a general
function approximator, capable of utilizing a linear clas-
sifier, or a logistic regression function for binary classi-
fication, perhaps using Hamming distance for matching.
By weighting each input to every neuron in the FC layer,
the combination of inputs and weights forms a linear
classifier. Typically, a couple FC layers stacked together
are adequate to rough the ideal function. One key guideline
of Convolution Neural Network idea is the utilization of
imitated convolutional layers in the engineering, Typically



the convolutional layers are recreated, or, more than likely
changed marginally from layer to layer. For instance, a
convolutional layer may alternatively incorporate numeric
conditioning of the input data, convolutional filtering,
followed by a nonlinear transform of the convolutional
result, pooling and subsampling, and local region post-
processing of the data. nearby locale post-preparing of
the information. Parameters are the program code for the
CNN. The design is set up to program itself through tuning
the learning parameters and the training data, bringing
about component or feature learning. The parameters are
comparable to the neural DNA code in the cerebrum.
When breaking down engineering multifaceted nature, we
might be intrigued in analyzing parameters to compare
design alternatives. Knowing that each parameter implies
corresponding memory and compute operations, parameter
analysis is handful for estimating training time and run-
time performance.

II. REVIEW OF RELATED WORKS

Molokwu 2019A significant hassle in machine vision
is to devise effective and efficient means of transfer-
ring humans’ informal knowledge (like sense of image
recognition, understanding of image location, etc.) into
machines and computers such that these machines can
act and behave exactly like humans. However, the occur-
rence of objects concerning image representations in the
real-world is usually associated with various features of
variation or factors of influence that constitute distractions
or noise in the image representations. Hence, it tends to
be very difficult to disentangle these abstract factors of
influence from the principal object or observed entity. To
that effect, these remain open problems, and challenges
to CNN and modern AI. LeCun et al. 1998 proposed a
CNN architecture (LeNET) for handwritten and machine-
printed character recognition, this architecture, adopted a
pioneering 7-level convolutional network. One objective
for LeNet was to diminish computational overhead, so
cautious consideration was paid to diminishing parameters.
Weight sharing was utilized to take into consideration one
component at a time to be looked for. The channel loads
and inclination were common for all neurons all the while
in a similar layer, so virtual neurons are actualized to share
weights instead exhaustively implementing all neurons
with their copy of the weights—shared weights, and virtual
neurons are an innovation successfully demonstrated In
LeNet. While this appears to be characteristic, LeCun
et al. 1998 was among the first to utilize this strategy with
regards to a customary convolutional Network. Continua-
tion of his design, Krizhevsky, Sutskever, and Hinton 2012
assembled a system (AlexNet), that had a fundamentally
the same as design as [2] however was more top to bottom,
having more channels per layer, and with stacked squares
of convolution activity. The LeNet design is the reason for
a few current CNNs, including the AlexNet CNN variety
created by Krizhevsky, Sutskever, and Hinton 2012, which
was the first CNN to understand the capability of Convnets
on huge image datasets. AlexNet turned into the reason
for ensuing Convolution Neural Networks utilized for
image classification. Zeiler and Fergus 2014 improved the
AlexNet design, alluded to as ZFNet, which was in this

