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ference on Probability and Stochastic Analysis (ICPSA 2021), January 5-7,
2021 in Sanya, China as a Keynote speaker and so, we will state the basic in-
terrelations with reproducing kernels and division by zero from the viewpoint
of the conference topics. The connection with reproducing kernels and Prob-
ability and Stochastic Analysis are already fundamental and well-known,
and so, we will mainly refer to the basic relations with our new division
by zero 1/0 = 0/0 = z/0 = tan(π/2) = log 0 = 0, [(zn)/n]n=0 = log z,
[e(1/z)]z=0 = 1. 
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1 Introduction
For the long history of division by zero, see [4, 40]. S. K. Sen and R. P.
Agarwal [54] quite recentry referred to our paper [16] in connection with
division by zero, however, their understandings on the paper seem to be
not suitable (not right) and their ideas on the division by zero seem to be
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traditional, indeed, they stated as the conclusion of the introduction of the
book in the following way:

“Thou shalt not divide by zero” remains valid eternally.
However, in [43] we stated simply based on the division by zero calculus

that
We Can Divide the Numbers and Analytic Functions by Zero

with a Natural Sense.
For the long tradition on the division by zero, people may not be accepted

our new results against many clear evidences on our division by zero, however,
a physicist stated typically as follows:

Here is how I see the problem with prohibition on division by zero, which
is the biggest scandal in modern mathematics as you rightly pointed out
(2017.10.14.08:55).

The common sense on the division by zero with the long and mysterious
history is wrong and our basic idea on the space around the point at infinity
is also wrong since Euclid. On the gradient or on differential coefficients we
have a great missing since tan(π/2) = 0. Our mathematics is also wrong
in elementary mathematics on the division by zero. In a new and definite
sense, we will show and give various applications of the division by zero
0/0 = 1/0 = z/0 = 0. In particular, we introduced several fundamental con-
cepts in calculus, Euclidean geometry, analytic geometry, complex analysis
and differential equations. We saw new properties on the Laurent expansion,
singularity, derivative, extension of solutions of differential equations beyond
analytical and isolated singularities, and reduction problems of differential
equations. On Euclidean geometry and analytic geometry, we found new
fields by the concept of the division by zero. We gave many concrete prop-
erties in mathematical sciences from the viewpoint of the division by zero.
We will know that the division by zero is our elementary and fundamental
mathematics.

The contents in ([46]) are as follows:
1. Introduction.
2. Division by zero.
3. Division by zero calculus.
4. We can divide the numbers and analytic functions by zero.
5. General division and usual division.
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6. Division by zero calculus, applications.
7. Derivatives of functions.
8. Differential equations.
9. Euclidean spaces and division by zero calculus.
10. Analytic functions and division by zero calculus.
11. The Descartes circle theorem.
12. Horn torus models and division by zero calculus – a new world.
For the conference topics, after some minimum statement of the above

historical discoveries, we would like to state the basic interrelations with the
conference topics and reproducing kernels.

2 Division by zero
The division by zero with the mysterious and long history was indeed trivial
and clear as in the followings.

By the concept of the Moore-Penrose generalized solution of the funda-
mental equation ax = b, the division by zero was trivial and clear as b/0 = 0
in the generalized fraction that is defined by the generalized solution of
the equation ax = b. Here, the generalized solution is always uniquely deter-
mined and the theory is very classical. See [16] for example.

Recall the uniqueness theorem by S. Takahasi on the division by zero.
See [16, 59]:

Proposition 2.1 Let F be a function from C×C to C such that

F (a, b)F (c, d) = F (ac, bd)

for all
a, b, c, d ∈ C

and
F (a, b) =

a

b
, a, b ∈ C, b 6= 0.

Then, we obtain, for any a ∈ C

F (a, 0) = 0.
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On the long mysterious history of the division by zero, this proposition
seems to be decisive.

Following Proposition 2.1, we should define

F (b, 0) =
b

0
= 0,

and we should consider that for the mapping

W = f(z) =
1

z
, (2.1)

the image f(0) of z = 0 is W = 0 (should be defined from the form).
This fact seems to be a curious one in connection with our well-established
popular image for the point at infinity on the Riemann sphere. As the rep-
resentation of the point at infinity on the Riemann sphere by the zero z = 0,
we will see some delicate relations between 0 and ∞ which show a strong
discontinuity at the point of infinity on the Riemann sphere. We did not
consider any value of the elementary function W = 1/z at the origin z = 0,
because we did not consider the division by zero 1/0 in a good way. Many
and many people consider its value at the origin by limiting like +∞ and
−∞ or by the point at infinity as ∞. However, their basic idea comes from
continuity with the common sense or based on the basic idea of Aristotele.
– However, as the division by zero we will consider its value of the function
W = 1/z as zero at z = 0. We will see that this new definition is valid
widely in mathematics and mathematical sciences, see ([20, 24]) for example.
Therefore, the division by zero will give great impact to calculus, Euclidean
geometry, analytic geometry, complex analysis and the theory of differential
equations at an undergraduate level and furthermore to our basic idea for
the space and universe.

