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Abstract

The alignment of transverse vectors on the sky, such as the polarization directions of electromagnetic

radiation from astronomical sources, can be an interesting property of the sources themselves or of the

intervening medium between source and detector. Position angle tests directly compare two such vectors

located at different points on the sky. The “Hub test” introduced here is indirect, based on the ‘alignment’

of the polarization direction at a source and other points on the sky. Simple formulas, easily applied,

determine the significance of Hub test results. In some cases, the Hub test and the position angle tests

agree, but in others the Hub test can find correlations even when position angles differ greatly. The Hub

test is applied to a catalog of QSO polarization directions as an illustration.
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1 Introduction

Large scale alignments are found for both optical and radio quasi stellar objects (QSOs). [1–3] In these
studies, the tests that determine significant alignment compare the linear polarization directions of the
electromagnetic radiation from the QSOs. An example of the potential value of such research is the finding
of correlations between polarization directions and the local large scale structure. [4, 5]

The ‘S’ and ‘Z’ tests used to find alignments in Ref. [1–3] compare polarization position angles, PPAs,
directly, which means that the polarization directions are significantly aligned when the PPAs clump together
at some common value. When the objects in the sample are far apart, the curvature of the Celestial Sphere,
usually hereafter called the ‘sphere,’ complicates the analysis because one must enlist a parallel translation
rule to decide what directions are parallel. The complications have been faced and resolved. ‘S’ and ‘Z’ tests
are well documented and reliably detect this type of alignment.

In this paper we pursue an alternative geometrical concept: the alignment of a direction with a point on
the sky. The concept is evident to those in the Northern hemisphere who have observed that the direction at
the star Merak toward Dubhe is aligned with the direction toward Polaris, a bit off, but close. For multiple
sources, with many polarization directions at scattered locations, consider an analogy with the velocity
vectors of passenger jets that are aligned because the jets are inbound to the same hub airport. That picture
gives the Hub test its name.

Radial alignment is a case that would be detected by the Hub test and not by tests that compare
polarization vectors directly. With all polarizations directed toward a common central point near the sources,
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the PPAs are very different and definitely not parallel, but yet they are in a certain sense aligned. They are
aligned radially.

Suppose a linear filamentary electric current is directed along the sight of an observer, seen end-on. Then,
by Ampere’s Law, magnetic fields wrap around the current. These fields may act to orient molecules. Any
EM radiation observed near the filament could develop a polarization or have its polarization component
changed by interaction with the molecules. The radiation would then be polarized radially toward a central
point near the location of the filament on the sky. Such a scenario could produce an effect that is detectible
by the Hub test, but not by tests that directly compare linear polarization directions.

In general, astronomical sources are candidates for an alignment test if there is an observed asymmetry
such as linear polarization or some other feature like a jet or an axis of rotation. The alignment of linear
polarization directions is discussed here, but the test is easily adapted to other features. Also, the notion of
‘avoidance’ is measurable. Do the polarization directions avoid a point on the sphere? Avoidance is just as
easy to measure with the Hub test as it is to measure alignment.

The Hub test requires seven or more sources complete with positions and polarization directions. Geo-
metrically, two points in the sky determine a great circle, so the mathematical requirement is three sources,
but the significance formula is an approximation that is not sufficiently accurate for three sources. We put
the cutoff at seven sources. The process and needed formulas are presented in Sec. 2 and Sec. 3 discusses
statistics, uncertainties and formulas for evaluating significance.

In Sec. 4, the Hub test is applied to a subset of the JVAS/CLASS 8.4GHz [6] catalog of partially polarized
radio sources that were later identified as QSOs. [7]. The Hub test shown to be central to connecting a large,
extended region of sources with very significantly aligned polarization directions. Perhaps due to their
concepts of alignment, the S and Z tests found parts, but not the whole region to have aligned polarization
directions.

Four QSO samples are discussed that are found by the Hub test to be very significantly aligned. Agree-
ment with the S and Z tests is found in two regions coincident with regions previously discussed in Ref. [7].
Between these two regions, the sources in a third region are found to be significantly aligned only by the
Hub test. The fourth sample combines the previous three into an extended region whose sources are very
significantly aligned. The Hub test is central to the discovery of that large extended region of sources with
aligned polarization directions. The Hub test introduces a new concept of alignment that may be combined
with the other tests to help find any correlations of observed transverse polarization vectors.

2 The Hub Test

The data required to run the Hub test consists of ‘sources’ and a ‘polarization direction’ at each source.
For convenience it is assumed that the position of each source on the Celestial sphere is given in equatorial
coordinates. In this report, we use Right Ascension and Declination, (α, δ), sometimes in degrees and
sometimes in radians, to locate the sources on the sphere. The polarization directions are assumed to be
position angles ψ measured clockwise from the local North with East to the right. Since East is to the right,
the point of view is outside the sphere looking down toward the Earth or Solar System.

As shown in Fig. 1(a), the “alignment angle” η, of a transverse polarization direction at a source S with
a point H in the sky can be defined as the angle η between two great circles, one with the polarization
direction as its tangent and the other connecting S and H. In (b) one sees that the alignment angle is the
angle η at the source between the tangents to the two great circles.