way popularized in a startup called Clarifai ZFNet success
is due to Zeiler and Fergus 2014 method to visualize
learned features corresponding to the pixel regions they
match in the input image, referred to as deconvolutional
networks, to develop intuition about how to enhance the
learning hyperparameters to improve weak features. Like-
wise, ZFNet decreased the quantity of hyperparameters,
and extended the convolutional filter layer profundity,
improving the exactness by a few rate focuses. In 2014,
Simonyan and Zisserman 2014, built up the primary forms
of VGGNet utilizing up to 19 layers of 3 x 3 convolutional
pieces as opposed to a course of action of bigger parts,
with insignificant different tasks, to be specific - pooling
and ReLu, with fantastic outcomes. Krig 2014The focal
idea was to utilize stacked convolutions to decrease the
parameter tally and increment performance. A heap of
three 3 3 x 3 convolutions covers the equivalent responsive
field and approximates a 7 x 7 convolution; in any case,
utilizing stacked convolutions utilizes far less parameters,
coming about in noteworthy performance advantage at
training time and run time. Be that as it may, it might be
contended that bigger filters for example, 11 x 11 or 15
x 15 are priceless for a few applications requiring more
detail to depict features, where 3 x 3 stacked decreases
may not work due to the constrained receptive field.
VGGNet has propelled some eminent Convolution Neural
Networks, for example, He et al. 2016, Wu et al. 2015.
The InceptionNet design presented by Szegedy et al. 2016
in 2015 with design so close as the natural eye yet
extremely perplexing. The system utilized a CNN roused
by LeCun et al. 1998 yet executed a novel component,
which characterizes a total of various estimated convo-
lution channels at a similar layer, giving a multi-scale
convolution, feature space measurement decrease utilizing
the 1 x 1 convolution model presented by Lin, Chen, and
Yan 2013. The InceptionNet design 10 x parameter count
reduction over the Krizhevsky architecture, and 25 % less
compute. The Inception engineering included a 22 layer
profound CNN with 4 million parameters. Upadhyay 2019
At last, at the ILSVRC 2016, the presentation Residual
Neural Network (ResNet) by He et al. 2016 novel a
structure with "skip connections," such skip connections
are otherwise called gated units or on the other hand
gated repetitive units. They have significant closeness to
ongoing fruitful components applied in Recurrent Neural
System. With this strategy, they had the option to prepare a
Convolution Neural Network with 152 layers. Researchers
are on the chase to additionally grow the precision and
speed of the underlying algorithms, consequently making
the field of Image classification a functioning region of
explorative research. Lu et al. 2020a presented a Neural
Architectural Transfer model that was intended to Lu
et al. 2020b productively create task-explicit custom mod-
els that are competitive even under multiple conflicting
objectives using evolutionary search algorithms. In such
manner, we have proposed a system that essentially ex-
pands adaptability and precision and accomplishes best in
class otherwise known as state-of-the-art on the famous
CINIC-10 huge scope dataset for image classification, and
yet accomplishes brilliant outcomes when applied to other



image classification datasets.

III. OUR CONTRIBUTION

In this paper, we propose a state-of-the-art architecture
for image classafication (FUSIONET) from large to small
scale datasets. We analyze and test our proposition on
different datasets and benchmark. In this regard, we built
FUSIONET on the basis of 3 significant features

• FUSIONET is the only architecture to combine 2
distinct novel models in parallel for image classifica-
tion with significant results. From our experiments,
we show that this is plausible, as different low level
feature maps are extracted from each model. This
features are then combined to give the classifier a
well oriented information of the underlying image.

• FUSIONET employs uniform kernel size of 3 x 3 for
MainNET and 1 x 1 for AuxNET because literature
wise proposes that they cover as much details as large
kernel size.

• FUSIONET aims at minimizing parameters count,
taking note that deep neural networks are prone to
significant large parameter count for efficient and
effective classification.

IV. PROPOSED METHODOLOGY AND FRAMEWORK
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A. Definition of Problem

Definition 1 Image Classification: Hashmi, Kumar, and
Keskar 2020Image classification is referred as a process
of directly mapping floating integers to symbols

f(x) : x⇒ ∆;x ∈ Rn,∆ = {c1, c2, ..., cL} (1)

Number of bands = n;
Number of classes = L
f(.) is a function that assigns a pixel vector x to a single
class in the set of classes ∆

Definition 2 Convolution Neural Network: A
Convolutional Neural Network (otherwise known as
CNN or ConvNet) LeCun et al. 1998Molokwu et al. 2020
is a popular deep learning architecture and artificial
neural network which is primarily used to extract and
learn higher-order features in the dataset via convolutions.
Convolutional Neural Networks are biologically inspired,
thus they are modeled based on the working principles
of the visual cortex present in animals. CNNs are well
adapted for learning features of image input due to
its significant arrangement structure of neurons (or
processing units) present in its respective processing
layers. Each layer in an ordinary CNN is associated
with different layers in a conceivably extraordinary

input/output topology. For instance, the input layers in
convolutional systems are ordinarily collected into nxn
kernel designs containing 2D formats or designs, and
every piece is portion associated with a (virtual) separate
artificial neuron for convolutional processing.

