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Abstract
Using the new method proposed in this paper, in theory, it is possible to obtain general or

exact solutions of an infinite number of ordinary differential equations and partial differential
equations. These equations can be linear or nonlinear. We enumerate some typical cases and
use the new method to prove that some equations do not have certain forms of solutions.
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Introduction

Since the establishment of the theory of differential equations, although the analytical meth-
ods have been progressing [1-5], the types of differential equations that can be solved are still
very limited, so various approximate numerical methods [6-10] and qualitative theories have
been developed [11-15]. Because analysis is the foundation and core of mathematics, constantly
proposing new and effective analysis methods is the eternal theme of mathematical progress.

In ordinary differential equations, the theory of the first integral is relatively complete and
mature, such as a k-order ODE

F
(
x, y, y(1), y(2), . . . , y(k)

)
= 0. (1)

If it can be integrated as

G1

(
x, y, y(1), y(2), . . . , y(k−1)

)
= C1, (2)

where C1 is an arbitrary constant, then (2) is called the first integral of (1). If (2) also can be
integrated as

G2

(
x, y, y(1), y(2), . . . , y(k−2)

)
= C2. (3)

Then we call (3) the first integral of (2) and so on. If the k first integrals of a k-order ODE can
be found, we can get the general solution of (1).

Finding the first integral of an ODE in a specific problem is often very difficult, so many
equations have to be solved by other methods. Based on the first integral theory, we use its
inverse operation to propose Method 1. General solutions of many commonly used differential
equations had been obtained through various methods. In fact, these solutions can be obtained
very simply by Method 1, such as

y′ + b (x) y + c (x) yn = 0, (4)

y′′ + b (y) = 0, (5)
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ux + f (x, y)u = g (x, y) , (6)

and many more. Method 1 can not only solve the above simple equations, in theory, this method
can solve an infinite variety of linear and nonlinear ODEs and PDEs. We will introduce new
laws and typical applications respectively.

1. New principles and methods I

It is well known that using algebraic methods to solve some algebraic equations may be get
extraneous root, that is, the correct algebraic operation might not get the correct result; so any
conclusion from correct logic is not always the correct conclusion, conclusive verification is an
indispensable link to ensure correct results, thus we first put forward a verification axiom:

Validation Axioms. Any conclusion obtained by the correct logic, which has not been con-
clusively corroborated, is not always the correct conclusion.

We will follow the validation axiom to verify any result obtained in this paper to make it
correct.

Theorem 1 is proposed below.

Theorem 1. In a continuous area D, (D ⊆ R1), if F
(
x, y, y(1), y(2) . . . y(k)

)
= 0, and F (m) =

dmF
dxm exists (m ≥ 1), then F (m) = 0.

Proof. In a continuous area D, (D ⊆ R1),

F
(
x, y, y(1), y(2) . . . y(k)

)
= 0 =⇒ dF

(
x, y, y(1), y(2) . . . y(k)

)
= 0 =⇒ d (dF ) = d2F = 0

=⇒ d
(
d2F

)
= d3F = 0 . . .

Namely
dmF = 0, (m ≥ 1) . (7)

Since x is the independent variable, therefore

dmF =
dmF

dxm
dxm = 0 =⇒ dmF

dxm
= F (m)

(
x, y, y(1), y(2) . . . y(k+m)

)
= 0.

Then the theorem is proven.�

Below we define the source equation and sub-equations of an ODE according to Theorem 1.

Definition 1. In a continuous region D, (D ⊆ R1), if F
(
x, y, y(1), y(2) . . . y(k)

)
= 0, and

F (m)
(
x, y, y(1), y(2) . . . y(k+m)

)
= 0 exists (m ≥ 1), then F = 0 is called the source equation;

F (m) = 0 is called the first type m-order subsidiary equation of F = 0, Various (k +m)-
order ODEs obtained by the mathematical operations of F = 0 and F (i) = 0, (1 ≤ i ≤ m) are
called the second type m-order subsidiary equations of F = 0.

A source equation can be a differential equation or a functional equation, the sum of the first
type m-order sub-equations and the second type m-order sub-equations is called the m-order
sub-equations groups of the source equation. Depending on Definition 1, if a source equation
is infinitely differentiable, it can construct an infinite number of sub-equations. For a specific
source equation, since the mathematical operations of the sub-equations of each order can be
infinite, theoretically the number of any m-order sub-equations could be infinite.
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Below we propose Theorem 2 using Definition 1 and the Axiom of Verification.

Theorem 2. The solution of any solvable source equation may be the solution of its any existing
sub-equation.

Proof. Any existing sub-equation is obtained through a series of mathematical operations
of the source equation. Since the source equation can be obtained by the sub-equation and the
corresponding mathematical inverse operation, the solution of the source equation may be the
solution of the sub-equation. The theorem is proved. �

According to the axiom of verification, the correct logic does not necessarily get the correct
result, and the result needs to be verified. Theorem 2 states that any sub-equation of any
solvable source equation may be solvable, and the solution of the solvable source equation may
be the solution of any one of its sub-equations.

Definition 2 is proposed below.

Definition 2. If the structure of an equation to be solved is the same as a sub-equation of
a source equation, the source equation is called the corresponding source equation of the
equation to be solved, and the sub-equation is called the corresponding sub-equation of the
equation to be solved. If the structure of an equation to be solved is different from all the sub-
equations of a source equation, then the source equation is called a non-corresponding source
equation of the equation to be solved.