The angle η is the same for all points on the great circle connecting S and H. But the only point that
is on all great circles through H is the diametrically opposite point −H. So when there are many sources
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Figure 1: (Color online) A source S of polarized EM radiation and a point H are plotted on the Celestial
sphere. (a) The source S and point H determine a great circle. The polarization direction is tangent to
a second great circle. The angle η is the acute angle between the two circles at S. (b) In the plane tangent
to the Celestial sphere at S, the polarization position angle PPA is an angle ψ measured clockwise from
North with East to the right. The angle η quantifies how well the polarization direction v̂ψ aligns with the
direction v̂H toward H from S.

with many angles η, the value of each η is the same for H and −H; the angle η is a diametrically symmetric
function of the point H.

Also note that the the angle η is not uniquely defined when either H or −H coincides with the source S.
Then no unique great circle connects S with H, one can think that all great circles through the source S fit
the definition. However interpreted, one cannot define η when S or −S coincides with H or −H.

For the source S in Fig. 1, let its location on the sphere be (RA,dec) = (αS , δS). Then the unit 3-vector
r̂S from the center of the sphere at the origin {0, 0, 0} to the source S has Cartesian coordinates found by
applying the general formula for any (α, δ),

r̂ = (x, y, z) = (cosα cos δ, sinα cos δ, sin δ) . (1)

We write the radial vector formula converting (RA,dec) to Cartesian coordinates as a general formula because
it will be needed in other contexts.

The Cartesian coordinates of unit vectors, v̂N and v̂E, in the direction of local North and local East in
the plane tangent to the sphere at S are given by

v̂N = (− cosα sin δ, − sinα sin δ, cos δ) ; v̂E = (− sinα, cosα, 0) . (2)

The three vectors r̂S , v̂N, and v̂E form an orthonormal set.
In the tangent plane at S, from Fig. 1(b), it is clear that the unit vector v̂ψ in the direction of the

polarization position angle PPA ψ is a linear combination of v̂N and v̂E. We have

v̂ψ = cosψ v̂N + sinψ v̂E ; n̂S×ψ = r̂S × v̂ψ = sinψ v̂N − cosψ v̂E , (3)
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where the unit vector n̂S×ψ is a cross product. As a cross product, it is perpendicular to both r̂S and to
v̂ψ. Since n̂S×ψ is perpendicular to r̂S , it lies in the plane tangent to the sphere at S and is perpendicular
to v̂ψ. To avoid overcrowding, n̂S×ψ is not drawn in Fig. 1(b). One can show that the three vectors r̂S , v̂ψ,
n̂S×ψ form an orthonormal set.

Let the point H on the sphere in Fig. 1 be located at (RA,dec) = (αH , δH). The point H must not be
at the source S or its diametrically opposite point −S. By avoiding S and −S, there is a unique great circle
that contains both H and S. Clearly, the great circle lies in the plane spanned by r̂H and r̂S .

The unit vector v̂H tangent to the great circle at the source S lies in the plane of the great circle and
must, therefore, be a linear combination of r̂H and r̂S .

Since v̂H is tangent to the sphere at S, we know that v̂H is perpendicular to r̂S . By applying the Gram-
Schmidt process to r̂H and r̂S , we get v̂H from r̂H by subtracting off the part of r̂H that is parallel to r̂S .
The result is

v̂H =
r̂H − (r̂S · r̂H)r̂S

| r̂H − (r̂S · r̂H)r̂S | , (4)

where the dot product r̂S · r̂H = cos θ is the cosine of the angle between unit vectors r̂H and r̂S . Since the
denominator is the length of the vector in the numerator, the result is a unit vector.

The fundamental quantity in the Hub test is the alignment angle η between the polarization direction ψ
and the direction toward the point H, as illustrated in Fig. 1. One can determine η from the dot product of
unit vectors v̂H and v̂ψ,

cos η = | v̂H · v̂ψ | . (5)

The absolute value is meant to assure that the alignment angle η is acute, 0◦ ≤ η ≤ 90◦. The angle η can be
chosen to be acute because the electric field polarization direction and the tangent to the great circle from
S to H are not oriented: the electric field oscillates back and forth along ±v̂ψ and both directions ±v̂H

connect S to H.
Consider the unit vector n̂S×H that is perpendicular to the plane of the great circle through H and S,

n̂S×H =
r̂S × r̂H

| r̂S × r̂H | . (6)

By the properties of cross products, the unit vector n̂S×H is perpendicular to both r̂S and r̂H . Thus n̂S×H is
in the plane tangent to the sphere at S. By (4), v̂H is a linear combination of r̂S and r̂H , it follows that n̂S×H
is perpendicular to v̂H . Thus the vector n̂S×H lies in the plane tangent to the sphere at S in a direction
perpendicular to v̂H . To avoid overcrowding, the vector n̂S×H is not drawn in Fig. 1(b).