Definition 3 Convolution Operation: The convolution
operation is the fundamental operation of any
Convolution Nueral Network. It is responsible for
extracting latent features and representations from
the input image. A convolution is defined as a
mathematical operation rule for merging two sets of data.
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I K I ∗K

Axy = (K ∗ I)xy =

i∑
0

j∑
0

Kij .Ix−i,y−j (2)

Formally, the above equation 2. represents a 2-dimensional
convolution operation. In virtually all Deep Learning li-
braries, the above 2-dimensional convolution operation is
implemented as cross-correlation (which is the same as
convolution but without flipping the kernel); thus, it is
computed as

Axy = (K ∗ I)xy =

i∑
0

j∑
0

Kij .Ix+i,y+j (3)

Such that: Axy represents a cell/matrix position in the
Activation Map (or Convolved Feature or Feature Map);
Kij represents a cell/matrix position in the Kernel (or

Filter or Feature Detector); and I(x+i,y+j) represents a
cell/matrix position in the Input matrix. As the index,

Kij , of the kernel slides from left-to-right and
top-to-bottom; the index, I(x+i,y+j), of the input matrix

increases respectively - from left-to-right and
top-to-bottom. Each resultant, Axy , which is a

convolution of the respective kernel and input indices is
used to populate the activation/feature map (or convolved

feature).

Definition 4 Backpropagation: Backpropagation works
by taking the consequences of the forward pass through

the Neural Network, finding the mis-classification
between the current anticipated outcome and the right

outcome, and conveying the mistake relatively in reverse
through the system, to limit the mis-classification at each

layer by altering the feature weight.
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Fig. 1. Architecture of a traditional convolutional neural network. as
introduced by LeCun et al. 1998
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Backpropagation strategies look like a tremendous
component averaging process. Numerous techniques are
utilized, and some contain improvements for different
objectives, for example, increasingly quick convergence.

Algorithm 1: Backpropagation learning algorithm
for d in data do

FORWARDS PASS
Compute responses f() at each neuron for each
feature to feed forward
Store response derivatives f ’() at each neuron for
each feature for backprop.
Compute classification scores and errors

BACKWARDS PASS
Compute the derivatives of the error function
with respect to the output layer activities
for layer in layers do

Distribute errors backwards to each
contributing neuron
Adjust weights using errors and stored
response derivatives
Compute residuals for current layer, distribute
backwards, repeat

end for
Continue until stopping criteria reached
(threshold, iterations, elapsed time)

end for=0

B. Proposed Methodology

Our proposition, FUSIONET, is comprisingly of (2) dis-
tinct ConvNet models (MainNet, AuxNet) utilizing a two-
dimensional (2D) convolution operations fused together
with the input x (Image vector) and (1) classification layer.

1) MainNET: The MainNET is a stack of (19) layers of
small 3 x 3 2D Convolution block for accurate distinctions.
Sequel to the 2D Convolution block is BatchNormalization
which is a technique to provide any layer in a Neural
Network with inputs that are zero mean/unit variance.

In this regard, Molokwu et al. 2020 Let B denote a
mini-batch of size m training set, The empirical mean

and variance of B is ascribed as µB =
1

m

m∑
i=1

xi, and

σ2
B =

1

m

m∑
i=1

(xi − µB)2

The non-linearity activation activity is a Parametric rec-
tified linear unit (PReLU) work which presents non-
linearity after the BatchNormalization activity. The es-
sential artificial neural processor model utilized in many
Deep Nueral Networkss comprises of two sections: (1)
a convolution work: A = f(inputs x weights), and (2) a
nonlinear activation work: f = f(A) to propagate or squash
the information, which delivers a scalar worth. Enactment
capacities, are utilized to (1) bring nonlinearity into the
neural work, (2) forestall immersion of values, and (3)
guarantee that the neural output is differentiable to support
back propagation techniques utilizing gradient descent.
One key objective of nonlinear actuation capacities is to
extend the absolutely straight convolution activity into
a nonlinear arrangement space, which is accepted by
numerous individuals to improve results. Furthermore, the
nonlinearity may bring about quicker convergence during
backpropagation preparing to move the gradient all the
more rapidly out of level spots towards the nearby minima.
In such manner, the corrected component/initiation map is