According to the currently solvable function equations and differential equations, they can
be used as source equations to further obtain the solutions of their infinitely many corresponding
sub-equations. According to actual cases, we will find that new restrictions sometimes appear.
For an equation to be solved, the corresponding source equation may not be unique.

The new method for getting solutions of differential equations according to Theorem 2 is
called Method 1, and the details are as follows.

Method 1.
1. According to the structure of an equation to be solved, construct a solvable corresponding
source equation with undetermined functions and derive the corresponding sub-equation.
2. Solving undetermined functions in the source equation by comparing the coefficients of the
equation to be solved and the corresponding sub-equation, that is, known functions in the equa-
tion to be solved is used to represent undetermined functions in the source equation.
3. According to Theorem 2, the solution of the equation to be solved can be obtained by using
the pending function in the source equation.
4. Verify the solution according to the axiom of verification.

The essence of using Method 1 to solve differential equations is to find the solvable corre-
sponding source equation of an equation to be solved, or first set a solvable source equation
and construct its various sub-equations to investigate which differential equations can be solved.
Below we will use typical cases to explain the above concepts, theorems and methods.

2. General solutions and exact solutions of ODEs

In this section, unless otherwise specified, C,Ci and Ai are arbitrary constants (i = 1, 2, . . .).
When applying Method 1 to solve ODEs, there is an important note: because coefficients

of an equation to be solved do not exist arbitrary constant, when comparing coefficients of the
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equation to be solved and the corresponding sub-equation, if coefficients of the corresponding
sub-equation exists arbitrary constants, and there are no arbitrary constants in the calculated
coefficients of the equation to be solved, these arbitrary constants can be retained, otherwise
they need to be ordinary constants. Below we use typical cases to illustrate.

First we examine what types of solvable sub-equations can be constructed by a solvable
source equation, such as

Example 1. Analyze the typical corresponding sub-equations of the source equation (8), and
obtain the general or particular solutions of some of them.

f (x) y + g (x) = 0. (8)

Solution. Eq. (8) is a solvable function equation, f(x) and g(x) are arbitrary undetermined
functions, and the solution is

y =
−g (x)

f (x)
. (9)

According to Theorem 1

f (x) y + g (x) = 0 =⇒ f ′ (x) y + f (x) y′ + g′ (x) = 0.

Namely

y′ +
f ′ (x)

f (x)
y +

g′ (x)

f (x)
= 0. (10)

(10) is the first type first-order sub-equation of (8), and the corresponding equation is

y′ + b (x) y + c (x) = 0, (11)

which is the first-order linear equation. According to Method 1, comparing the coefficients in
(10) and (11), we get

f ′ (x)

f (x)
= b (x) =⇒ f (x) = A1e

∫
b(x)dx,

g′ (x)

f (x)
= c (x) =⇒ g (x) = A2 +A1

∫
c (x) e

∫
b(x)dxdx,

where A1 and A2 are arbitrary constants, note there are no arbitrary constants in b(x) and c(x),
so the general solution of (11) is

y =
−g (x)

f (x)
= e−

∫
b(x)dx

(
−A2

A1
−
∫
c (x) e

∫
b(x)dxdx

)
,

that is

y = e−
∫
b(x)dx

(
C −

∫
c (x) e

∫
b(x)dxdx

)
. (12)

We use Method 1 to get the general solution of the first-order linear ODE very simply and
beautifully.

According to Theorem 1

f (x) y + g (x) = 0 =⇒ f ′′ (x) y + 2f ′ (x) y′ + f (x) y′′ + g′′ (x) = 0.

Namely

y′′ +
2f ′ (x)

f (x)
y′ +

f ′′ (x)

f (x)
y +

g′′ (x)

f (x)
= 0. (13)
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(13) is the first type second-order sub-equation of (8), and the corresponding equation is

y′′ + b (x) y′ + c (x) y + d (x) = 0, (14)

which is the second-order linear equation. According to Method 1, comparing the coefficients in
(13) and (14), we get

2f ′ (x)

f (x)
= b (x) =⇒ f (x) = A1e

1
2

∫
b(x)dx =⇒ f ′′ (x) =

A1

2
b′ (x) e

1
2

∫
b(x)dx +

A1

4
b2 (x) e

1
2

∫
b(x)dx,

f ′′ (x)

f (x)
=

1

2
b′ (x) +

1

4
b2 (x) = c (x) ,

d (x) =
g′′ (x)

f (x)
=⇒ g′′ (x) = A1d (x) e

1
2

∫
b(x)dx.

That is

f (x) = A1e
1
2

∫
b(x)dx, g (x) = A3 +

∫ (
A2 +A1

∫
d (x) e

1
2

∫
b(x)dxdx

)
dx, (15)

1

2
b′ (x) +

1

4
b2 (x) = c (x) , (16)

where A1, A2 and A3 are arbitrary constants, note there are no arbitrary constants in b(x), c(x)
and d(x). According to (16), (14) becomes

y′′ + b (x) y′ +

(
1

2
b′ (x) +

1

4
b2 (x)

)
y + d (x) = 0. (17)

According to Method 1, by (9) and (15), we get

y =
−g (x)

f (x)
= e

−1
2

∫
b(x)dx

(
−A3

A1
−
∫ (

A2

A1
+

∫
d (x) e

1
2

∫
b(x)dxdx

)
dx

)
.