In the plane tangent to the sphere at S, the perpendicular directions n̂S×H ⊥ v̂H and n̂S×ψ ⊥ v̂ψ differ
by the same angle as v̂H and v̂ψ. Thus, as an alternate to (5) one can also determine η from

cos η = | n̂S×ψ · n̂S×H | . (7)

Whether one uses (5) or (7), the formulas (1) through (7) allow the alignment angle η to be calculated given
the PPA ψ and the locations (αS , δS) and (αH , δH) of the source S and point H on the sphere.

Suppose the Hub test is applied to a sample, a collection of many sources Si, i ∈ 1, ..., N, where N is the
number of sources. Each source Si has a given location on the sphere, (αi, δi), that is part of the original
data. Each source has a polarization direction determined by a polarization position angle PPA denoted ψi.
Then, for each source Si and each point H on the sphere, there is an alignment angle ηiH , as pictured in
Fig. 1, but now for N sources.
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For almost all points H on the sphere, one can define an average alignment angle function η̄(H) repre-
senting how well aligned with H, on average, are the polarization directions of the collection of sources Si.
Let the function η̄(H) be defined as

η̄(H) = η̄(α, δ) =
1

N

∑

i

ηiH , (8)

where (RA,dec) = (α, δ) is the location of H. To be more precise, this is the arithmetic mean. Plots of the
function η̄(α, δ) are displayed in Figs. 4 and 5.

As commented after (5), all the alignment angles ηiH are acute angles. It follows that their average,
η̄(H), is an acute angle, 0◦ ≤ η̄(H) ≤ 90◦.

The function η̄(H) cannot be defined where H or −H is coincident with any of the sources, ±H 6= Si.
From Fig. 1, when S and H are the same point, infinitely many great circles ‘connect’ them, so there is no
well defined angle η. In the formulas, v̂H in (4) is indeterminate, 0/0, when r̂H and r̂S coincide.

As noted earlier, the angle η in Fig. 1 is a diametrically symmetric function of H, so the average of many
ηs, η̄(H), is also diametrically symmetric,

η̄(H) = η̄(−H) . (9)

The maximum and minimum values of the η̄(H) have special meanings. The Hub test provides numerical
results η̄min and η̄max that can be used to judge how strongly the sources’ polarization directions are correlated
with Hmin and Hmax. The locations of the max and min points on the sphere, Hmin and Hmax, that the
polarization directions tend to point towards or away from are also potentially useful information determined
by the test.

The maximum alignment angle η̄max occurs at some point Hmax and is a measure of how well the
polarization vectors together avoid the direction toward Hmax, which is, one might call the sample’s “unhub”.
The points Hmax and −Hmax are the most unaligned points on the sphere. While such points may be of
interest for some purposes, in this article we are more interested in how well the polarization directions align.
The symmetry between avoidance and alignment should be noted.

For the Hub test, the alignment of the polarization directions for a given collection of sources is quantified
by the minimum alignment angle η̄min. With perfect alignment all polarization directions point to the same
hub and that means η̄min would vanish. The smaller the angle, the better aligned the polarization directions.
For this article, testing alignment is the central purpose. Other information is also made available, such as,
but not limited to, the location of the hubs ±Hmin, and the results for the maximum avoidance, η̄max, and
±Hmax.

Once one has determined the best alignment angle η̄min for the observed data, it is important to know
how likely random polarization directions would have returned an equivalent or better result. The problem
of significance is treated next.

3 Significance Level and Uncertainty

How do we know if the alignment is significant? What is the likelihood that sources with random PPA
polarization angles would produce a lower η̄min or a higher η̄max? To find out, we repeat the process in
Sec. 2, making many runs with sources that have randomly polarized PPA data. The many results produce
raw probability distributions that can be approximated with functions. These functions can be used to
determine the significance of observed alignments.
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One expects that the number of sources is an important parameter. Runs with a small number of sources
are more likely to have lower η̄min and higher η̄max when compared to runs with large numbers of sources.

The random run process we use is keyed to the example in Sec. 4 below. The sources are located in
regions with given radii ρ, ρ ∈ {180◦, 24◦, 12◦, 5◦, 0◦}. By the diametrical symmetry of the alignment angles
η, the 180◦ case covers sources anywhere on the whole sphere. And ρ = 0◦ is point-like; all sources are
confined to a very small region.

One should not confuse the results for a region with radius ρ = 0◦ with results for an unpolarized
source. An unpolarized or circularly polarized source has its linear polarization randomly or uniformly
cycling though all directions perpendicular to the line of sight. Here we have N definite and unchanging
polarization directions from independent sources that happen to be located in a tiny region.

Region radius: 24°
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Figure 2: (Color online) R = 2000 runs for N = 181 sources with random polarization PPA ψ. For each run,
the sources were assigned random polarization directions ψ. The best alignment angle η̄min for each of the
R runs was collected and the results analyzed. In (a), the histogram of the number of runs ∆R in each bin
of width ∆η̄ = 0.0025π radians. The total number of runs is the sum of the bar heights, R =

∑

∆R. Thus,
by dividing by R∆η̄, the sum of the areas of the bars in (b) is unity, an approximation to the probability
distribution. In the foreground is the distribution, (10), that fits the data, slightly steeper on the η = π/4
side than on the 0 side.

