
10 Cantor Diagonal Argument

Draft chapter of the book Infinity Put to the Test by Antonio León (next publication)

Abstract.-This chapter applies Cantor’s diagonal argument to a table of rational num-
bers proving the existence of rational antidiagonals.
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Introduction

P1 This chapter proves a result on the decimal expansion of the rational
numbers in the rational open interval (0, 1), which is subsequently used
to discuss on a reordering of the rows of a table T that is assumed to
contain all rational numbers within (0, 1). A reordering such that the
diagonal of the reordered table T could be a rational number from which
different rational antidiagonals (elements of (0, 1) that cannot be in T )
could be defined. If that were the case, and for the same reason as in
Cantor’s diagonal argument, the rational open interval (0, 1) would be
non-denumerable, and we would have a contradiction in set theory, because
Cantor also proved the set of rational numbers is denumerable.

The Theorem of the nth decimal

P2 Let Q01 be the set of all rational numbers in the rational open interval
(0, 1) expressed in decimal notation and completed, in the cases of finitely
many decimal digits, with a denumerable infinite number of 0’s in the right
side of their corresponding decimal expansions.

P3 Let d be any decimal digit, n any natural number, and q0 any element of
Q01 whose nth decimal digit is just d, for instance q0 = 0,11(n−1). . . 1d000....
From q0 it is possible to define different sequences of different elements
of Q01, all of them with the same nth decimal digit d. For example the
sequence 〈qn〉:

q1 = 0,11(n−1). . . 1d1000 . . .

q2 = 0,11(n−1). . . 1d11000 . . .

q3 = 0,11(n−1). . . 1d111000 . . .
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. . .

qi = 0,11(n−1). . . 1d111 (i). . . 1000 . . .

. . .

The bijection (one to one correspondence) f between the ω-ordered set N
(the well ordered set of natural numbers in their natural order of preceden-
ce, whose ordinal number is ω, the least infinite ordinal [3, §15, Theorem
A, p.160]) and 〈qn〉 defined by

∀i ∈ N : f(i) = qi (1)

proves the following:

a) Theorem of the nth decimal.-For any given decimal digit and any

given position in the decimal expansion of the elements of Q01, there

exists a denumerable subset of Q01, each of whose elements has the

same given decimal digit in the same given position of its decimal

expansion.

A rational diagonal argument

P4 Let Qdn be the subset of Q01 each of whose elements has the same de-
cimal digit dn in the same nth position of its decimal expansion. According
to the Theorem of the nth Decimal, Qdn is denumerable. So, its superset
Q01 will be infinite, either denumerable or non-denumerable. So, let g be
any injective function between N and Q01. This function allows to define a
table T whose successive rows r1, r2, r3 . . . are just the successive images*
g(1), g(2), g(3) . . . of the elements of N in Q01.

P5 Since the successive rows 〈rn〉 of T are indexed by the successive natural
numbers 〈n〉 in their natural order of precedence, T has a first row r1 but
not a last one, and each row ri of T has an immediate preceding row ri−1

(except r1) and an immediate succeeding row ri+1. In consequence if i

precedes j in N then ri precedes rj in T . So then, T and N are similar sets
[3, p. 112] and they have the same ordinal [3, p- 152], in this case ω. In
addition, to assume the existence of the set of all finite natural numbers as
a complete infinite totality, as Cantor did in 1883 [3, pp. 103-104], means
to assume the rows of T also exist as a complete infinite totality. According
to this Cantor’s assumption (hypothesis of actual infinity subsumed into
the Axiom of Infinity in modern set theories), every row rn of T will be
preceded by a finite number, n − 1, of rows and succeeded by an infinite
number, ℵo [3, §6, pp. 103-104], of such rows. We will now examine a
conflicting consequence of this case of ω-asymmetry.
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P6 The diagonal D = 0.d11d22d33 . . . of T is a real number within (0, 1)
whose nth decimal digit dnn is the nth decimal digit of the nth row rn of
T . As in Cantor’s diagonal argument [2], it is possible to define another
real number A, said antidiagonal, by replacing each of the infinitely many
decimal digits ofD with a different decimal digit. By construction A cannot
be in T because it differs from each row ri of T at least in its ith decimal
digit. Since A is a real number within (0, 1), it will be either rational
or irrational. If it were rational, and for the same reason as in Cantor’s
diagonal argument, g would not be a one to one correspondence

