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Abstract

We show that the normal distribution with mean zero and variance 1/3 is the
distribution of the integrals [ [ W¢ dt of the sample paths of Wiener process W

in C([0,1],R).
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1 Introduction

In contrast with the notion of “martingale (stochastic) integration” associated with
Wiener measure, attention is less directed to the integrals of the sample paths of Wiener
process W in C([0,1],R). Since every realization of W is a continuous function on
a compact interval, it always makes sense to speak of the integral of a Wiener path;
investigating the integrals of Wiener paths, in particular the distribution of such integrals
(which is evidently possible and is justified in what follows), is then a natural move.

In the present short communication, we prove

Theorem *. If W is Wiener process in C([0,1],R), then

W;dt ~ N(0,1/3). O
[0,1]

2 Proof

Throughout, let C,, be the metric space C([0, 1], R) equipped with the uniform metric;
and let W be Wiener process in C,.

We now give
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Proof (of Theorem x). For all f,g € C,,, we have

[0 <5l - g0

so the integration operator [ is (uniformly) continuous on C,,.

If X, Xo,... are independent identically distributed standard normal random vari-
ables, let W™ be for each n € N the “Donsker process” obtained by linear interpolation
between the ﬁ—sealed cumulative Sums/\of X1,...,X, such that the resulting process
fixes the origin, so that the sequence (W™),cn satisfies the assumptions of Donsker’s
theorem (Theorem 8.2 in Billingsley [I], for concreteness). The continuous mapping

theorem and Donsker’s theorem then jointly imply the weak convergence
//Wt” dt ~ /Wt dt. (1)

Let Sp := 0; and let S; = 5:1 X, foralll <j<mnandalln eN. If n € N, then we
have [ W dt = > i1 (§/111)/n Wrdt, and we have an/n = 5;//n for each 0 < j < n.
Given any 1 < j < n, we have
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Summing the last term above over each 1 < j < n gives

J/n )
(i-1)/n

— 1
/Wt dt:n?,/Q(nX1+(N—1)X2+'”+Xn) Sp. (2)
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The last term in vanishes in probability by the continuous mapping theorem and
the usual weak law of large numbers.
If n € N, the sum of the independent normal random variables (n — j + 1)X; with
1<j<nin is the normal random variable with mean zero and variance 12 + 22 +
o4 n?=n(n+1)(2n+1)/6. If == 23/2T(2)/\/7, then
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which grows more slowly than (n(n+1)(2n+1)/6)3/2 as n — co. The classical Lyapunov

central limit theorem (e.g. p. 332, Shiryaev [2], for concreteness) and the continuous



mapping theorem together imply that

1
W(nX1+(n—1)X2+-~-+Xn>

n(n+1)(2n+1) -1
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~ N(0,1/3).
Upon applying the continuous mapping theorem once more, we have
/th dt ~ N(0,1/3)
from . But then from and the uniqueness of weak limit it follows that
/Wt dt ~ N(0,1/3)

as desired. O
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