The simple field structure containing division by zero was established by
M. Yamada ([19]) in a natural way. For a simple introduction, H. Okumura
[22] discovered the very simple essence that:

To divide by zero is to multiply by zero.
For the operator properties of the generalized fractions, see [59].
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3 Background of division by zero calculus
We will recall the simple background on the division by zero calculus for
differentiable functions based on ([50, 51]).

For a function y = f(x) which is n(n > 0) order differentiable at x = a,
we will define the value of the function

f(x)

(x− a)n

at the point x = a by the value

f (n)(a)

n!
.

For the important case of n = 1,

f(x)

x− a
|x=a = f ′(a). (3.1)

In particular, the values of the functions y = 1/x and y = 0/x at the origin
x = 0 are zero. We write them as 1/0 = 0 and 0/0 = 0, respectively.
Of course, the definitions of 1/0 = 0 and 0/0 = 0 are not usual ones in the
sense: 0 · x = b and x = b/0. Our division by zero is given in this sense
and is not given by the usual sense. However, we gave several definitions for
1/0 = 0 and 0/0 = 0. See, for example, [47].

In addition, when the function f(x) is not differentiable, by many mean-
ings of zero, we should define as

f(x)

x− a
|x=a = 0,

for example, since 0 represents impossibility. In particular, the value of
the function y = |x|/x at x = 0 is zero.

We will note its naturality of the definition.
Indeed, we consider the function F (x) = f(x)−f(a) and by the definition,

we have
F (x)

x− a
|x=a = F ′(a) = f ′(a).

Meanwhile, by the definition, we have

lim
x→a

F (x)

x− a
= lim

x→a

f(x)− f(a)

x− a
= f ′(a). (3.2)
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For many applications, see the references cited in the reference.
The identity (3.1) may be regarded as an interpretation of the differential

coefficient f ′(a) by the concept of the division by zero. Here, we do not use
the concept of limitings. This means that NOT

lim
x→a

f(x)

x− a

BUT
f(x)

x− a
|x=a.

Note that f ′(a) represents the principal variation of order x − a of the
function f(x) at x = a which is defined independently of f(a) in (3.2). This
is a basic meaning of the division by zero calculus f(x)

x−a
|x=a.

Following this idea, we can accept the formula, naturally, for also n = 0
for the general formula; that is,

f(x)

(x− a)0
|x=a =

f (0)(a)

0!
= f(a).

In the expression (3.1), the value f ′(a) in the right hand side is represented
by the point a, meanwhile the expression

f(x)

x− a
|x=a (3.3)

in the left hand side, is represented by the dummy variable x− a that repre-
sents the property of the function around the point x = a with the sense of
the division

f(x)

x− a
.

For x 6= a, it represents the usual division.
When we apply the relation (3.1) to the elementary formulas for differ-

entiable functions, we can imagine some deep results. For example, in the
simple formula

(u+ v)′ = u′ + v′,

we have the result

u(x) + v(x)

x− a
|x=a =

u(x)

x− a
|x=a +

v(x)

x− a
|x=a,
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that is not trivial in our definition. This is a result from the property of
derivatives.

In the following well-known formulas, we have some deep meanings on
the division by zero calculus.

(uv)′ = u′v + uv′,(u
v

)′
=

u′v − uv′

v2

and the famous laws
dy

dt
=

dy

dx

dx

dt
and

dy

dx
· dx
dy

= 1.

Note also the logarithm derivative, for u, v > 0

(log(uv))′ =
u′
u

+
v′
v

and for u > 0

(uv)′ = uv

(
v′ log u+ v

u′

u

)
.

We note the basic relation for analytic functions f(z) for the analytic
extension of f(x) to complex variable z

f(x)

(x− a)n
|x=a =

f (n)(a)

n!
= Res.ζ=a

{
f(ζ)

(ζ − a)n+1

}
.