The random runs use the same 2◦ × 2◦ grid that is constructed for the example in Sec. 4. Since location
is irrelevant for the random runs, the sources are confined to a single region for all runs, a region centered
near the grid point at (RA,dec) = (70.4◦, 58.0◦). Sources are chosen at random from the grid points within
the region and moved slightly off-grid to avoid resonances. For point-like regions with null radii, ρ = 0◦,
the math was simpler with the sources at the North pole. The number of sources N in a given run is taken
from the set {8, 16, 32, 64, 128, 181, 256, 512}, i.e. powers of 2 and 181. The number 181 is special because
the central region discussed in Sec. 4 has 181 sources. Each source is assigned a PPA ψ polarization angle
chosen at random from 0◦ to 180◦.

A random run starts by choosing N sources at random locations in the region and assigning random
PPA ψ polarization angles to each. The alignment angle ηiH between the ith source and the grid point H is
calculated as in Sec. 2. The average (arithmetic mean) η̄H of the N alignment angles ηiH at each grid point
H is calculated. The largest and smallest average alignment angles, η̄min and η̄max, are determined as well as
the hub locations Hmin and Hmax where the extreme angles occur. The locations of the sources, their PPA
angles ψ, the location Hmin, the smallest average alignment angle η̄min, the location Hmax, and the largest
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average alignment angle η̄max are collected in a table and stored. That completes the random run.
Many random runs were completed for this article. The sources were confined to regions of radii ρ =

{0◦, 5◦, 12◦, 24◦, 180◦}. By diametrical symmetry, the 180◦ region effectively covers the entire sphere. The
number N of sources in each region were assigned to be N = {8, 16, 32, 64, 128, 181, 256, 512}, i.e. powers of
two plus N = 181. There were R = 2000 runs for the case of the 24◦ region with N = {8, 16, 32, 64, 128, 181}
sources. All other cases were run R = 1000 times.

In symbols, for R(N) runs with a given number of sources N, there are a total of R(N) values of η̄min

and η̄max. By counting the number ∆Rmin
i of values of η̄min that are found in an interval ∆η centered on ηi,

one obtains a histogram, the collection {ηi,∆Rmin
i }. Since the total number of runs is the sum, R =

∑

∆Ri,
the fraction of random results η̄min that are in the ith bin is ∆Ri/R.

A histogram for random runs in a 24◦ radius region with N = 181 sources is plotted in Fig. 2(a). In
part (b), the probability distribution is approximated by a combination, P (η), of a normal distribution with
an ‘S-curve’, a unit step. The S-curve is unity for small η and vanishes for large η, with a transition on the
π/4 side of the histogram. The S-curve makes the η = π/4 side of the distribution steeper. See Fig. 2.

Thus, we find that the following form of the probability distribution fits the random data well. One has

Pmin(η) =
1.220

σ
√
2π

(

1 + e4(
η−η0

σ
−1)

)

−1

e−
1

2 (
η−η0

σ
)
2

, (10)

where 1.220 =
√
2π/

∫

[e−y
2/2/(1 + e4(y−1))]dy. Since P (η0 + 0.706σ) = P (η0 − 1.018σ) = e−1/2P (η0), the

‘width’ is the quantity 0.706σ + 1.018σ = 1.72σ. The label “min” in Pmin(η) indicates “alignment.”
The distribution Pmin(η) is not a normal distribution. Nevertheless, we call σ the “half-width”, even

though 1.72σ/2 = 0.86σ would be more accurate. The most likely value of η, the value at the peak of the
distribution, is η0 − 0.05740σ. Thus the S-curve shifts the mean slightly from η0 which is the mean for a
normal distribution. Just as we call σ the “half-width” even though it is only approximately equal to the
half-width, we call η0 the “mean” even though it is shifted by a small amount from the actual mean.

To judge avoidance, the maximum angles η̄max of the random runs were collected. All such angles exceed
π/4, π/4 < η̄max. Similar to the alignment cases, the side of an avoidance histogram toward η = π/4 is
steeper than the far side toward η = π/2. Making the necessary adjustment to the S-curve, two sign changes
compared with (10), one has an avoidance probability distribution Pmax(η) given by

Pmax(η) =
A

σ
√
2π

(

1 + e−4(
η−η0

σ
+1)

)

−1

e−
1

2 (
η−η0

σ
)
2

. (11)

Both η0(N) and σ(N) are functions of the number of sources N in the sample, with slightly different functions
for alignment (min) and avoidance (max). The likelihood that a random result η̄ is in an interval δη centered
on η is approximated by P (η)δη.