So the general solution of Eq. (17) is

y = e
−1
2

∫
b(x)dx

(
C1 + C2x−

∫∫
d (x) e

1
2

∫
b(x)dxdxdx

)
. (18)

From (9, 10), we get

2f ′ (x)

f (x)
y′ =

2f ′ (x)

g (x)
yy′ = −2

(f ′ (x))2

f2 (x)
y − 2f ′ (x) g′ (x)

f2 (x)
= −2y−1

(
y′
)2 − 2

g′ (x)

f (x)
y−1y′, (19)

f ′′ (x)

f (x)
y =
−f ′′ (x) g (x)

f2 (x)
=
f ′′ (x)

g (x)
y2 = −f

′′ (x)

f ′ (x)
y′ − f ′′ (x) g′ (x)

f (x) f ′ (x)
, (20)

g′′ (x)

f (x)
= −g

′′ (x)

g (x)
y =

−g′′ (x) y′

f ′ (x) y + g′ (x)
. (21)

That is, on the basis of (13), many second type second-order sub-equations can be constructed,
such as

y′′ +
2f ′ (x)

f (x)
y′ +

f ′′ (x)

g (x)
y2 +

g′′ (x)

f (x)
= 0, (22)

y′′ +
2f ′ (x)

f (x)
y′ +

f ′′ (x)

g (x)
y2 − g′′ (x)

g (x)
y = 0, (23)
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y′′ +
2f ′ (x)

g (x)
yy′ +

f ′′ (x)

g (x)
y2 +

g′′ (x)

f (x)
= 0, (24)

y′′ +
2f ′ (x)

g (x)
yy′ +

f ′′ (x)

g (x)
y2 − g′′ (x)

g (x)
y = 0, (25)

y′′ − 2y−1
(
y′
)2 − 2

g′ (x)

f (x)
y−1y′ +

f ′′ (x)

f (x)
y +

g′′ (x)

f (x)
= 0. (26)

The corresponding equation of (22) is

y′′ + b (x) y′ + c (x) y2 + d (x) = 0. (27)

According to Method 1, comparing the coefficients in (22) and (27), we get

2f ′ (x)

f (x)
= b (x) =⇒ f (x) = A1e

1
2

∫
b(x)dx =⇒ f ′′ (x) =

A1

2
b′ (x) e

1
2

∫
b(x)dx +

A1

4
b2 (x) e

1
2

∫
b(x)dx,

d (x) =
g′′ (x)

f (x)
=⇒ g′′ (x) = A1d (x) e

1
2

∫
b(x)dx =⇒ g (x) = A3+A2x+A1

∫∫
d (x) e

1
2

∫
b(x)dxdxdx,

c (x) =
f ′′ (x)

g (x)
.

Namely

f (x) = A1e
1
2

∫
b(x)dx, g (x) = A3 +

∫ (
A2 +A1

∫
d (x) e

1
2

∫
b(x)dxdx

)
dx, (28)

c (x) =
A1
2 b
′ (x) e

1
2

∫
b(x)dx + A1

4 b
2 (x) e

1
2

∫
b(x)dx

A3 +A2x+A1

∫∫
d (x) e

1
2

∫
b(x)dxdxdx

. (29)

Because c(x) does not contain arbitrary constants, A1, A2 and A3 are all ordinary constants.
From (9) and (28), the particular solution of (27) under (29) is

y =
−g (x)

f (x)
= −e

−1
2

∫
b(x)dx

(
A3

A1
+
A2

A1
x+

∫∫
d (x) e

1
2

∫
b(x)dxdxdx

)
. (30)

The infinitely many linear or non-linear equations corresponding to the remaining sub-equations
of (8) can be similarly solved, and we will not deduct them here.

Example 2. Analyze which solvable first-order sub-equations of the source equation (31) exist,
and obtain general or particular solutions of some of the equations.

f (x) ym + g (x) = 0. (31)

Solution. According to Theorem 1

f (x) ym + g (x) = 0 =⇒ mf (x) ym−1y′ + f ′ (x) ym + g′ (x) = 0,

that is,

y′ +
f ′ (x)

mf (x)
y +

g′ (x)

mf (x)
y1−m = 0. (32)

The corresponding equation of (32) is

y′ + b (x) y + c (x) yn = 0. (33)
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(33) is Bernoulli equation. The previous method was to set w = y1−n, convert (33) into a first-
order linear equation, and then use its general solution to obtain the general solution of (33).
Using Method 1, we can directly resolve the general solution of (33). Comparing the coefficients
of (32) and (33), we get

f ′ (x)

mf (x)
= b (x) =⇒ f (x) = C1e

m
∫
b(x)dx,

g′ (x)

mf (x)
= c (x) =⇒ g (x) = C2 + C1

∫
c (x) em

∫
b(x)dxdx,

m = 1− n.