We therefore see the basic identities among the division by zero calculus,
differential coefficients and residues in the case of analytic functions. Among
these basic concepts, the differential coefficients are studied deeply and so,
from the results of the differential coefficient properties, we can derive another
results for the division by zero calculus and residures. See [51].

With this assumption, we can obtain many new results and new concepts.
Typically, we found a beautiful and important circle by this division by

zero calculus, see [27] and [31].
However, for this assumption we have to check the results obtained whether

they are reasonable or not. By this idea, we can avoid any logical problem.
– In this viewpoint, the division by zero calculus may be considered
as an axiom.
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4 Probability and division by zero
The conditional probability P (A|B) for the probability of A under the con-
dition that B happens is given by the formula

P (A|B) =
P (A ∩B)

P (B)
.

If P (B) = 0, then, of course, P (A∩B) = 0 and from the meaning, P (A|B) =
0 and so, 0/0 = 0.

For a line
x cos θ + y sin θ − p = 0

and for data (xj, yj), the minimum of
∑n

j=1 d
2
j for the distance dj of the line

and the point (xj, yj) is attained for the case

tan 2θ =
2γxyσxσy

σ2
x − σ2

y

,

where
γxy =

n
∑

j xjyj − (
∑

j xj)(
∑

j yj)

n2σxσy

and
σx =

1

n

√
n
∑
j

x2
j − (

∑
j

xj)2.

If σ2
x = σ2

y, then θ = π/4 from tan 2θ = 0.
Here, of course, for

µx =
1

n

∑
xj, µy =

1

n

∑
yj,

σ2
x =

1

n

∑
(xj − µx)

2, σ2
y =

1

n

∑
(yj − µy)

2

and
σ2
xy =

1

n

∑
(xj − µx)(yj − µy),

tan 2θ =
2σxy

σ2
x − σ2

y

.
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5 Inverse document frequency and log 0 = log∞ =

0

For any fixed complex number a, we will consider the sector domain ∆a(α, β)
defined by

0 ≤ α < arg(z − a) < β < 2π

on the complex z plane and we consider the conformal mapping of ∆a(α, β)
into the complex W plane by the mapping

W = log(z − a).

Then, the image domain is represented by

S(α, β) = {W ;α < =W < β}.

Two lines {W ;=W = α} and {W ;=W = β} usually were considered as
having the common point at infinity, however, in the division by zero, the
point is represented by zero.

Therefore, log 0 and log∞ should be defined as zero. Here, log∞
is precisely given in the sense of [log z]z=∞. However, the properties of the
logarithmic function should not be expected more, we should consider the
value only. For example,

log 0 = log(2 · 0) = log 2 + log 0

is not valid.
In particular, in many formulas in physics, in some expression, for some

constants A,B

log
A

B
, (5.1)

if we consider the case that A or B is zero, then we should consider it in the
form

log
A

B
= logA− logB, (5.2)

and we should put zero in A or B. Then, in many formulas, we will be able
to consider the case that A or B is zero. For the case that A or B is zero,
the identity (5.1) is not valid, then the expression logA− logB may be valid
in many physical formulas. However, the results are case by case, and we
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should check the obtained results for applying the formula (5.2) for
A = 0 or B = 0. Then, we will be able to enjoy the formula apart from any
logical problems as in the applications of the division by zero and division
by zero calculus. See [18] for many examples.

We will show a typical example.

The inverse document frequency is a measure of how much information
the word provides, i.e., if it’s common or rare across all documents. It is
the logarithmically scaled inverse fraction of the documents that contain the
word (obtained by dividing the total number of documents by the number
of documents containing the term, and then taking the logarithm of that
quotient):

idf(t,D) = log
N

|{d ∈ D; t ∈ d}|
where N is the total number of documents in the corpus N = |D| and
{d ∈ D; t ∈ d} is the number of documents where the term appears (i.e.,
tf(t, d) 6= 0). If the term is not in the corpus, this will lead to a division-by-
zero. It is therefore common to adjust the denominator to idf(t,D) = logN ,
that is just our statement. See for the details

tf–idf - Wikipedia https://en.wikipedia.org/wiki/Tf–idf Traduzir
esta página In information retrieval, tf–idf or TFIDF, short for
term frequency–inverse document frequency, is a numerical statis-
tic that is intended to reflect how important a ...  Motivations ·
 Definition ·  Justification of idf ·  Example of tf–idf.

