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0. Abstract 
 
Hidden Markov models (HMMs) are a class of generative stochastic 
process models which seek to explain, in the simplest possible terms 
subject to inherent structural constraints, a set of equally long 
sequences (time series) of observations. Given such a set, an HMM 
can be trivially constructed which will reproduce the set exactly. Such 
an approach, however, would amount to overfitting the data, yielding a 
model that fails to generalize to new observations of the same 
physical system under analysis. It’s therefore important to consider 
the information cost (entropy) of describing the HMM itself – not just 
the entropy of reproducing the observations, which would be zero in 
the foregoing extreme case, but in general would be the negative log 
of the probability of such reproduction occurring by chance. The sum 
of these entropies would then be suitable for the purpose of ranking a 
set of candidate HMMs by their respective likelihoods of having 
actually  generated the observations in the first place. To the author’s 
knowledge, however, no approach has yet been derived for the 
purpose of measuring HMM entropy from first principles, which is the 
subject of this paper, notwithstanding the popular use of the Bayesian 
information criterion (BIC) for this purpose. 
 

1. HMM Anatomy 
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Assume we have a discrete probability distribution (“probability 
vector”) with Z components, each of which giving the respective 
probability e i  of emitting whole number i , which is less than Z. We call 
this distribution an “emission vector” because each of its scalar 
components represents the probability that its whole-numbered index 
will be emitted, yielding an observable. By definition, because an 
emission vector is a (discrete) probability distribution, we have: 
 

∑
Z−1

i=0

ei ≡ 1  

 
All HMMs can assume one of H  possible “hidden states”. Each hidden 
state is associated with an emission vector and a “transition vector” 
giving the respective probabilities ti of transitioning from such a state to 
any other (including itself) immediately after emitting a whole number 
and immediately prior to  emitting the next one. As with emission 
vectors, we have: 
 

∑
H−1

i=0

ti ≡ 1  

 
for all H transition vectors. We can thus construct an H -by- H 
“transition matrix” containing all transition vectors and their constituent 
transition probabilities, wherein the rows are the transition vectors the 
corresponding indexes. 
 
We can then create a Z-by- H  “emission matrix” consisting of H  rows of 
emission vectors, corresponding one-to-one to each transition vector 
in the transition matrix. 
 
We now have all the components required to create an HMM with a 
single emission channel: 
 

The number H  of hidden states. 
The number Z of emittable states. 
The transition matrix. 



The emission matrix. 
 

2. The Entropy of Reversibly Encoding an HMM 

 
It should now be straightforward to compute the cost of transmitting all 
of the above to a receiver who knows only that the received 
instructions are provided for the sake of constructing an HMM. (Of 
course, the cost of fully explaining the set of sequences must also 
include their  cost – not just the cost of encoding the HMM itself – but 
we’ll get to that later.) 

 
To that end, we ignore the cost of transmitting H  and Z, which is 
asymptotically negligible in the limit of large HMMs, and which cost 
tends to be similar among a group of candidates, and therefore tends 
to have negligible impact on model evaluation ranking. This leaves 
only the transition and emission matrices, insofar as the encoding of 
the HMM itself is concerned. 
 
First of all, given that all vectors of both of these matrices are 
normalized, their information value can be computed from all but one 
scalar component. They can therefore be fully reconstructed from a 
(Z-1)-by- H  matrix and an ( H -1)-by- H  matrix. 
 
But what of the vectors themselves? They consist of probabilities, 
which in the general case are transcendental irrationals, and thus 
contain an infinite amount of information. In practice, they’re likely to 
be approximated by fixed-size floating-point values (“floats”). Ignoring 
all the ways in which they might be compressed, floats could be said 
to have an entropy equivalent to their constituent number of bits – 
generally, 32 or 64. 
 
However, if we were to evaluate HMM entropy in this manner, then all 
HMMs with the same H  and Z would yield the same sum, which would 
be completely uninformative as to which are likelier than others to be 
the true model which best encodes the observed sequences. This 
would leave all the distinctions to the negative log of probability of 



having generated the set of sequences, inevitably leading to 
overfitting. 
 