Namely

y =

(
−g (x)

f (x)

) 1
m

=

(
e(n−1)

∫
b(x)dx

(
C3 + C4

∫
c (x) e(1−n)

∫
b(x)dxdx

)) 1
1−n

. (34)

Note that there are two arbitrary constants in (34). After substituting (34) into (33), we can
get C4 = n− 1, so the general solution of (33) is

y =

(
e(n−1)

∫
b(x)dx

(
C + (n− 1)

∫
c (x) e(1−n)

∫
b(x)dxdx

)) 1
1−n

. (35)

By (31) and (32), we get
f ′ (x)

mf (x)
y =
−f ′ (x)

mg (x)
ym+1,

f ′ (x)

mf (x)
y =

f ′ (x)

mf (x)

yk(
−g(x)
f(x)

) k−1
m

=
f ′ (x)

m
(f (x))

k−m−1
m (−g (x))

1−k
m yk.

For n = 1−m, Eq. (31) can also construct

y′ − f ′ (x)

(1− n) g (x)
y2−n +

g′ (x)

(1− n) f (x)
yn = 0, (36)

y′ +
f ′ (x)

1− n
(f (x))

k+n−2
1−n (−g (x))

1−k
1−n yk +

g′ (x)

(1− n) f (x)
yn = 0, (37)

Etc. the second type first-order sub-equations of (31). Eq. (37) is the generalized Abel equation
[16, 17], according to (31), the particular solutions of (36, 37) are all

y =

(
−g (x)

f (x)

) 1
1−n

. (38)

When n = 0, (36) is transformed into an Riccati equation

y′ − f ′ (x)

g (x)
y2 +

g′ (x)

f (x)
= 0. (39)

According to (38), a particular solution of (39) is

y =
−g (x)

f (x)
. (40)
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When n = 0, k = 3, (37) is transformed into an Abel equation

y′ +
f ′ (x) f (x)

g2 (x)
y3 +

g′ (x)

f (x)
= 0. (41)

According to (38), a particular solution of (41) is (40) too.

Example 3. Using Method 1 analyze the particular solutions of Riccati equation.

Solution. The form of Riccati equation is

y′ + p (x) y2 + q (x) y + r (x) = 0. (42)

Set the source equation is
f (x) y + g (x) = 0. (8)

then

y′ +
f ′ (x)

f (x)
y +

g′ (x)

f (x)
= 0. (10)

A second type first-order sub-equation of Eq. (8) is

y′ + f (x) y2 + g (x) y +
f ′ (x)

f (x)
y +

g′ (x)

f (x)
= 0,

that is

y′ + f (x) y2 +

(
g (x) +

f ′ (x)

f (x)

)
y +

g′ (x)

f (x)
= 0. (43)

Comparing the coefficients in (42) and (43), we have

p (x) = f (x) ,
g′ (x)

f (x)
= r (x) =⇒ g (x) =

∫
r (x) p (x) dx,

q (x) = g (x) +
f ′ (x)

f (x)
=

∫
r (x) p (x) dx+

p′ (x)

p (x)
.

So Eq. (42) becomes

y′ + p (x) y2 +

(∫
r (x) p (x) dx+

p′ (x)

p (x)

)
y + r (x) = 0, (44)

and

y =
−g (x)

f (x)
=
−
∫
r (x) p (x) dx

p (x)
.

Thus the particular solution of Eq. (44) is

y0 =
−
∫
r (x) p (x) dx

p (x)
. (45)

If the source equation of Eq. (42) is

f (x) y−2 + g (x) = 0. (46)

Then

f (x) y−2 + g (x) = 0 =⇒ f ′ (x) y−2 − 2f (x) y−3y′ + g′ (x) = 0 =⇒ y′ − f ′ (x)

2f (x)
y − g′ (x)

2f (x)
y3 = 0,
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f (x) y−2 + g (x) = 0 =⇒ g (x) y2 + f (x) = 0.

A second type first-order sub-equation of Eq. (46) is

y′ − g′ (x)

2f (x)
y3 + g (x) y2 − f ′ (x)

2f (x)
y + f (x) = 0.

Set
g (x) = p (x) = k.

So

y′ + ky2 − f ′ (x)

2f (x)
y + f (x) = 0. (47)

Comparing the coefficients in (42) and (47), we obtain

r (x) = f (x) , q (x) = − f
′ (x)

2f (x)
= − r

′ (x)

2r (x)
.

Then Eq. (42) becomes

y′ + ky2 − r′ (x)

2r (x)
y + r (x) = 0. (48)

Using Eq. (46), the particular solution of Eq. (48) is

y2 = −f (x)

g (x)
=⇒ y = ±

√
−r (x)

k
.

That is

y = ±
√
−r (x)

k
. (49)

If the source equation of Eq. (42) is

f (x) ym + g (x) = 0, (31)

f (x) ym + g (x) = 0 =⇒ mf (x) ym−1y′ + f ′ (x) ym + g′ (x) = 0.

Namely

y′ +
f ′ (x)

mf (x)
y +

g′ (x)

mf (x)
y1−m = 0. (32)

Set m = −1, then
f (x) y−1 + g (x) = 0 =⇒ f(x) + g(x)y = 0,

y′ − f ′ (x)

f (x)
y − g′ (x)

f (x)
y2 + f (x) + g (x) y = 0.

A second type first-order sub-equation of Eq. (31) is

y′ − g′ (x)

f (x)
y2 +

(
g (x)− f ′ (x)

f (x)

)
y + f (x) = 0. (50)

The particular solution of Eq. (50) is

y =
−f (x)

g (x)
. (51)

Example 3 shows that there is sometimes more than one corresponding source equation for
an equation to be solved. Using different source equations can often obtain different solutions.
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We propose Theorems 3-6 based on (39, 40) and the conclusions in Example 3.