By fitting probability distributions (10) and (11) to histograms for R(N) random runs with N sources in
a region of radius ρ and N = {8, 16,32, 64, 128, 181, 256, 512}, one finds a mean value η0(N) and a half-width
σ(N) for each N. It turns out that the various η0(N) and σ(N) are well described by simple functions of√
N,

ηmin
0 (N) =

π

4
− c1

(√
N

)a1 ≈ π

4
− 1√

N
; σmin(N) =

c2

4
(√

N
)a2 ≈ 1

4
√
N

(12)

ηmax
0 (N) =

π

4
+

c1
(√

N
)a1 ≈ π

4
+

1√
N

; σmax(N) =
c2

4
(√

N
)a2 ≈ 1

4
√
N

,
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Region Radius ρ cmin
1 amin

1 cmin
2 amin

2

180◦ 0.9435± 0.0069 1.0048± 0.0050 1.072± 0.033 0.968± 0.021
24◦ 0.9221± 0.0027 1.0057± 0.0020 1.132± 0.025 0.968± 0.015
12◦ 0.8769± 0.0031 0.9991± 0.0024 1.282± 0.045 1.039± 0.024
5◦ 0.8270± 0.0074 1.0036± 0.0061 1.158± 0.024 0.973± 0.014
0◦ 0.4864± 0.0048 1.0114± 0.0068 1.430± 0.038 1.028± 0.018

Region Radius cmax
1 amax

1 cmax
2 amax

2

180◦ 0.9347± 0.0053 0.9983± 0.0039 1.044± 0.036 0.958± 0.023
24◦ 0.924± 0.012 1.0033± 0.0089 1.102± 0.020 0.964 ±0.012
12◦ 0.9201± 0.0065 1.0170± 0.0049 1.311± 0.061 1.059± 0.032
5◦ 0.843± 0.011 1.0078± 0.0090 1.170± 0.014 0.9857± 0.0083
0◦ 0.4812± 0.0043 1.0046± 0.0061 1.470± 0.047 1.043± 0.022

Table 1: Parameters ci and ai, i = 1,2 in (12) for regions with various radii ρ. By the symmetry across
diameters, the region with a radius of 180◦ covers the whole sphere. The parameters ci for ρ > 5◦ and ai
for any ρ are close to unity, some equal to one within the plus/minus standard error.

where the parameters ci and ai for η
min
0 and ηmax

0 have values near unity, depending on the radius ρ of the
region. See Table 1. The simpler expressions in (12) apply when the parameters ai and ci are equal to one.

24 °Region radius:

0
max
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min
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Figure 3: (Color online) For ρ = 24◦ radius regions, the mean η0 and half-width σ parameters for random
runs as functions of the number of sources N in (12) and Table 1. (a) Note that avoidance (max) and
alignment (min) are symmetric about the dashed line at the angle 0.25π = 45◦. (b) Since, for ρ > 5◦, all
of the parameters in Table 1 are roughly unity, ci, ai ≈ 1, the half-widths σ are about 1/(4

√
N), which, by

(12), is a quarter of the separation of the η0 curves in (a) from the dashed centerline η0 = π/4.

Note that, for random runs at ρ = 5◦ and especially for ρ = 0◦ with any given number N of sources, the
alignment and avoidance angles approach the midway value π/4 much closer than they do for larger regions.
See Table 1, where c1 is noticeably smaller for ρ = 5◦ and 0◦ than it is for regions with larger radii ρ.

The dependence on
√
N of ηmin

0 (N) and ηmax
0 (N) in (12) can be made plausible by adapting random walk

ideas. [8] In random walk notation, at each point H on the sphere, except at sources or opposite sources,
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define

DN ≡ N
(

η̄(H)− π

4

)

=
N
∑

i

(

ηiH − π

4

)

= DN−1 + s , (13)

where we use (8) and where s is a ‘step’, the change that gives DN from DN−1.
From Fig. 1, with a random polarization direction ψ for the N th source, the alignment angle η is as likely

to be greater than π/4 as it is to be less than π/4. Thus each step s = (ηiH − π/4) is as likely to be positive
as it is to be negative. By repeating over many trials, we infer that the average step s would vanish, 〈s〉 = 0.

However, the square of s, i.e. s2, is always positive or zero. Let us assume that the average of s2 is a
constant, 〈s2〉 = d2, while maintaining 〈s〉 = 0. Then the average of D2

N increases with N,

〈D2
N 〉 = 〈(DN−1 + s)

2〉 = 〈D2
N−1〉+ 〈s2〉 = 〈D2

1〉+ (N − 1)d2 = Nd2 , (14)

where we assume that 〈D2
1〉 = d2. The root-mean-square value Drms

N ≡
√

〈D2
N 〉 = ±d

√
N and, by (13), we

have

η̄rms(H) =
π

4
± d√

N
, (15)

which is much like (12).
To make (15) equivalent to (12), the extreme value of the constant d would need to be one radian. This

means that the locations Hmin and Hmax of the extreme alignment angle, max or min, for N − 1 sources
are most likely near their locations for N sources, while the added source contributes an amount d2. To
produce (12) from (15), one concludes that the added amount is one, d2 = 〈(ηNH − π/4)

2〉 = 1, on average
for max avoidance or best alignment. Justifying that conclusion is a more complicated problem than I want
to consider here. So, let us settle for having shown that the dependence of ηmin

