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Abstract

Given a countable collection of almost sure events, the event that at least one of

the events occurs is “evidently” almost sure. It is, however, not so trivial to assert

that the event for every event of the collection to occur is almost sure. Measure

theory helps to furnish a simple, definite, and affirmative answer to the question

stated in the title. This useful proposition seems to rarely, if not never, occur in a

teaching material regarding measure-theoretic probability; our proof in particular

would help the beginning students in probability theory to get a feeling of almost

sure events.
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1 Probability and Measure

Thanks to Kolmogorov’s deep, fruit-bearing insight, the long-time unsettled object —

the concept of probability — is “embedded” in mathematics via measure theory, we may

then enjoy the wonderful ramifications. For a non-technical (i.e. not intended only for

experts) treatment of measure-theoretic probability without loss of rigor, we refer the

reader to Billingsley [1], which may be comparable, in terms of style, to An Introduction

to the Theory of Numbers by Hardy and Wright [3].

In view of the astonishing results following from the “paradigm shift” of probability

theory — defining probability as a measure, the measure-theoretic approach to probab-

ility is then not an indoctrination nor a move only for the sake of using mathematics.

Until an essentially superior treatment of probability is discovered, the measure-theoretic

approach is a best option available. We thus recommend the measure-theoretic approach
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to the reader’s mind, not because of some mathematical magnate saying so, nor because

of schools teaching so, nor because of many mathematicians doing so, but because of

the sheer elegance, pleasure, and power of the measure-theoretic approach. A common

component that captures the elegance, pleasure, and power of the measure-theoretic ap-

proach is the fact that the defining properties of a measure, either taken in the original

sense of Carathéodory (outer-measure-first; e.g. Federer [2]) or in the sense of Radon

(countably-additive-measure-first; e.g. Billingsley [1]), are so few while the implications

are so far-reaching.

We will approach the concerned question — how likely it is for countably many

almost sure events to occur simultaneously — in a measure-theoretic way. The yet

convinced reader will perhaps change their mind after perusing, for instance, the cited

Billingsley’s work.

2 Agreements and Heuristics

For the efficiency and clarity of our incoming argument, let us agree in advance on some

terminologies.

If (Ω,F , P ) is a probability space, by an (P -)almost sure event we mean precisely

a set A ∈ F such that P (A) = 1. Although some authors (e.g. Billingsley [1]) refer

to an almost sure event as support of the underlying probability measure, we find the

terminology ad hoc and not that informative for our purposes. To connect the relation

“P (A) = 1” with the phrase “the event A occurring with probability 1 (almost surely)”,

the reader may write A = {ω ∈ Ω | ω ∈ A} or A = {ω ∈ Ω | 1A(ω) = 1}. Here

1A denotes the indicator (characteristic) function Ω→ {0, 1} of A. We employ instead

the term “indicator function” as the term “characteristic function”, although usual in

analysis, refers to another major object in probability and statistics, i.e. the Fourier

transform (that version with “eitx”) of a probability density function.

Some events that may look like not so “almost sure” are indeed almost sure. For

instance, consider the standard normal (standard Gaussian) distribution

B 7→
∫
B

1√
2π
e−x

2/2 dx

defined on the Borel sigma-algebra BR generated by the standard topology of R. If

P denotes the standard Gaussian distribution, then, as the (Lebesgue) integral of the

standard normal density x 7→ 1√
2π
e−x

2/2 is = 1 and hence finite, the measure P is

absolutely continuous with respect to Lebesgue measure. Since the set Q of rationals is

countable, we have P (R \Q) = 1. So the set of irrationals is an almost sure event with

respect to the standard Gaussian distribution, although Q is dense in R.
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If (Ω,F ,M) is a measure space, we say that M is a finite measure if and only if

M(Ω) < +∞. If A ∈ F , the set A is said to be of full (M-)measure if and only if

M(A) = M(Ω). Thus, if M is a probability measure, then a set of full M-measure is

precisely an M-almost sure event. For our purposes, the case where M is trivial — i.e.

where M is the zero of the (Abelian) monoid of finite measures on F , equipped with the

addition (M,M) 7→ (M(A) + M(A))A∈F , whose stability and associativity are ensured

jointly by the monotone convergence theorem and the fact that limit operation preserves

the usual addition — is not excluded.

By a countable set we mean precisely a set whose cardinality is no greater than that

of N. Thus a finite set and the set of even integers ≥ 1 are countable.

3 Answer

Our line of reasoning will be made in a slightly more general framework — a finite meas-

ure space. This is always (mathematically) proper as for every measurable space (Ω,F )

there is some probability measure on F ; any Dirac measure Dω : A 7→ 1A(ω),F →
{0, 1} with ω ∈ Ω serves the purpose.

Let (Ω,F ,M) be a finite measure space; let A ⊂ F be a countable collection of sets

of full measure. Since M is a finite measure, since A ⊂ ∪A ⊂ Ω, and since ∪A ∈ F ,

we have

M(A) ≤M(∪A ) ≤M(Ω)

for all A ∈ A . As every A ∈ A is by assumption of full measure, we have M(∪A ) =

M(Ω). In particular, if M is a probability measure, it follows that the event for some

element of A to occur is almost sure. This backs up the first statement made in the

abstract.

What about ∩A ? First of all, the set ∩A lies by the countability assumption in F ;

so it makes sense to investigate M(∩A ). To being with, we remark that {∩A ,∪A∈AA
c}

is a partition of Ω; it follows that

M(∩A ) + M(∪A∈AA
c) = M(Ω).

But M(∪A∈AA
c) ≤

∑
A∈A M(Ac) = 0, we have

M(∩A ) = M(Ω).

In particular, if M is a probability measure, then the event for the elements of A to

occur simultaneously is an almost sure event!
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