Theorem 3. The general solution of Riccati Equation

y′ − f ′ (x)

g (x)
y2 +

g′ (x)

f (x)
= 0, (39)

is

y =
−g (x)

f (x)
+

f−2 (x)

C −
∫
f−2 (x) g−1 (x) f ′ (x) dx

. (52)

Theorem 4. The general solution of Riccati Equation

y′ + p (x) y2 +

(∫
r (x) p (x) dx+

p′ (x)

p (x)

)
y + r (x) = 0, (44)

is

y =
−
∫
r (x) p (x) dx

p (x)
+

e
∫∫
r(x)p(x)dxdx

p (x)
(
C +

∫
e
∫∫
r(x)p(x)dxdxdx

) . (53)

Theorem 5. The general solution of Riccati Equation

y′ + ky2 − f ′ (x)

2f (x)
y + f (x) = 0, (47)

is

y± = ±
√
−r (x)

k
+

√
r (x)e∓

∫ √
−kr(x)dx

C + k
∫ √

r (x)e∓
∫ √
−kr(x)dxdx

. (54)

Theorem 6. The general solution of Riccati Equation

y′ − g′ (x)

f (x)
y2 +

(
g (x)− f ′ (x)

f (x)

)
y + f (x) = 0, (50)

is

y =
−f (x)

g (x)
+

f (x) e−
∫
g(x)dx

g (x)
(
C −

∫ g′(x)
g(x) e

−
∫
g(x)dxdx

) . (55)

Riccati equation has always been one of the important ODEs [18-20]. At present, it is mainly
solved by analytical methods [21, 22] or numerical methods [23], and the existence of the solution
[24, 25] is also the focus of research.

Below we use Theorem 1 and Method 1 to propose Theorems 7 and 8.

Theorem 7. The general solution of

y′ + a (x) b (y) + c (x) b (y) e
−

∫
1

b(y)
dy

= 0 (56)

is ∫
1

b (y)
dy = ln

(
C −

∫
c (x) e

∫
a(x)dxdx

)
−
∫
a (x) dx. (57)
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Prove. According to Theorem 1, we set the source equation is

f(x)h(y) + g(x) = 0. (58)

Then
f(x)h(y) + g(x) = 0 =⇒ f (x)h′ (y) y′ + f ′ (x)h (y) + g′ (x) = 0,

namely

y′ +
f ′ (x)h (y)

f (x)h′ (y)
+

g′ (x)

f (x)h′ (y)
= 0, (59)

the corresponding equation of Eq. (59) is

y′ + a (x) b (y) + c (x) k (y) = 0. (60)

Comparing the coefficients in (59) and (60), we get

f ′ (x)

f (x)
= a (x) =⇒ f (x) = C1e

∫
a(x)dx,

h (y)

h′ (y)
= b (y) =⇒ h (y) = C2e

∫
1

b(y)
dy
,

c (x) =
g′ (x)

f (x)
=⇒ g (x) =

∫
c (x) f (x) dx = C3 + C1

∫
c (x) e

∫
a(x)dxdx,

k (y) =
1

h′ (y)
=
b (y)

C2
e
−

∫
1

b(y)
dy
.

That is
f (x) = C1e

∫
a(x)dx, h (y) = C2e

∫
1

b(y)
dy
, (61)

g (x) = C3 + C1

∫
c (x) e

∫
a(x)dxdx, k (y) =

b (y)

C2
e
−

∫
1

b(y)
dy
. (62)

According to (62), we set C2 = 1, (60) becomes

y′ + a (x) b (y) + c (x) b (y) e
−

∫
1

b(y)
dy

= 0. (56)

By (58), we get

f(x)h(y) + g(x) = 0 =⇒ C1e
∫
a(x)dxe

∫
1

b(y)
dy

+ C3 + C1

∫
c (x) e

∫
a(x)dxdx = 0

=⇒
∫
a (x) dx+

∫
1

b (y)
dy = ln

(
−C3

C1
−
∫
c (x) e

∫
a(x)dxdx

)
.

So the general solution of Eq. (56) is∫
1

b (y)
dy = ln

(
C −

∫
c (x) e

∫
a(x)dxdx

)
−
∫
a (x) dx. (57)

The theorem is proved. �

Theorem 8. The general solution of

y′ + a (x) b (y) + c (x) b (y)

∫
1

b (y)
dy = 0 (63)
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is ∫
1

b (y)
dy = e−

∫
c(x)dx

(
C −

∫
a (x) e

∫
c(x)dxdx

)
. (64)

Prove. According to Theorem 1, we set the source equation is

f(x)h(y) + g(x) = 0. (58)

Using part of the formulas to prove Theorem 7, according to (58) and (59), we can get

f ′ (x)h (y)

f (x)h′ (y)
= −f

′ (x)h2 (y)

g (x)h′ (y)
= − f ′ (x) g (x)

f2 (x)h′ (y)
,

g′ (x)

f (x)h′ (y)
=
−g′ (x)h (y)

g (x)h′ (y)
.