6 Identification of the image of a linear map-
ping: fundamental of reproducing kernels

For a basic reference on reproducing kernels, see [42].
Let F(E) be the linear space consisting of all complex-valued functions

on any fixed abstract set E. Let H be a Hilbert space with the inner product
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〈·, ·〉H. Let h : E → H be a fixed h valued mapping on E. Then, we consider
the linear mapping L from f ∈ H into F(E) defined by

Lf(p) ≡ 〈f ,h(p)〉H. (6.1)

The most fundamental problem in the linear mapping (6.1) is to characterize
the image Lf(p) of L and our next concern will be to grasp how the input f
and the output Lf(p) are related.

The key to consider these fundamental problems is to form the two vari-
ables complex-valued function; that is, a positive definite quadratic form
function

K(p, q) ≡ 〈h(q),h(p)〉H (6.2)
defined on E × E. We denote by R(L) the linear function space consisting
of all complex-valued functions of the images of h by L defined on E. In the
image space R(L), we will introduce the norm by

‖f‖R(L) = inf{‖f‖H : f ∈ H, f = Lf}, (6.3)

and then the image space will form a Hilbert space; indeed, we obtain pre-
cisely

Fundamental Theorem for Linear Mappings;
Generalized Pythagorean Theorem;
Fundamental Theorem of Reproducung Kernels:

1. By (6.3) we introduce the norm in R(L) and furthermore, from the
norm we introduce the inner product 〈·, ·〉R(L) to R(L) to make R(L)
into a Hilbert space.

2. The function K defined by (6.2) enjoys three properties:

(a) For any q ∈ E,
Kq ∈ R(L) (6.4)

where Kq(p) = K(p, q) for p ∈ E.
(b) The function K has the reproducing property;

f(q) = 〈f,Kq〉R(L) (6.5)

for any function f ∈ R(L) and for any point q ∈ E.
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(c) The mapping L is isomorphic from H to (R(L), 〈·, ·〉R(L)), that is,

‖Lf‖R(L) = ‖f‖H (f ∈ H), (6.6)

if and only if {h(p) : p ∈ E} spans a dense subspace of H.

3. The function K satisfying (6.4) and (6.5) is unique.

For any positive definite quadratic form function K on E, we can con-
struct a Hilbert space H and a mapping h from E into H satisfying (6.2) by
using the Gaussian probability distribution with nth order co-distributions
and zero mean that are given by n × n matrices {K(pj, pj′)}j,j′ . For this
construction, we use the Kolmogorov theorem on measures whose proof
is not elementary [33]. This theorem is very important, from which we can
derive simply the fundamental

Theorem: For any positive definite quadratic form function K : E ×
E → C, there exists a uniquely determined reproducing kernel Hilbert space
HK = HK(E) admitting the reproducing kernel K on E.

Furthermore, this Kolmogorov factorization theorem [1, 15, 21] will es-
sentially be indispensable when we introduce various operators on a Hilbert
space and among Hilbert spaces.

This important result was interestingly derived from the theory of stochas-
tic theory independent of the theory of reproducing kernels. Furthermore,
such factorization representation of a positive definite quadratic form func-
tion may be used conversely to realize reproducing kernel Hilbert spaces
admitting reproducing kernels.

For some deep theory on the Kolmogorov factorization theorem, see, for
example, [6, 7, 8]. Here, note that for a positive definite quadratic form
function K(p, q) on E, when we know its reproducing kernel Hilbert space,
it is easy to show that K can be written in the form (6.2). Indeed. it is given
simply by

K(p, q) = 〈Kq, Kp〉HK(E) (6.7)
and such a factorization is determined among isometric Hilbert spaces.

7 Random fields estimations
We will consider the following situation;
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1. X is a set,

2. (Ω,F , P ) is a probability space.

We assume that the random field is of the form

u(x) = s(x) + n(x) (x ∈ X), (7.1)

where, for each x ∈ X, s(x) = s(x; ·) : Ω → R is the useful signal and
n(x) = n(x; ·) : Ω → R is a noise. Note that s(x) and n(x) are not necessarily
independent for each x ∈ X. Without loss of generality, we can assume that
the mean values of u(x) and n(x) are zero. We assume that the covariance
functions

R(x, y) = E[u(x)u(y)] (x, y ∈ X) (7.2)
and the information

f(x, y) = E[u(x)s(y)] (x, y ∈ X) (7.3)

are known.
Here and below, we identify X with the structure of the measure space:

let (X, dm) be a measure space.
In addition, we shall consider the general form of a linear estimation û of

u in the form

û(x) =

∫
X

u(y)h(x, y)dm(y) = 〈u, h(x, ·)〉L2(X,dm) (7.4)

for an L2(X, dm) space and for a function h(x, ·) belonging to L2(X, dm) for
any fixed x ∈ E. For the desired information As : X×Ω → R, which satisfies