figured by means of: f(x) =

{
x if x > 0,

ax otherwise.
Pooling is a technique for joining a few neural outputs
comprising of the scalars from the activation or on the
other hand transfer function into a pool, or group, and
making another output from the pool. The pooling activity
goes about as a specialist answerable for decreasing the
information width of each redressed activation map while
holding its fundamental properties. subsequently, the Max-
Pooling capacity is characterized with the end goal that
the resultant pooled (or downsampled) feature map is pro-
duced by means of: pi ∈ P = h(ri ∈ R) = maxPool(R).

2) AuxNET: The AuxNet acts as a (17) layers of small
1 x 1 Convolution block otherwise recognized as a linear
transformation of the input, followed by BatchNormaliza-
tion, a non linear activation function and pooling.

3) Classifier: This is the last layer of our proposed
FUSIONET design, and it succeeds the AuxNET layers,
with (5) squares of Multi-layer perceptron. Classification
is commonly the last phase of the FC vision framework,
where the nearness and nonappearance of features is
utilized to decide. The classifier matches distinguished
examples against learned examples to distinguish the class
of the input and make a score to show certainty. The
pooled feature maps, created by both the MainNET and
AuxNET which contains high level features removed from
the constituent images in the dataset are concatenated
alongside the input (x). Thus, the the classification uses
these extricated "high level features" for recognizing im-
ages, in view of the individual classes. In this regard,
Molokwu et al. 2020,B. C. Molokwu and Kobti 2019 a
MLP function is denoted as a mathematical function, fc
that zips some set of input values, P, to their respective
output labels, Y . In other words, Y = fc(P, θ) and θ



denotes a set of parameters.The MLP function models the
estimations of θ that will bring about the best end, Y ,
approximation for the input set, P. The MLP classifier
output is a likelihood dissemination which shows the
probability of a component portrayal having a place with
a specific output class.

Algorithm 2: Image Classification Algorithm de-
fined via Algorithm 2:

0: procedure IMAGECLASSIFICATION
Input: {V,E,YgTruth} ≡ {Images, Labels,
Ground-Truth Entities}
Output: {Ypred} ≡ {Predicted Entities}

Preprocessing:
V← Data Augmentation {(Rotation, Fliping,

Cropping)}
fc,W ← Initialize {Construct classifier model,

Weights}
Training:
i← 0

while i < 200 do
out← ft ∈ F = (K · I)t // Conv. Operation 1;
out← pt ∈ out = h(R) = maxPool(out);
out← ft ∈ out = (K · I)t // Conv. Operation
2;
out← pt ∈ out = h(R) = maxPool(out);
fc|θ : out→ YgTruth // MLP Operation;

return:
{Ypred = fc(YgTruth, θ)
end procedure=0

V. DATASETS

With regard to Image classification herein, five (5) real-
world benchmark image classification data sets were em-
ployed for experimentation and evaluation, ranging from
large scale to medium and small datasets viz: CINIC-10
Darlow et al. 2018, (CINIC-10, CIFAR-100 Krizhevsky,
Hinton, et al. 2009) SVHN Netzer et al. 2011, STL-10
Coates, Ng, and Lee 2011 .

TABLE I
BENCHMARK DATASET FOR EVALUATION.

Dataset Type Training set Testing set Classes
CINIC-10 120,000 90,000 10
CIFAR-10 50,000 10,000 10
CIFAR-100 Multi-class 50,000 10,000 100

SVHN 73,000 60,000 10
STL-10 5,000 8,000 10

TABLE II
CONFIGURATION OF EXPERIMENTATION HYPERPARAMETERS.