That is to say (58) can construct many the second type first-order sub-equations, such as

y′ +
f ′ (x)h (y)

f (x)h′ (y)
− g′ (x)h (y)

g (x)h′ (y)
= 0, (65)

y′ − f ′ (x)h2 (y)

g (x)h′ (y)
+

g′ (x)

f (x)h′ (y)
= 0, (66)

y′ +
f ′ (x) g (x)

f2 (x)h′ (y)
+

g′ (x)

f (x)h′ (y)
= 0, (67)

y′ − f ′ (x)h2 (y)

g (x)h′ (y)
− g′ (x)h (y)

g (x)h′ (y)
= 0, (68)

y′ − f ′ (x) g (x)

f2 (x)h′ (y)
− g′ (x)h (y)

g (x)h′ (y)
= 0. (69)

The corresponding equation of above equations is

y′ + a (x) b (y) + c (x) k (y) = 0. (60)

For Eq. (68), comparing (68) and (60), we get

g′ (x)

g (x)
= c (x) =⇒ g (x) = A1e

∫
c(x)dx,

h2 (y)

h′ (y)
= b (y) =⇒ h (y) =

−1

A2 +
∫

1
b(y)dy

=⇒ k (y) = − h (y)

h′ (y)
= b (y)

(
A2 +

∫
1

b (y)
dy

)
,

a (x) = −f
′ (x)

g (x)
=⇒ f (x) = −

∫
a (x) g (x) dx = A4 −A1

∫
a (x) e

∫
c(x)dxdx.

Namely

g (x) = A1e
∫
c(x)dx, h (y) =

−1

A2 +
∫

1
b(y)dy

, (70)

f (x) = A4 −A1

∫
a (x) e

∫
c(x)dxdx, k (y) = b (y)

(
A2 +

∫
1

b (y)
dy

)
. (71)
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By (71), we set A2 = 0, (60) becomes

y′ + a (x) b (y) + c (x) b (y)

∫
1

b (y)
dy = 0. (63)

By (58), we have

f(x)h(y) + g(x) = 0 =⇒
−A4 +A1

∫
a (x) e

∫
c(x)dxdx∫

1
b(y)dy

+A1e
∫
c(x)dx = 0.

So the general solution of Eq. (63) is∫
1

b (y)
dy = e−

∫
c(x)dx

(
C −

∫
a (x) e

∫
c(x)dxdx

)
. (64)

The theorem is proved. �

Example 4. Using Method 1 analyzes particular solutions of the first type of Abel equation.

Solution. The first type of Abel equation is

y′ + p (x) y3 + q (x) y2 + r (x) y + s (x) = 0. (72)

Let the source equation of (72) be

f (x) y + g (x) = 0. (8)

Then

y′ +
f ′ (x)

f (x)
y +

g′ (x)

f (x)
= 0. (10)

A second type first-order sub-equation of (8) is

y′ + f (x) y3 + g (x) y2 +
f ′ (x)

f (x)
y +

g′ (x)

f (x)
= 0. (73)

Comparing (72) and (73), we get

p(x) = f(x), g(x) = q(x),
f ′ (x)

f (x)
= r (x) =⇒ f (x) = p (x) = e

∫
r(x)dx,

g′ (x)

f (x)
= s (x) =⇒ g(x) = q(x) =

∫
s (x) f (x) dx =

∫
s (x) e

∫
r(x)dxdx.

Namely

p (x) = e
∫
r(x)dx, q (x) =

∫
s (x) e

∫
r(x)dxdx. (74)

So Eq. (72) becomes

y′ + y3e
∫
r(x)dx + y2

∫
s (x) e

∫
r(x)dxdx+ r (x) y + s (x) = 0. (75)

So

y =
−g (x)

f (x)
=
−q (x)

p (x)
.
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That is, the special solution of (75) is

y =
−q (x)

p (x)
. (75)

If the source equation of (72) is
f (x) y−2 + g (x) = 0. (46)

So

f (x) y−2 + g (x) = 0 =⇒ f ′ (x) y−2 − 2f (x) y−3y′ + g′ (x) = 0 =⇒ y′ − f ′ (x)

2f (x)
y − g′ (x)

2f (x)
y3 = 0,

f (x) y−2 + g (x) = 0 =⇒ g (x) y2 + f (x) = 0.

Then a second type first-order sub-equation of (46) is

y′ − g′ (x)

2f (x)
y3 + g (x) y2 − f ′ (x)

2f (x)
y + f (x) = 0. (46)

Comparing (72) and (77), we get

q(x) = g(x), s(x) = f(x),

p (x) = − g
′ (x)

2f (x)
= − q

′ (x)

2s (x)
, r (x) = − f

′ (x)

2f (x)
= − s

′ (x)

2s (x)
.

So (72) becomes

y′ − q′ (x)

2s (x)
y3 + q (x) y2 − s′ (x)

2s (x)
y + s (x) = 0. (78)

From (46), the particular solution of (78) is

y2 = −f (x)

g (x)
=⇒ y = ±

√
−f (x)

g (x)
= ±

√
−s (x)

q (x)
.

That is

y = ±

√
−s (x)

q (x)
. (67)

Next we propose Theorem 9.

Theorem 9. If

p (x) = e−2
∫
q(x)dx

(
k +

∫
r (x) e2

∫
q(x)dxdx

)
, (80)

then the general solution of second type of Abel equation

(y + p (x))y′ + q (x) y2 + r (x) y + s (x) = 0 (81)

is

y± = e−2
∫
q(x)dx(−k −

∫
r (x) e2

∫
q(x)dxdx

±

√(
k +

∫
r (x) e2

∫
q(x)dxdx

)2

− e2
∫
q(x)dx

(
C + 2

∫
s (x) e2

∫
q(x)dxdx

)
).