0 (N) and ηmax
0 (N) on

√
N in

(12) is made plausible by the coincidence of (12) and (15).
Fig. 3 plots the functions in (12) and the means η0(N) and the half-widths σ(N) from random runs with

sources in a ρ = 24◦ region.
Let us use Fig. 3 to visualize the probability distributions in (10), (11), and (12). The bulk of the most

likely alignment angles η̄min and avoidance angles η̄max extend vertically a little above and a little below the
η0 curves drawn in (a). The half-widths σ in (b) are a quarter of the separation, i.e. 1/

√
N = | π/4− η0 |,

in (a) between the angle π/4 to the η0 curves. So the max and min avoidance and alignment angles η̄ of a
given random run will most likely fall in two bands centered on the η0 curves, bands whose half-widths σ
are about a quarter of the separation from π/4 to the η0 curves. With that pictured, we leave random runs
and return to observations.

Given an ‘observed’ alignment angle η̄obsmin, i.e. one that is calculated from observed polarizations, there
is a chance that randomly directed polarizations can produce an equal or smaller alignment angle. The
“significance” S of a particular η̄obsmin is defined to be the likelihood that random runs will show better
alignment than indicated by the observed angle.

Similarly, there is a likelihood that the avoidance angle η̄obsmax, could be less than the result of some
random run. We therefore define two significances Smin(η̄obsmin) and Smax(η̄obsmax), one for alignment and one
for avoidance.

Given the approximations P (η) in (10) and (11) to the probability distributions, the significance of an
alignment or avoidance angle η̄obs is the integral from/to infinity,

Smin(η̄obsmin) =

∫ η̄obs
min

−∞

Pmin(η)dη ; Smax(η̄obsmax) =

∫

∞

η̄obs
max

Pmax(η)dη . (16)
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The significance formula for an observed min alignment angle η̄obsmin is the fraction of random runs that would
yield better alignment, i.e. a smaller alignment angle η̄min. Similarly, the significance formula for an observed
max avoidance angle η̄obsmax in (16) indicates the likelihood that random runs would produce larger avoidance
angles than the angle η̄obsmax that is calculated from observed data.

The further the average η̄(H) in (8) is below or above π/4, the more significant the alignment or avoidance
of the polarization directions with the point H on the sphere.

The distributions in (10) and (11) approximate the actual probability distribution of the results of random
runs. Note that the distributions have nonzero values for any real η, positive or negative, while alignment
and avoidance angles η̄ are confined to a finite interval, i.e. they are nonnegative acute angles 0◦ ≤ η ≤ 90◦.
So, there might be a problem.

Probabilities and significances are meaningless for PPA angles that are negative, η̄ < 0◦, or larger than
a right angle, η̄ > 90◦ = π/2 rad. With only slight differences due to the parameters ci and ai, by (16),
we have Smin

N (0) ≈ Smax
N (π/2), which means that the significance of the disallowed angles smaller than 0

and larger than 90◦ = π/2 are about the same. For N = 4 sources in 24◦ radius regions, one calculates
Smin
N=4(0) ≈ Smax

N=4(π/2) = 0.014, which is more than 1% and is not negligible when determining significance.
Calculating for an increasing number of sources, by N = 7, one finds that Smin

N=7(0) ≈ Smax
N=7(π/2) = 4×10−5

or 0.004%. That may be considered negligible. For the example discussed in the next section, only regions
with seven or more sources are considered.

4 An application of the Hub test

In this section, the Hub test is applied to published data measured, collected and catalogued by others. The
data is a subset of the the JVAS/CLASS 8.4-GHz catalog of more than 12700 radio sources. [6] After the
catalog was published, a set of 1450 QSOs quasars (QSOs) in the catalog that meet certain requirements
were identified. [7] A couple of the most relevant constraints are the limit on uncertainties in PPA, σψ ≤ 14◦,
and the requirement that linear polarization percentages must exceed 0.6%. One motivation of the CLASS
survey is to study Faraday rotations and so no corrections for Faraday rotation were applied to the data.
See Refs. [6] and [7] for details and discussion.

In preparation for applying the Hub test, a 2◦ × 2◦ grid was constructed on the celestial sphere, some
10,518 individual points. Each grid point serves as the center of a 24◦-radius region. The QSO sources located
in each region make one sample. With 2◦ spacing and 24◦ radii, neighboring regions overlap making changes
gradual from one region to neighboring regions. The 2◦ spacing also means that any derived locations have
uncertainties greater than half the smallest division, i.e. (∆RA,∆dec) ≥ (± 1◦/ cos δ,± 1◦).

As discussed at the end of the previous section, the probability distribution and significance formulas are
approximations that are not considered accurate enough for samples with fewer than seven sources. Thus,
we consider here the 6801 regions that are populated with from 7 to 251 sources. The median population
of these regions is 81 sources, with an arithmetic average of 95 sources. Applying the significance formula
(16) yields 249 “very significantly” aligned regions. To be very significant, fewer than 1% of samples with
randomly directed polarizations are better aligned.

