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Abstract

We show that the normal distribution with mean zero and variance 1/3 is the

distribution of the integrals
∫
[0,1]

Wt dt of the sample paths of Wiener process W

in C([0, 1],R).
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1 Introduction

In contrast with the notion of “martingale (stochastic) integration” associated with

Wiener measure, attention is less directed to the integrals of the sample paths of Wiener

process W in C([0, 1],R). Since every realization of W is a continuous function on

a compact interval, it always makes sense to speak of the integral of a Wiener path;

investigating the integrals of Wiener paths, in particular the distribution of such integrals

(which is evidently possible and is justified in what follows), is then a natural move.

In the present short communication, we prove

Theorem ∗. If W is Wiener process in C([0, 1],R), then∫
[0,1]

Wt dt ∼ N(0, 1/3).

2 Proof

Throughout, let Cw be the metric space C([0, 1],R) equipped with the uniform metric;

and let W be Wiener process in Cw.

We now give
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Proof (of Theorem ∗). For all f, g ∈ Cw, we have∣∣∣∣ ∫ (f − g)

∣∣∣∣ ≤ sup
t
|f(t)− g(t)|;

so the integration operator
∫

is (uniformly) continuous on Cw.

If X1, X2, . . . are independent identically distributed standard normal random vari-

ables, let Ŵn be for each n ∈ N the “Donsker process” obtained by linear interpolation

between the 1√
n

-scaled cumulative sums of X1, . . . , Xn such that the resulting process

fixes the origin, so that the sequence (Ŵn)n∈N satisfies the assumptions of Donsker’s

theorem (Theorem 8.2 in Billingsley [1], for concreteness). The continuous mapping

theorem and Donsker’s theorem then jointly imply the weak convergence∫
Ŵn

t dt 
∫
Wt dt. (1)

Let S0 := 0; and let Sj :=
∑j

i=1Xi for all 1 ≤ j ≤ n and all n ∈ N. If n ∈ N, then we

have
∫
Ŵn

t dt =
∑n

j=1

∫ j/n

(j−1)/n Ŵ
n
t dt, and we have Ŵn

j/n = Sj/
√
n for each 0 ≤ j ≤ n.

Given any 1 ≤ j ≤ n, we have∫ j/n

(j−1)/n
Ŵn

t dt

=
1√
n

∫ j/n

(j−1)/n
τSj + (1− τ)Sj−1 dτ

=
1√
n

(
Sj
τ2

2

∣∣∣∣j/n
(j−1)/n

+
1

n
Sj−1 − Sj−1

τ2

2

∣∣∣∣j/n
(j−1)/n

)
.

Summing the last term above over each 1 ≤ j ≤ n gives∫
Ŵn

t dt =
1

n3/2

(
nX1 + (n− 1)X2 + · · ·+Xn

)
− 1

2n5/2
Sn. (2)

The last term in (2) vanishes in probability by the continuous mapping theorem and

the usual weak law of large numbers.

If n ∈ N, the sum of the independent normal random variables (n − j + 1)Xj with

1 ≤ j ≤ n in (2) is the normal random variable with mean zero and variance 12 + 22 +

· · ·+ n2 = n(n+ 1)(2n+ 1)/6. If κ := 23/2Γ(2)/
√
π, then

n∑
j=1

E|(n− j + 1)Xj |3 = κ

n∑
j=1

j3 = κ
n2(n+ 1)2

4
,

which grows more slowly than (n(n+1)(2n+1)/6)3/2 as n→∞. The classical Lyapunov

central limit theorem (e.g. p. 332, Shiryaev [2], for concreteness) and the continuous
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mapping theorem together imply that

1

n3/2

(
nX1 + (n− 1)X2 + · · ·+Xn

)

=

√
n(n+1)(2n+1)

6

n3/2

(√
n(n+ 1)(2n+ 1)

6

)−1(
nX1 + (n− 1)X2 + · · ·+Xn

)
 N(0, 1/3).

Upon applying the continuous mapping theorem once more, we have∫
Ŵn

t dt N(0, 1/3)

from (2). But then from (1) and the uniqueness of weak limit it follows that∫
Wt dt ∼ N(0, 1/3)

as desired.
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