At this point, we have to introduce one assumption: the receiver will 
assume, prior to receiving any information, that all legal  transition and 
emission vectors are equally likely to be the correct. Under this 
assumption, the entropy of an HMM can then be straightforwardly 
approximated by quantizing its constituent emission and transition 
vectors. 
 

3. Quantization of Probability Vectors 
 
As explained above, a probability vector consisting of P components, 
p i , can be faithfully represented with only ( P-1) of them, which we 
arbitrarily take to be the first (P-1). Because all P components sum to 
one, we can categorize their successive partial sums, Sj ,  given by 

 

,Sj ≡ ∑
J

i=0

pi 0 ≤ j < P  

 
into one of N  intervals, each of size (1/ N ). We say that N  is the 
“quantizer” because it defines the granularity (resolution) to which Sj  is 
known. For example, if ( N =7), then 0.390941 would map to interval 2 
because (2/7) <= 0.390941 < (3/7). In this way, we can map real 
numbers to whole numbers. (In the rare corner case where we 
encounter a partial sum equal to one – other than the last one, which 
is always  one – we map it to (N -1) rather than N .) The result of this 
mapping is a “frequency vector” giving the counts Fj of the number of 
partial sums which map to each respective whole number less than N . 
So if (N =7) and ( P=15), then we might have: 
 

No partial sums in interval zero. 
2 partial sums in interval one. 
No partial sums in interval 2. 
One partial sum in interval 3. 
6 partial sums in interval 4. 



3 partial sums in interval 5. 
2 partial sums in interval 6. 

 
(This accounts for only 14 partial sums because the last one is always 
one and thus contributes no information.) Notice that we have only 
whole numbers now, so we can easily compute the entropy. 
 

4. Entropy of Bucketized Partial Sums 
 
In the foregoing example, we grouped ( P-1) partial sums into N 
buckets, each of which identified with a whole numbered index. 
Absent any further assumptions, the entropy of encoding the 
probability matrices pursuant to such quantization is asymptotically 
equal to the log of the number of possible  such configurations. So, 
how many are there? 

 
First of all, it helps to think of the buckets in terms of dividers on a 
bookshelf, which for instance might divide a large number of books 
(partial sums) into a few contiguous sets by author (whole numbered 
index). Note that ( N -1) dividers will serve the purpose of N  buckets, as 
the former can delineate N  intervals, the union of which being the unit 
interval. Note also that we might have multiple contiguous dividers 
which separate only 2 books, leaving some empty buckets in 
between. 
 
Given N  and P in this case, we have 6 dividers and 14 books. The 
number of unique such arrangements is then just the number of ways, 
W, that (6+14) bits can contain exactly 6 zeroes (or ones): ((6+14) nCr 
6). In general, then, P partial sums can be partitioned into N  buckets 
in exactly 

 
CrW ≡ (N −2)+ P n (N−1)  

 
different ways. The entropy E due to encoding this number is just its 
natural log (if measured in nats) or its log to base 2 (if measured in 
bits): 



 

E ≡ ∑
N−1

i=1

ln lni[ (N −1−i)+ P − ]  

 
We can avoid the summation by using the following loggamma (logΓ) 
identity: 
 

ogΓ nil (N )+ 1 ≡ ∑
N

i=1

l  

 
which implies that 
 

ogΓ logΓN−logΓPE ≡ l (N −1)+ P −  

 
(in units of nats) which is a rather elegant expression for the entropy 
of P partial sums derived from equally many individual probabilities, 
bucketized into N intervals. 
 
This brings us to our second assumption: the quantizer N  will be 
constant for all emission and transmission vectors. In the general case 
in which observations have statistical biases, posterior uncertainties 
among emission and transition parameters are clearly asymmetric on 
account of greater or lesser activation, but accounting for those 
distinctions would be a refinement beyond the approach presented in 
this paper, so we universally assume (1/N) parameter granularity. 
 