P7 A row ri of T will be said n-modular if its nth decimal digit is
n(mod 10). This means that a row is, for instance, 2348-modular if its
2348th decimal digit is 8; or that it is 45390-modular if its 45390th deci-
mal digit is 0. If a row rn is n-modular (being n in n-modular the same
number as n in rn) it will be said d-modular. For instance, the rows:

r1 = 0.1007647464749943400034577774413 . . .

r2 = 0,2200045667778943000000000000000 . . .

r3 = 0,0030000000000000000000000000000 . . .

r7 = 0,10010070001111111100000000000000 . . .

r19 = 0,1234567890123456789000000000000 . . .

are all of them d-modular. It is clear that certain rational numbers as 0.4̂3
or 0.3353333333 cannot be d-modular, whatever be their corresponding
rows in T . As will be seen in the Chapter 29, these rational numbers pose
very serious problems to the hypothesis of the actual infinity.

P8 Consider now the following permutation D of the rows 〈rn〉 of T . For
each successive row ri of T :

⊲ If ri is d-modular then let it unchanged.

⊲ If ri is not d-modular then exchange it with any following i-modular
row rj, j>i, provided that at least one of the succeeding rows rj, j>i

be i-modular. Otherwise let it unchanged.

The exchange of a non-d-modular row ri with a following i-modular row

will be referred to as d-exchange (see Figure 10.1). Thanks to the condition
j > i (in rj, j>i), once a row ri has been d-exchanged, it becomes d-modular
and will remain d-modular and unaffected by the subsequent d-exchanges.
On the other hand, the successive d-exchanges do not change the type
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Figura 10.1 – The fourth row of T before being d-exchanged (Left); and after
having been d-exchanged (right).

of order of T but the rational numbers indexed by the same successive
indexes. Or in other words, d-exchanges interchange the content of some
couples of rows of T , but not its order type.

P9 The permutationD could even be considered as a supertask [5]. Indeed,
let 〈tn〉 be an ω-ordered sequence of instants within a finite interval of time
(ta, tb), being tb the limit of the sequence. Assume that D is applied to each
row ri just at the precise instant ti. The bijection f(ti) = ri proves that at
tb the d-exchanges of permutation D will have been applied to all rows of
T .

P10 It can be proved that all rows of T become d-modular as a consequen-
ce of the permutation D. In effect, assume that a row rn did not become
d-modular as a consequence of the permutation D. This means that rn is
not d-modular and could not be d-exchanged with a n-modular row ri,i>n.
Now then, all n-modular rows have the same digit n(mod 10) in the same
nth position of its decimal expansion, and according to the Theorem of
the nth Decimal there are infinitely many rational numbers with the same
digit in the same position of its decimal expansion, whatever be the digit
and the position. Accordingly, since n is finite, the row rn is preceded by
a finite number, k (0 ≤ k < n), of n-modular rows, and succeeded by
an infinite number, ℵo, of n-modular rows. Any of these infinitely many
n-modular rows succeeding rn had to be d-exchanged with rn. It is then
impossible for rn not to become d-modular as a consequence of D. There-
fore, each and every row rn of T becomes d-modular as a consequence of
D.

P11 Let us remark the basic formal structure of the above argument P10
(a simple modus tollens). Consider the following two propositions p1 and
p2 about the permutation D:

p1: Not all rows of T becomes d-modular because of D.

p2: At least one non-d-modular row rn of T could not be d-exchanged.
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It is quite clear that p1 implies p2: if not all rows of T becomes d-modular
because of D, then at least one non-d-modular row rn of T could not
be d-exchanged. Now then, being all natural numbers finite, n is finite;
and taking into account the Theorem of the nth Decimal, there is a finite
number, k (0 ≤ k < n), of n-modular rows preceding rn and an infinite
number, ℵo, of n-modular rows succeeding rn, one of which had to be d-
exchanged with rn. In consequence proposition p2 is false and so will be
p1. In symbols:

(p1 ⇒ p2) ∧ (¬p2) ⇒ ¬p1 (2)

P12 The result proved in P10 is a formal consequence of both the Theorem
of th nth Decimal and the fact that every row rn of T is always preceded
by a finite number, k (0 ≤ k < n), of n-modular rows and succeeded by an
infinite number, ℵo, of such n-modular rows (ω-asymmetry). Recall that
this ω-asymmetry is an inevitable consequence of assuming, as Cantor did
in 1883, the existence of the ω-ordered set N as a complete infinite totality,
a hypothesis subsumed into the Axiom of Infinity.