(82)
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where k is a parameter and C is an arbitrary constant.

Prove. Let the source equation of (81) be

Θ (x) y2 + Λ (x) y + Ω (x) = 0. (83)

Then
Θ (x) y2 + Λ (x) y + Ω (x) = 0 =⇒ Θ′y2 + 2Θyy′ + Λ′y + Λy′ + Ω′ = 0.

Namely (
y +

Λ

2Θ

)
y′ +

Θ′

2Θ
y2 +

Λ′

2Θ
y +

Ω′

2Θ
= 0. (84)

Comparing (81) and (84), we get

Θ′

2Θ
= q (x) ,

Λ

2Θ
= p (x) ,

Λ′

2Θ
= r (x) ,

Ω′

2Θ
= s (x) .

So
Θ′

2Θ
= q (x) =⇒ Θ = C1e

2
∫
q(x)dx,

Λ′

2Θ
= r (x) =⇒ Λ′ = 2C1r (x) e2

∫
q(x)dx =⇒ Λ = C2 + 2C1

∫
r (x) e2

∫
q(x)dxdx,

Λ

2Θ
= p (x) = e−2

∫
q(x)dx

(
C2

2C1
+

∫
r (x) e2

∫
q(x)dxdx

)
,

Ω′

2Θ
= s (x) =⇒ Ω′ = 2C1s (x) e2

∫
q(x)dx =⇒ Ω = C3 + 2C1

∫
s (x) e2

∫
q(x)dxdx.

Set C2
2C1

= k we have

Θ = C1e
2
∫
q(x)dx,Λ = 2C1k + 2C1

∫
r (x) e2

∫
q(x)dxdx, (85)

Ω = C3 + 2C1

∫
s (x) e2

∫
q(x)dxdx, p (x) = e−2

∫
q(x)dx

(
k +

∫
r (x) e2

∫
q(x)dxdx

)
. (86)

If C1 > 0, the general solution of (81) under (80) is

y± = −Λ±
√

Λ2−4ΘΩ
2Θ

=
−2C1k−2C1

∫
r(x)e2

∫
q(x)dxdx

2C1e2
∫
q(x)dx

±
√

(2C1k+2C1

∫
r(x)e2

∫
q(x)dxdx)

2−4C1e2
∫
q(x)dx(C3+2C1

∫
s(x)e2

∫
q(x)dxdx)

2C1e2
∫
q(x)dx ,

that is

y± = e−2
∫
q(x)dx(−k −

∫
r (x) e2

∫
q(x)dxdx

±

√(
k +

∫
r (x) e2

∫
q(x)dxdx

)2

− e2
∫
q(x)dx

(
C + 2

∫
s (x) e2

∫
q(x)dxdx

)
).

(82)

So the theorem is proved. �

Abel equation is a very important ordinary differential equation [26-30], and the current
research mainly adopts analytical methods [31-34]. General solutions of Abel equation in other
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special cases can be referred to [35-39].

3. New principles and methods II

First we propose Theorem 10 and Definition 3.

Theorem 10. In a continuous region D, (D ⊆ Rn), if F (x1, x2 . . . xn, u, ux1 , ux2 . . . uxn , ux1x2 ,

ux1x3 . . .) = 0, and F
(i1i2...in)
x1x2...xn exists, i1, i2, . . . in are non-negative integers (i1 + i2 + · · · + in =

m ≥ 1), then F
(i1i2...in)
x1x2...xn = 0, and

F (i1i2...in)
x1x2...xn

∆
=

∂mF

∂xi11 ∂x
in
2 . . . ∂xinn

. (87)

Proof. In a continuous area D, (D ⊆ Rn)

F (x1, x2 . . . xn, u, ux1 , ux2 . . . uxn , ux1x2 , ux1x3 . . .) = 0
=⇒ dF (x1, x2 . . . xn, u, ux1 , ux2 . . . uxn , ux1x2 , ux1x3 . . .) = 0
=⇒ d (dF ) = d2F = 0
=⇒ d

(
d2F

)
= d3F = 0 . . .

Namely
dmF = 0, (m ≥ 1).

According to Leibniz’s rule

dmF =
∑

i1+i2+...+in=m

Ci1i2...inm F (i1i2...in)
x1x2...xn dx

i1
1 dx

i2
2 . . . dx

in
n = 0 =⇒ F (i1i2...in)

x1x2...xn = 0.

So the theorem is proven. �

Definition 3. In a continuous region D, (D ⊆ Rn), if F (x1, x2 . . . xn, u, ux1 , ux2 . . . uxn , ux1x2 ,

ux1x3 . . .) = 0, and F
(i1i2...in)
x1x2...xn = 0, (i1 + i2 + · · · + in = m ≥ 1), then F = 0 is called the

source equation; F
(i1i2...in)
x1x2...xn = 0 is called the first type m-order subsidiary equation of

F = 0, Various (k + m)-order PDEs obtained by the mathematical operations of F = 0 and

F
(j1j2...jn)
x1x2...xn = 0, (1 ≤ j1 + j2 + . . .+ jn ≤ m) are called the second type m-order subsidiary

equations of F = 0, i1, i2, . . . in and j1, j2, . . . jn are all non-negative integers.