A(ks) = kAs, A(s1 + s2) = As1 + As2

for all s, s1, s2 : X × Ω → R and k ∈ C, we wish to determine the function
h(x, t) attaining

inf{E[(û(x)−As(x))2] : û is given by (7.4) and h(x, ·) ∈ L2(X, dm)} (7.5)

which gives the minimum of the variance by the least squares method.
Many topics in filtering and estimation theory in signal and image pro-

cessing, underwater acoustics, geophysics, optical filtering, etc., which were
initiated by N. Wiener (1894–1964), will be presented in this framework.

13



Then, we see that the linear transform h(x, t) is given by the integral equa-
tion ∫

X

R(x′, y)h(x, y)dm(y) = f(x′, x). (7.6)

Therefore, our random fields estimation problems will be reduced to finding
the inversion formula

f 7→ h (7.7)
in our framework. So, our general method for integral transforms will be
applied to these problems. For this situation and other topics and methods
for the inversion formulas, see [38] for the details.

8 Support vector machines and probability
theory for data analysis

Let T be a set. Let (Ω,B, P ) be a probability space and L2(Ω,B, P ) the
Hilbert space of composing of the square integrable random variables on
Ω with the inner product E[XY ]. Let X(t) = X(t, ·), t ∈ T be a square
integrable stochastic process defined on the probability space (Ω,B, P ). We
set the mean value function as m(t) = E[X(t)]. Then, the second moment
function

R(t, s) = E[X(t)Y (s)] t, s ∈ T (8.1)
and the covariance function

K(t, s) = Cov[X(t), Y (s)] = E[(X(t)−m(t))(Y (s)−m(s))] t, s ∈ T (8.2)

are positive definite quadratic form functions on Ω and so, the both theories
of stochastic processes and reproducing kernels have the fundamental rela-
tionship. A typical result is the Loéve’ theorem: The Hilbert space H(X)
generated by the process X(t), t on a set T with the covariance function R
is congruent to the reproducing kernel Hilbert space admitting the kernel R.

The support vector machine is a powerful computational method for solv-
ing learning and function estimating problems such as pattern recognition,
density and regression estimation and operator inversion. The basic idea can
be found in E. Parzen [36], A. Berlinet and C. Thomas-Agnan [2, p. 248]
and Vapnik [60]. See also the recent book Steinwart and Christmann [58].
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From some data input space E we consider a general non-linear mapping
to a feature space F that is a pre-Hilbert space with the inner product 〈·, ·〉F :

Φ : E → F ; x 7→ Φ(x). (8.3)

Then, we form the positive definite quadratic form function

K(x, y) = 〈Φ(x),Φ(y)〉F . (8.4)

The important point of this method is that we can apply this kernel to the
problem of construction of the optimal hyperplanes in the space F not by
using the explicit values of the transformed data Φ(x). See B.E. Boser, I.M.
Guyon, and V.N. Vapnik [5] and V.N. Vapnik [60].

A new method appeared as the kernel method. We consider the transform
of the data in the probability space (Ω,B, P ) for a reproducing kernel Hilbert
space HK(Ω) admitting a kernel K on Ω:

Ψ : Ω → 〈·, ·〉F ; x 7→ Kx (8.5)

and we can apply the theory of reproducing kernels to the probability prob-
lems on the space (Ω,B, P ).

On the whole space Rm the following kernels are typical:

1. The usual inner product is given by k(x1, x2) = xT
1 x2.

2. For c ≥ 0 and for a positive integer d

kpoly
d,c (x1, x2) = (xT

1 x2 + c)d x1, x2 ∈ Rm.

3. The Gauss kernel, for σ > 0

kG
σ (x1, x2) = exp

(
−|x1 − x2|2

2σ2

)
x1, x2 ∈ Rm.

In statistical learning theory, reproducing kernel Hilbert spaces are used
basically as the hypothesis space in the approximation of the regression func-
tions. See, for example, the books [9, 60]. Here, in connection with a basic
formula by F. Cucker and S. Smale [10] which is fundamental in the approx-
imation error estimates, we shall consider a general formula based on the
general theory of reproducing kernels. For related results, see also [52, 53, 61].
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