Batch Size: 128 Optimizer: SGD (Momentum=0.99)

Activation: PReLU Epochs: 1000

Dropout: 0.5 Learning Rate: 0.003

Learning Decay: after 300 epochs weight decay: L2 penalty

Stride: 1 L2 Multiplier: 5e-4

Maxpooling: (2, 2) Number of Parameters: 64M

A. Proposed Architecture/Framework

The framework parameters are denoted as
“Conv(receptive field size)-(number of channels)”.
The PReLU activation function and BatchNormalization
are not shown for brevity.

VI. TRAINING

On training, the inputs (x) to our ConvNets are fixed-
size 32 × 32 RGB image. Preprocessing employed in-
cludes manually correction of wrong labelled inputs, Nor-
malization, Flipping of random images horizontally and
vertically, randomly cropping the centers of some images,
erasing some parts of the images, changing the colors of
random images and random perspective. The image is then
passed through a block of convolutional layers, where we
employed distinct filters with a small and tiny receptive
field: 3 x 3, 1 x 1 for MainNET and AuxNET respectively.



VII. EXPERIMENTS, RESULTS AND DISCUSSION

FUSIONET’s experimentation setup was tuned in ac-
cordance with the hyperparameters shown in Table 2.
Categorical Cross Entropy was employed as the cost/loss
function; while the fitness/utility was measured with ref-
erence to accuracy at Top1, Top5 and Flops. Moreover,
the accuracy have been computed against each benchmark
data set with regard to the constituent classes (or cate-
gories) present in each data set.
With regard to the image classification tasks herein, the
performance of our FUSIONET model while benchmark-
ing against five(5) popular baselines (NAT-M4, NAT-M3,
SOPCNN, ResNeXt29x64d); and when evaluated against
the validation/test samples for the benchmark data sets are
as documented in Table 3, 4, 5, 6, 7

Epochs Vs Accuracy on CIFAR-100 dataset after 1200
Epochs

Epochs Vs Accuracy on CINIC-10 dataset after 1000
Epochs

Epochs Vs Accuracy on CIFAR-10 dataset after 1000
Epochs

TABLE III
IMAGE CLASSIFICATION OVER CINIC-10 DATA SET. RESULTS ARE

BASED ON THE SET APART VALIDATION SAMPLES

CINIC-10

Model FLOPS Top 1 accuracy Top 5 accuracy Error rate

NAT-M4 710M 94.80% 99.30% 5.20%

NAT-M3 501M 94.30% 98.60% 5.70%

ResNeXt29x64d 91.45% 98.40% 8.55%

VGG-16 87.77% 97.55% 12.23%

DenseNET-121 91.26% 98.53% 8.74%

ResNET-18 90.27% 98.01% 9.73%

FUSIONET 669M 96.84% 99.88% 3.16%

Table 3. Shows our FUSIONET achieving state-of-the-art
on the CINIC-10 dataset for top-1 and top-5 accuracy.
Improving NAT-M4 by 2.04% for top-1 and 0.58% for
top-5. floating point operations per second (FLOPS) was
benched at 669M with regards to NAT-M4 of 710M.