While alignment is the focus of this article, one should note that there are 58 regions whose sources
display very significant avoidance, meaning fewer than 1% of random samples with the same number of
sources would avoid some point on the sphere with a larger avoidance angle η̄max. So, for these QSO sources,
very significant alignment is found more often, 249 versus 58, than very significant avoidance.
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N(a) N(b)

Min

N(c) N(d)

Figure 4: (Equatorial coordinates, Aitoff plots, 2◦ contours, Color online) Alignment functions for various
samples. The sources are displayed as purple dots. At each point H on the Celestial sphere, the angles η,
as in Fig. 1, at the sources S are averaged and that average η̄(H) becomes a function of location H on the
sphere. The function η̄(H) is plotted here for four regions of sources whose best alignment angle η̄min is
significant, (a), or very significant, (b), (c), (d). In (a) and (b), the Hub test finds alignment for sources in
regions where the S and Z tests find very significant alignment. But only the Hub test finds the polarization
directions in (c) aligned, so the Hub test and the S and Z tests do not always agree. In (d), one finds the
map for the collection of sources from (a), (b), (c). That collection of sources is very significantly aligned.
See Table 1 for some numerical details.

The Hub test shows that the alignment of the sources in region Fig. 4(a) has a significance of 1.7%,
which is significant, (< 5%), but not very significant, (< 1%). For (b) the significance is 0.27%, which is
very significant. These regions approximate regions found to be very significantly aligned by the S and Z
tests, see Ref. [7]. There, the regions dubbed ‘RN1’ and ‘RN2’ are centered at (RA,dec) = (165◦, 12◦) and
(210◦, 38◦) extend over (140◦ − 190◦, 0◦ − 25◦) and (RA,dec) = (180◦ − 240◦, 15◦ − 60◦), whereas the regions
in (a) and (b) of Fig. 4 have 24◦ radii centered on (170◦, 8◦) and (212◦, 32◦).

To test the agreement of the Hub test with the S and Z tests for Fig. 4 (a) and (b), we calculate the
position angle PA for the direction from the centers of the regions in (a) and (b) to their respective hubs
Hmin. We find that the PA for (a) is 138◦ and for (b) the PA is 57◦. Both values fit nicely in the clump of
PAs in Fig. 8 of Ref. [7]. The agreement confirms that the Hub test and the S and Z tests can yield similar
conclusions about whether or not polarization directions align.

The contour plot of η̄(H), (8), for the most significantly aligned region is displayed in part (c) of Fig. 4.
The region’s 181 sources are depicted as dots. With a minimum alignment angle η̄min = 0.63 rad = 36.4◦, its
significance is about one in six thousand, S181(0.63) = 1.7× 10−4, meaning one in six thousand 24◦ regions
with 181 sources but with random polarization directions would be better aligned.

The sources in Fig. 4(c) lie midway between those of (a) and (b). Combining the sources in regions (a)
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Fig. Center (RA,dec) N η̄min ±Hmin (RA,dec) Significance

4(a) (170.◦, 8◦) 140 37.3◦ ± 0.4◦ (260.◦,−48◦)± (16◦, 3◦) 1.67+0.73
−0.56 × 10−2

4(b) (212◦, 32◦) 204 37.8◦ ± 0.3◦ (189◦, 16◦)± (8◦, 3◦) 2.7+2.1
−1.3 × 10−3

4(c) (190.◦, 20◦) 181 36.4◦ ± 0.3◦ (190◦, 0◦)± (1◦, 1◦) 1.7+2.4
−1.1 × 10−4

4(d) Extended 365 39.2◦ ± 0.4◦ (188◦, 0◦)± (1◦, 1◦) 5.6+6.9
−3.4 × 10−4

Table 2: The region center, number of sources, hub information, and significance for the samples in Fig. 4.
Uncertainties for η̄min and ±Hmin are found by fitting normal distributions to 200 runs using PPA ψ dis-
tributed according to the σψs listed in the JVAS/CLASS 8.4-GHz catalog. [6] The uncertainties in the
Significance column are found by using the uncertainties in ci and ai from Table 1 in (16). Note that the
center of the region (c) is just 1.3◦ from the average of the centers of (a) and (b), so the sources in (c) are
midway between (a) and (b).

and (b) with those in (c) gives the extended sample in (d). The total number of sources in (a), (b), (c) is 525,
while the combination (d) has 365 sources, which implies that 160 sources straddle two regions. Comparing
(c) and (d), one sees that the contour map in Fig. 4(d) is much like that in (c). By Table 1, the location of
±Hmin shifts only a couple of degrees from (c) to (d). Adding (a) and (b) to (c) makes little change. While
(c) is the most significantly aligned region, the extended sample in (d) would rank ninth out of the 249 very
significantly aligned regions. Of course, (d) is an extended region and not like the others, which are 24◦

radius regions.
Since regions (c) and (d) trigger the Hub test, but not the S and Z tests, it follows that applying the

Hub test can add useful information to the results obtained by the S and Z tests.

