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Abstract 11 

Human host immune responses to parasitic infections are complex. They can be categorized into four 12 

immunological pathways against four types of parasitic infections. For intracellular protozoa, the 13 

eradicable host immunological pathway is TH1 immunity involving macrophages, interferon gamma 14 

(IFNg) CD4 T cells, innate lymphoid cells 1 (ILC1), CD8 T cells, invariant natural killer T cells 1 15 

(iNKT1) cells, and immunoglobulin G3 (IgG3) B cells. For free-living extracellular protozoa, the 16 

eradicable host immunological pathway is TH22 immunity involving neutrophils, interleukin (IL)-17 

22/IL-17 CD4 T cells, innate lymphoid cells 3 (ILC3), iNKT17 cells, and IgG2 B cells. For 18 

endoparasites (helminths), the eradicable host immunological pathway is TH2a immunity with 19 

inflammatory eosinophils (iEOS), IL-5/IL-4 CD4 T cells, IL-25 inducing inflammatory innate 20 

lymphoid cells 2 (iILC2), mast cells-tryptase (MCt), iNKT2 cells, and IgG4 B cells. For ectoparasites 21 

(parasitic insects and arachnids), the eradicable host immunological pathway is TH2b immunity with 22 

inflammatory basophils, mast cells-tryptase/chymase (MCtc), IL-3/IL-4 CD4 T cells, IL-33 inducing 23 

nature innate lymphoid cells 2 (nILC2), iNKT2 cells, and immunoglobulin E (IgE) B cells. The 24 

tolerable host immunity against ectoparasites and endoparasites is TH9 immunity with regulatory 25 

eosinophils, regulatory basophils, IL-9 mast cells (MMC9), thymic stromal lymphopoietin inducing 26 

innate lymphoid cells 2, IL-9 CD4 T cells, iNKT2 cells, and IgA2 B cells. This categorization 27 

provides a complete framework of immunological pathways against four types of parasitic infections. 28 

1 Introduction 29 

Host immune responses to parasitic infections are complex. Parasites include protozoa, helminths, 30 

and insects. Previously, I proposed a framework for all the known host immunological pathways and 31 

their roles in the immune responses against four specific types of pathogens and the corresponding 32 

four specific types of hypersensitivities (1). Here, I extend the framework and propose a new 33 

framework of host immunological pathways for four types of parasitic infection. Host immunological 34 

pathways against parasites are determined primarily by the location of the infection. After identifying 35 
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the location of the parasitic infection, the host immune system can attack these parasites with 36 

different effector cells and using different strategies. 37 

2 Host immunological pathways for different types of parasitic infections 38 

2.1 Intracellular protozoa and TH1/TH1-like immunity 39 

For intracellular protozoa, the host immunological pathway is a TH1 immune response involving 40 

macrophages (M1), interferon gamma (IFNg) CD4 T cells, CD8 T cells (CD28+, CD27−, Tc1, 41 

EM4), invariant natural killer T1 (iNKT1 cells), and IgG3 B cells. Innate lymphoid cells 1 (ILC1) is 42 

the immune cells helping to initiate TH1 immune reaction. CCR5 is the chemokine receptor used by 43 

TH1 immune cells. The ligands of CCR5 include C-C motif chemokine ligand (CCL) 3 and CCL4 44 

[also known as macrophage inflammatory protein (MIP) 1α and 1β, respectively](2). TH1 immunity 45 

is the host immune response to intracellular pathogens. The intracellular location is more important 46 

than the pathogen type. Thus, TH1 immunity can be triggered to defend against intracellular bacteria, 47 

fungi, and protozoa. Activated macrophages are the key effector cells that digest intracellular 48 

bacteria, fungi, and protozoa. Intracellular protozoa are categorized into the parasite groups. 49 

Intracellular protozoa, including Plasmodium, Leishmania, Toxoplasma, Babesia, and 50 

Cryptosporidium, can all trigger a TH1 host immune response (3-7). Intracellular bacteria such as 51 

Chlamydia and intracellular fungi such as Histoplasma can also trigger TH1 immunity. This is the 52 

intracellular protozoa-eradicable host immune response. 53 

For immune tolerance to intracellular protozoa, the host mounts a TH1-like immune response. The 54 

effector cells for TH1-like immunity are macrophages (M2), IFNg/transforming growth factor beta 55 

CD4 T cells, CD8 T cells (CD28- CD27- EM3), iNKT1 cells, and IgA1 B cells. CCR2 is the 56 

chemokine receptor used by TH1-like immune cells(8). The ligand for CCR2 is monocyte 57 

chemoattractant protein-1 (CCL2). TH1-like immunity is a chronic immune tolerance to intracellular 58 

pathogens, including intracellular bacteria, protozoa, and fungi. Alternative activated macrophages 59 

M2 are the principal cells mediating the TH1-like immunity to intracellular pathogens. Chronic 60 

infections with intracellular protozoa usually trigger the TH1-like immunological pathway. 61 

2.2 Extracellular protozoa and TH22/TH17 immunity 62 

For free-living extracellular protozoa, the eradicable host immunological pathway is TH22 immunity 63 

with neutrophils (N1), IL-22 CD4 T cells, iNKT17 cells, and IgG2 B cells. Innate lymphoid cells 3 64 

(ILC3) helps to initiate the TH22/TH17 immunity. Neutrophils are the major effector cells of the 65 

TH22 host immunological pathway. The chemokine receptor used by TH22 immune cells is 66 