TABLE IV
IMAGE CLASSIFICATION OVER CIFAR-10 DATA SET. RESULTS ARE

BASED ON THE SET APART VALIDATION SAMPLES

CIFAR-10

Model FLOPS Top 1 accuracy Top 5 accuracy Error rate

NAT-M4 468M 98.40% 99.60% 1.60%

NAT-M3 392M 97.20% 98.30% 2.80%

ResNeXt29x64d 96.71% 98.40% 3.29%

SOPCNN 94.29% 98.00% 5.71%

FUSIONET 440M 98.54% 99.82% 1.46%

TABLE V
IMAGE CLASSIFICATION OVER STL-10 DATA SET. RESULTS ARE

BASED ON THE SET APART VALIDATION SAMPLES

STL-10

Model FLOPS Top 1 accuracy Top 5 accuracy Error rate

NAT-M4 573M 97.90% 98.55% 2.10%
NAT-M3 436M 97.80% 98.48% 2.20%

ResNeXt29x64d 80.61% 96.40% 19.39%

SOPCNN 88.08% 97.02% 11.92%

FUSIONET 490M 92.61% 98.76% 7.39%



TABLE VI
IMAGE CLASSIFICATION OVER SVHN DATA SET. RESULTS ARE

BASED ON THE SET APART VALIDATION SAMPLES

SVHN

Model FLOPS Top 1 accuracy Top 5 accuracy Error rate

NAT-M4 610M 98.51% 99.67% 1.49%
NAT-M3 494M 97.80% 99.24% 2.20%

ResNeXt29x64d 98.50% 99.48% 1.50%

SOPCNN 98.50% 99.55% 1.50%

FUSIONET 520M 97.63% 99.31% 2.37%

TABLE VII
IMAGE CLASSIFICATION OVER CIFAR-100 DATA SET. RESULTS ARE

BASED ON THE SET APART VALIDATION SAMPLES

CIFAR-100

Model FLOPS Top 1 accuracy Top 5 accuracy Error rate

NAT-M4 796M 88.30% 95.71% 11.70%

NAT-M3 492M 87.70% 95.55% 12.30%

ResNeXt29x64d 83.44% 94.48% 16.56%

SOPCNN 72.96% 90.22% 27.04%

FUSIONET 670M 89.72% 96.86% 10.28%

In this manner, we have highlighted the model which
performed best (considering Top-1, Top-5 precision and
FLOPS where conceivable), for each classification task
using a bold font. We utilized a point-based reviewing
standard to discover the fittest model for each image
classification task. The model with the most noteworthy
combined point altogether wins the fittest model for the
predetermined assignment, etc in a plunging request of
cumulatives. As needs be, as shown from our plain out-
comes, our proposed structure (FUSIONET) has the most
noteworthy wellness focuses. To prepare the CIFAR-100
dataset, we changed a few information like augmentation
tasks, decreased the batchsize to 64 and expanded the
learning rate moreover the training epochs. Every single
other function and hyperparameters were left unaltered all
through the preparation/training procedure.

VIII. LIMITATIONS, CONCLUSION AND FUTURE
WORK

Molokwu et al. 2020 The benchmark models evaluated
herein were implemented using their default parameters.
In summary, FUSIONET’s remarkable performance with
respect to our benchmarking results can be argued to be a
result of the following:

1) FUSIONET is constituted of the fusing of two (2)
distinct models of 3 X 3 and 1 X 1 of stacked
convolution operations, BatchNormalization, non-
linear activation and pooling, running independently
viz: MainNET and AuxNET.

2) The thorough data analysis and preprocessing tech-
niques employed herein with respect to the bench-
mark data sets. We ensured that all underlying
images of a given classification task were mapped
to their individual classes, thereby minimizing the
noise in the dataset, and normalized prior to training
and/or testing.

In conclusion, we aspire to expand our experimentation
scope to include more computational visual problems,
datasets and benchmark models.

IX. ACKNOWLEDGEMENT

This research was supported by Bhevencious and
PESOCS. We thank our partners from Chukwuemeka
Odumwgwu Ojukwu University, who gave understanding
and aptitude that incredibly helped the research process,
despite the fact that they may not concur with the entirety
of the translations/finishes of this paper. We express grati-
tude toward Rita Ifunanya for remarks that extraordinarily
improved the manuscript.

REFERENCES

Coates, Adam, Andrew Ng, and Honglak Lee. 2011. “An
analysis of single-layer networks in unsupervised
feature learning.” In Proceedings of the fourteenth
international conference on artificial intelligence and
statistics, 215–223.

Darlow, Luke N, Elliot J Crowley, Antreas Antoniou, and
Amos J Storkey. 2018. “CINIC-10 is not ImageNet
or CIFAR-10.” arXiv preprint arXiv:1810.03505.

Fukushima, Kunihiko, and Sei Miyake. 1982. “Neocogni-
tron: A self-organizing neural network model for a
mechanism of visual pattern recognition.” In Com-
petition and cooperation in neural nets, 267–285.
Springer.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville.
2016. Deep learning. MIT press.