P13 Let TD be the table resulting from the permutation D. Since all of
its rows are d-modular, its diagonal D will be the periodic rational num-
ber 0.1234567890 . It is now immediate to define infinitely many rational
antidiagonals from D. Indeed, let us consider periods of ten decimal digits
none of which coincide in position with the ten decimal digits of the period
1234567890 of the diagonal D. The number of those periods is 910. From
any two of them, for instance, q1 = 0123456789 and q2 = 0321456789, it
is possible to define different ω-ordered sequences of rational antidiagonals
〈An〉, for instance:

∀n ∈ N : An = 0.q1q1
(n). . . q1q2 (3)

whose elements cannot be in TD for the same reason as in Cantor’s diagonal
argument. Since all of them are rational numbers, we must conclude that
the injective function g between N and Q01 defining T , is not surjective,
i.e. it is not a bijection.

P14 Since the injective function g defining T is any injective function

between N and Q01 and it cannot be surjective, we must conclude it is
impossible to define a bijection between N and Q01. Consequently, Q01 is
non-denumerable. Although the above inference suffices to conclude that
Q01 is non-denumerable, it could be (inappropriately) argued, as against
Cantor’s diagonal argument, that a new table T ′ could be defined so that
r′1 = A and r′i+1 = ri, ri ∈ T, ∀i ∈ N. The new table T ′ would be de-
numerable, but through the same diagonal argument, the same conclusion
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on the impossibility of a bijection between N and Q01 would be reached.
And the same recursive argument could be applied to any table defined in
terms of any other previous table and its corresponding antidiagonal, while
the new table continue to be denumerable. A bijection between N and Q01

is impossible. So, Q01 is non-denumerable, and we have a contradiction in
set theory because Cantor proved Q is denumerable [1].

P15 Permutation D allows to develop other arguments whose conclusions
also point to the inconsistency of the hypothesis of the actual infinity.
For instance, it is clear that certain elements of Q01 as, 0.21, 0.35421,
0.2111111111 and many others cannot become d-modular if they were in
T . This problem will be analyzed in Chapter 29.

A final remark

P16 As with all discussions on the hypothesis of the actual infinity, the
above one is a conceptual discussion unconcerned, as Cantor’s diagonal
argument, with the physical possibilities of carrying out all involved ope-
rations. The formal inconsistency of a hypothesis does not depend on those
possibilities, but on the fact of deducing from it a contradiction. And re-
call that from an inconsistent hypothesis anything can be deduced, from
apparently reasonable assertions to any absurdity. It seems convenient to
end by recalling that an argument cannot be refuted by other different
argument simply because it reaches an opposite conclusion. In W. Hodges
words [4, p. 4]:

How does anybody get into a state of mind where they persuade themsel-

ves that you can criticize an argument by suggesting a different argument

which doesn’t reach the same conclusion?

This inadmissible strategy is frequently used in the discussions related to
the actual infinity hypothesis. But to refute an argument means to indicate
where and why that argument fails. If two correct arguments based on the
same set of hypotheses lead to contradictory conclusions, they are simply
proving the existence of a contradiction. And, therefore, the inconsistency
of at least one of the assumed hypotheses. In our case, the only hypothesis
is the hypothesis of the actual infinity, according to which the infinite sets
and sequences exist as complete totalities. The alternative is the hypothesis
of the potential infinity, according to which only finite sets and sequences
can be considered as complete totalities, unlimited and as large as wished,
but always finite if they have to be considered as complete totalities. From
this finite perspective it is not possible to deduce the above contradictions
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because every row is preceded and succeeded by a finite number of rows.
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