CCR10(9). CCR10 ligands include CCL27 (CTACK) and CCL28 (MEC). TH22 immunity is the 67 

host immune response to extracellular protozoa, bacteria, and fungi. It is worth noting that 68 

extracellular location determines the host immunological pathway, which is more important than 69 

whether the pathogen is bacteria, fungi, or protozoa. Neutrophils can use neutrophil extracellular 70 

traps and kill these extracellular free-living pathogens. These extracellular free-living protozoa 71 

include Trypanosoma, ameba, Giardia, and Trichomonas (10-14). These pathogens can induce TH22 72 

host immunity. Extracellular bacteria, such as Escherichia coli and extracellular fungi such as 73 

Aspergillus can also trigger TH22 host immune reactions. 74 

The immune tolerance pathway against extracellular protozoa, fungi, and bacteria is TH17 immunity. 75 

The effector cells of TH17 immunity include neutrophils (N2), IL-17 CD4 T cells, iNKT17 cells, and 76 

IgA2 B cells. The chemokine receptor used by TH17 immune cells is CCR6(15). The ligand of 77 
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CCR6 is CCL20 (MIP-3). The TH17 immune reaction is a chronic immune tolerance to 78 

extracellular free-living protozoa. 79 

2.3 Helminths (endoparasites) and eradicable TH2a immunity 80 

For helminths (endoparasites), the eradicable host immunological pathway is TH2a immunity with 81 

inflammatory eosinophils, IL-5/IL-4 CD4 T cells, mast cells-tryptase (MCt), iNKT2 cells, and IgG4 82 

B cells. Endoparasites means the parasites are located in our bodies. Inflammatory innate lymphoid 83 

cells 2 (IL-25 induced iILC2) help to initiate TH2a immune response(16, 17). Eosinophils are the 84 

major effector cells that use IgG4-mediated antibody-dependent cellular toxicity to attack the 85 

helminth tegument. Mast cells-tryptase are the mast cell subtypes in TH2a immunity. The chemokine 86 

receptor used by TH2a immunity is CCR4(18). The ligands of CCR4 are CCL17 (thymus and 87 

activation-regulated chemokine) and CCL22 (monocyte-derived dendritic cell). This TH2a pathway 88 

belongs to the TH2 immunity and is a subtype. The letter “a” means “acid” which is derived from the 89 

name of eosinophils. Helminths (endoparasites) that can induce TH2a immunity with eosinophilia 90 

include Ascaris, hookworms, tapeworms, pinworms, filarial worms, Toxocara, and Strongyloides 91 

(19-24). However, several helminths can also induce IgE antibodies, so this immune response is a 92 

subtype of the TH2 immune response. 93 

2.4 Parasitic insects and arachnids (ectoparasites) and eradicable TH2b immunity 94 

For insects (ectoparasites), the eradicable host immunological pathway is TH2b immunity with 95 

inflammatory basophils, mast cells-tryptase/chymase (MCtc), IL-3/IL-4 CD4 T cells, iNKT2 cells, 96 

and IgE B cells. Ectoparasites means these insects are located in our bodies’ outer skin surface. 97 

Nature innate lymphoid cells 2 (IL-33 induced nILC2) help to initiate TH2b immune reaction(25, 98 

26). The major effector cells of TH2b immunity are basophils and mast cells-tryptase/chymase 99 

(MCtc). Circulating basophils and resident mast cells have the same characteristics. The chemokine 100 

receptor used in the TH2b immune response is CCR1(27). CCR1 is expressed on basophils. Resident 101 

mast cells can also serve as antigen-presenting cells. The letter “b” means “base” which is derived 102 

from the name of basophils. IgE can cause the physical expelling of insects (ectoparasites) via skin 103 

itchiness, skin wheal with toxin dilution, rhinorrhea, mucus formation and secretion, nausea/ 104 

vomiting, bronchoconstriction, and increased bowel movement. Basophil accumulation is usually 105 

noted at the site of insect bites or dwelling. However, these IgE-mediated mechanisms can also expel 106 

helminths in the lung or intestine. Thus, this immune response (TH2b) is a subtype of the TH2 107 

immune response. The bites of parasitic arachnids and insects, including those of ticks, fleas, and 108 

mosquitos, can induce a TH2b immune reaction (28-32). The stings of non-parasitic insects such as 109 

bees and wasps also induce a TH2b immune reaction. 110 

2.5 Parasites and tolerable TH9 immunity 111 

The TH9 host immunological pathway is a chronic immune tolerance response to parasites 112 

(endoparasites and ectoparasites). The main effector cells of the TH9 immunological pathway include 113 

regulatory eosinophils, regulatory basophils, mast cells (MMC9), IL-9 CD4 T cells, and IgA2 B 114 

cells(33). Thymic stromal lymphopoietin (TSLP) induced innate lymphoid cells 2 help to initiate 115 

TH9 immunity(25, 34). IL-9 producing mast cells (MMC9) are the mast cell subtype responsible for 116 

TH9 immunity. The chemokine receptor functioning in TH9 immunity is CCR3(35, 36). The ligands 117 

of CCR3 are eotaxin-1 (CCL11) and eotaxin-3 (CCL26). 118 

3 Conclusion 119 
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This framework describes the immunological pathways of the human host response to four types of 120 

parasitic infections. Intracellular protozoa induce TH1/TH1-like immunity; extracellular protozoa 121 

induce TH22/TH17 immunity; endoparasites (helminths) induce TH2a eradicable immunity; and 122 

ectoparasites (parasitic insects and arachnids) induce TH2b eradicable immunity. TH9 immunity is a 123 

tolerable immue response to endoparasites and ectoparasites. 124 
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