Therefore, if we have H  emission vectors containing Z components, 
and H  transition vectors containing H  components, then the total 
entropy EM of the entire machine, at a resolution implied by dividing 
the unit interval into N  equal segments, is approximated by: 
 
EM ≈ H * (logΓ logΓH−logΓN )[ (H −1)+ N − + (logΓ logΓZ−logΓN )(Z −1)+ N − ]  

EM ≈ H * logΓ ogΓ logΓH−logΓZ−2logΓN[ (H −1)+ N + l (Z −1)+ N − ]  

 



While asymptotically accurate, technically, we have one more vector 
for which to account, which is the prior probability vector h 0 of hidden 
state probabilities. This “initial vector” contains H  components which 
convey the same amount of information as each of the transition 
vectors, as it provides the respective probabilities of being in any 
given hidden state prior to the first emission. Accounting for this, we 
more accurately have: 
 
EM ≡ H * logΓ ogΓ logΓH−logΓZ−2logΓN[ (H −1)+ N + l (Z −1)+ N − ]  

ogΓ logΓH−logΓN+ l (H −1)+ N −  

 
which is thus how we define EM. (This is still a lower bound because it 
omits the cost of encoding H , Z, and N  themselves, in addition some 
small compression overhead, but these omissions are negligible for 
the purposes of model selection.) 
 
Accounting for multiple parallel emission channels is a straightforward 
extension of this formula and beyond the scope of this paper. 
 

5. Entropy of Sets of Observed Sequences 

 
Under an arithmetic encoding scheme, the entropy of encoding a 
symbol is asymptotically equal to the negative log of its probability of 
occurrence. This comes directly from the Shannon entropy, which is 
optimal under the assumption that successive symbols are selected 
independently. 
 
Strictly speaking, arithmetic encoding could not be used to compress 
the sequences of wholes emitted from an HMM, simply because the 
former assumes a constant probability vector. Nevertheless, 
asymptotically, the logarithmic optimum size still applies because the 
sequences are arithmetically encodable simply by updating the 
probability vector prior to encoding each whole. 
 
If multiple sequences have been provided, then the total entropy is 
simply the sum of the individual sequence entropies (which for sake of 



brevity, we won’t account for here). The entropy ES of a single 
sequence, based on this dynamic form of arithmetic encoding, is then 
simply: 
 

npEs ≡ − ∑
Q−1

i=0

l i (W )i  

 
where Q is the nonzero number of wholes in the sequence, Wi  is the 
whole at index i , and p i (Wi ) is its probability of its occurrence, having 
arrived at index i  (comprehending all hidden state changes necessary 
to do so). But how might we obtain these p i  values? 

 
p 0  has Z components p 0k  – one for each emittable whole – which is the 
product of the probability h 0j  of being initially in hidden state j , and 
emission probability e jk of emitting k  when in said state: 
 

ep0k ≡ ∑
H−1

j=0

h0j jk  

 
p 0  is thus determined. But what of p 1 , p 2 , etc.? 

 
Given the first observation W0 , we can then compute the components 
h 0j ’ of the posterior hidden state probability vector (but prior to passing 
through the transition matrix): 
 

h0j ′ ≡
h e
0j jW0

e∑
H−1

k=0

h0k kW0

 

 
which is simply to say that the components of h 0 ’ equal the 
components of h 0  weighted by the respective probabilities of having 
emitted W0 . 
 
We can then pass h 0 ’  through the transition matrix to yield h 1, the 
components h 1j  of which providing the probability of being in hidden 
state j  immediately prior to emitting W1  (the second observation). 



 

th1j ≡ ∑
H−1

k=0

h0k ′ kj  

 
where tkj  is the probability of transitioning from hidden state k  to j . 
Thus h 1  is now determined as well. But reapplying the same technique 
as above, we can then determine p 1 and, by induction, p 2 , etc. This 
will then will allow us to determine ES. 
 
The total entropy of the machine and its observations, ET, is then just 
(EM+ES). The least ET would suggest to us the most credible of a set of 
candidate HMMs. 
 