N(a) N(b)

Figure 5: (Color online) Simulations These simulations have 181 sources located as in region Fig. 4(c),
but the observed polarization directions are replaced with assigned values. (a) The polarization direction
ψ at each source is aligned perfectly with the hub Hmin from Fig. 4(c). As a consequence, the minimum
alignment angle vanishes, η̄(Hmin) = 0◦. In (b), we simulate the observations in Fig. 4(c) by spreading out
the polarization directions about the perfect alignment in (a). The observed polarization directions in Fig.
4(c) are consistent with the simulated result here for a δψ ≈ 50◦ wide distribution about perfect alignment.

Two simulations are provided to illustrate these comments. The simulations have sources located as
in Fig. 4(c) but the simulated sources are assigned new polarization directions that are not the measured
directions.

The first simulation in Fig. 5(a) and Table 2(a) forces perfect alignment by aiming polarization directions
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Fig. Center N η̄min ±Hmin η̄max ±Hmax Significance of η̄min

5(a) (189◦, 20◦) 181 0◦ (190◦, 0◦) 64.8◦ (256◦ , 18◦) 0

5(b) (189◦, 20◦) 181 36.3◦ (188◦,−2◦) 51.5◦ (230◦, 6◦) 1.6+2.3
−1.0 × 10−4

Table 3: The region center, numbers of sources, hub information, and significance for the simulations in
Fig. 5. (a) Perfect alignment of the polarization directions with the hub Hmin makes η̄min vanish by design.
(b) Comparing the values here for Fig. 5(b) with those for Fig. 4(c) in Table 2, one concludes the observed
map in Fig. 4(c) resembles perfect alignment in Fig. 5(a) except with polarization directions ψ uncertain by
δψ ≈ 50◦, as in the simulation in Fig. 5(b).

directly toward the hub Hmin that was obtained by observed data and mapped in Fig. 4(c). The contours
near the targeted hub Hmin make a tight bulls-eye pattern.

Comparing the perfect alignment map in Fig. 5(a) with the observed map 4(c) shows general similarities.
Both have compact alignment near the hub Hmin and wider regions of avoidance spread out around the hub
Hmax. However, the alignment angle η̄ for the targeted polarizations in 5(a) ranges over ∆η̄ = 65◦ from η̄min

= 0◦ to η̄max = 65◦. That compares with Fig. 4(c), where the range is much much less, with ∆η̄ only 16◦

from η̄min = 36◦ to η̄max = 52◦.

To simulate the observed results in Fig. 4(c), let us degrade the perfect alignment in Fig. 5(a) by
spreading out the polarizations directions. Thus, in (b), the assigned polarization directions are distributed
normally about perfect alignment. Different choices give different maps. The selection displayed in Fig. 5(b)
is chosen because the map looks like the one in Fig. 4(c). In the simulation Fig. 5(b), the half-width δψ of
the PPA distributions is δψ = 48◦.

The map 5(b) matches 4(c), a conclusion that is reinforced by comparing the data listed in Tables 1 and
2 for 4(c) and 5(b). Thus, the observed polarization directions in region of Fig. 4(c) are consistent with an
alignment of polarization directions toward the hub Hmin with a normally distributed uncertainty of about
50◦.

5 Conclusions

The Hub test can help find and analyze large scale alignments of polarization vectors from sources such as
QSOs. The test looks for correlations of polarization directions with directions toward points on the sphere.
Similarly, correlations of polarization position angles PPA ψ can be found with existing S and Z tests that
compare polarization directions directly. However the results determined in the Hub test are distinct from
and the implications differ from the results of the S and Z and similar tests.

Agreement can occur, for example, when polarization vectors aim in concert toward a Hub point that is
far enough away from the sources, the polarizations collect around a common direction. In such cases, like
that in Fig. 4(a), the S and Z tests as well as the Hub test detect alignment.

However, when polarization vectors aim in concert toward a Hub close to the sources, the behavior is
not always detected by S- and Z-tests. Due to parallax, the polarization directions differ for sources located
at different points on the sphere. Heuristically, directions can ‘align’ by pointing to the same hub. That
provides an alternate meaning for the term ‘aligned’ and not the meaning assumed by the S and Z tests.
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Having both S and Z and like tests as well as the Hub test provides more insight into the nature of the
alignments than either type of test can deliver on its own.

If the alignments found in Sec. 4 and in the references are not due to pure chance, then some mechanism
needs to be found that explains them. The alignment of the samples in Fig. 4 occurs near the middle of
the sources’ distribution over the sky. Perhaps this could be evidence of a large scale electric current along
the line of sight. By Ampere’s Law, such a current seen end-on would produce a circulating magnetic field
centered on the current’s axis. By some process involving the medium between source and observer, the
interaction with the intergalactic medium could reduce polarization parallel to the field. Radially-directed
polarizations would result. And that describes what is seen, polarizations directed toward a point near
the middle of the affected region. Combining the Hub test with the S and Z tests may have uncovered a
filamentary current in deep space or, perhaps, some other effect.
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