Hashmi, Mohammad Farukh, Aashish Kumar, and Avinash
G Keskar. 2020. “Subjective and Objective Assess-
ment for Variation of Plant Nitrogen Content to
Air Pollutants Using Machine Intelligence: Subjective
and Objective Assessment.” In Fuzzy Expert Systems
and Applications in Agricultural Diagnosis, 83–108.
IGI Global.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.”
In Proceedings of the IEEE international conference
on computer vision, 1026–1034.

. 2016. “Deep residual learning for image recog-
nition.” In Proceedings of the IEEE conference on
computer vision and pattern recognition, 770–778.

Krig, Scott. 2014. Computer vision metrics: Survey, tax-
onomy, and analysis. Springer Nature.

Krizhevsky, Alex, Geoffrey Hinton, et al. 2009. “Learning
multiple layers of features from tiny images.”

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. “Imagenet classification with deep con-
volutional neural networks.” In Advances in neural
information processing systems, 1097–1105.

LeCun, Yann, Léon Bottou, Yoshua Bengio, Patrick
Haffner, et al. 1998. “Gradient-based learning applied
to document recognition.” Proceedings of the IEEE
86 (11): 2278–2324.

Lin, Min, Qiang Chen, and Shuicheng Yan. 2013. “Net-
work in network.” arXiv preprint arXiv:1312.4400.



Lu, Zhichao, Gautam Sreekumar, Erik Goodman, Wolf-
gang Banzhaf, Kalyanmoy Deb, and Vishnu Naresh
Boddeti. 2020a. “Neural Architecture Transfer.” arXiv
preprint arXiv:2005.05859.

. 2020b. “Neural Architecture Transfer.” arXiv
preprint arXiv:2005.05859.

Molokwu, Bonaventure C, and Ziad Kobti. 2019. “Event
Prediction in Complex Social Graphs via Feature
Learning of Vertex Embeddings.” In International
Conference on Neural Information Processing, 573–
580. Springer.

Molokwu, Bonaventure C, Shaon Bhatta Shuvo, Narayan
C Kar, and Ziad Kobti. 2020. “Node Classification
in Complex Social Graphs via Knowledge-Graph
Embeddings and Convolutional Neural Network.” In
International Conference on Computational Science,
183–198. Springer.

Molokwu, Bonaventure, and Ziad Kobti. 2019. “Spatial
Event Prediction via Multivariate Time Series Anal-
ysis of Neighboring Social Units using Deep Neural
Networks,” 1–8. July. doi:10 . 1109 / IJCNN . 2019 .
8851730.

Molokwu, Reginald. 2019. “AN ADVANCED MOVIE
RECOMMENDER ENGINE IMPLEMENTED IN
PYTHON” (May). doi:10 . 13140 / RG . 2 . 2 . 31431 .
04000.

Netzer, Yuval, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. 2011. “Reading
digits in natural images with unsupervised feature
learning.”

Ogolo, Naomi Amoni, Victor C Molokwu, Mike O
Onyekonwu, et al. 2017. “Proposed technique for
improved oil recovery from thin oil rim reservoirs
with strong aquifers and large gas caps.” In SPE Nige-
ria Annual International Conference and Exhibition.
Society of Petroleum Engineers.

. 2018. “Techniques for effective oil production
from thin oil rim reservoirs.” In SPE Nigeria Annual
International Conference and Exhibition. Society of
Petroleum Engineers.

Simonyan, Karen, and Andrew Zisserman. 2014. “Very
deep convolutional networks for large-scale image
recognition.” arXiv preprint arXiv:1409.1556.

Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. 2016. “Rethinking the
Inception Architecture for Computer Vision.” 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR): 2818–2826.

Upadhyay, Yash. 2019. Computer Vision: A Study On
Different CNN Architectures and their Applications,
March. https : / / medium . com / alumnaiacademy /
introduction-to-computer-vision-4fc2a2ba9dc.

Wu, Ren, Shengen Yan, Yi Shan, Qingqing Dang, and
Gang Sun. 2015. “Deep image: Scaling up image
recognition.” arXiv preprint arXiv:1501.02876 7 (8).

Zeiler, Matthew D, and Rob Fergus. 2014. “Visualiz-
ing and understanding convolutional networks.” In
European conference on computer vision, 818–833.
Springer.