Theorem 2 and Method 1 previously proposed are applicable not only to ODEs, but also to
PDEs. There is a similar note in the specific calculation: Since there is no arbitrary function in
the coefficients of the equation to be solved, when comparing coefficients of the equation to be
solved with the corresponding sub-equation, after calculation, if there are arbitrary functions in
coefficients of the corresponding sub-equation, and there is no arbitrary function in coefficients
of the equation to be solved, the arbitrary functions can be retained, otherwise they need to be
constants or parameters. Below we use typical cases to illustrate.

4. General solutions and exact solutions of PDEs

First we propose Theorem 11.

Theorem 11. In R2, the general solution of

ux + b (x, y) p (u) = 0, (88)
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is

ϕ (y) +

∫
1

p (u)
du+

∫
b (x, y) dx = 0, (89)

where b(x, y) and p(u) are arbitrary known functions, ϕ(y) is an arbitrary functions.

Prove. According to Method 1, set the source equation of (88) be

f (x, y)h (u (x, y)) = C, (90)

where C is an arbitrary constant, according to Theorem 10

f (x, y)h (u (x, y)) = C =⇒ fh
′
uux + fxh (u) = 0.

Namely

ux +
fxh (u)

fh′u
= 0. (91)

(88) is the corresponding equation of (91), so

h (u)

h′u
= p (u) =⇒ h (u) = C1e

∫
1

p(u)
du
,

fx
f

= b (x, y) =⇒ f (x, y) = ϕ1 (y) e
∫
b(x,y)dx,

where C1 is an arbitrary constant, and ϕ1(y) is an arbitrary unary function, according to Method
1

f(x, y)h(u(x, y)) = C1ϕ1 (y) e
∫
b(x,y)dx+

∫
1

p(u)
du

= C

=⇒
∫

1
p(u)du+

∫
b (x, y) dx = ln C

C1ϕ1(y) .

That is, the general solution of (88) is

ϕ (y) +

∫
1

p (u)
du+

∫
b (x, y) dx = 0.

The theorem is proven. �

Theorem 12. In R2, the general solution of

uxy + b (x, y)uy + by (x, y)u+ d (x, y) = 0 (92)

is

u (x, y) = e−
∫
b(x,y)dx

(
ϕ (y) +

∫ (
ψ (x)−

∫
d (x, y) dy

)
e
∫
b(x,y)dxdx

)
, (93)

where b(x, y) and d(x, y) are arbitrary known functions, ψ(x) and ϕ(y) are arbitrary functions.

Prove. According to Method 1, set the source equation of (92) be

ux + f (x, y)u = g (x, y) . (94)

The general solution of (94) is [40]

u (x, y) = e−
∫
f(x,y)dx

(
ϕ (y) +

∫
g (x, y) e

∫
f(x,y)dxdx

)
. (95)
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According to Theorem 10

ux + f (x, y)u = g (x, y) =⇒ uxy + f (x, y)uy + fy (x, y)u = gy (x, y) .

Namely
uxy + f (x, y)uy + fy (x, y)u− gy (x, y) = 0. (96)

(92) is the corresponding equation of (96), so

b(x, y) = f(x, y), c(x, y) = fy(x, y) = by(x, y)

d(x, y) = −gy(x, y) =⇒ g(x, y) = ψ (x)−
∫
d (x, y) dy.

According to Method 1 and (95), the general solution of (92) is

u (x, y) = e−
∫
b(x,y)dx

(
ϕ (y) +

∫ (
ψ (x)−

∫
d (x, y) dy

)
e
∫
b(x,y)dxdx

)
.

The theorem is proven. �

According to (94)

u =
g (x, y)− ux
f (x, y)

. (97)

Combining (96), the second type first-order sub-equations of (94) can also be constructed as

uxy + f (x, y)uy −
fy (x, y)

f (x, y)
ux + fy (x, y)

g (x, y)

f (x, y)
− gy (x, y) = 0. (98)

The corresponding equation is

uxy + b (x, y)uy + c (x, y)ux + d (x, y) = 0. (99)

Comparing (98) and (99), we get
f(x, y) = b(x, y),

−fy (x, y)

f (x, y)
= c (x, y) =⇒ f(x, y) = b(x, y) = ϕ1 (x) e−

∫
c(x,y)dy,

fy (x, y) g(x,y)
f(x,y) − gy (x, y) = d (x, y) =⇒ gy (x, y) + c (x, y) g (x, y) + d (x, y) = 0

=⇒ g (x, y) = e−
∫
c(x,y)dy

(
ϕ2 (x)−

∫
d (x, y) e

∫
c(x,y)dydy

)
.

Because b(x, y) and d(x, y) do not contain arbitrary functions, set ϕ1(x) = 1 and ϕ2(x) = 0,
that is

b (x, y) = f (x, y) = e−
∫
c(x,y)dy, (100)

g (x, y) = −e−
∫
c(x,y)dy

∫
d (x, y) e

∫
c(x,y)dydy. (101)

By (100), (99) becomes

uxy + e−
∫
c(x,y)dyuy + c (x, y)ux + d (x, y) = 0. (102)
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According to (95, 100, 101), we can obtain that an analytical solution of (102) is

u (x, y) = e−
∫
e−

∫
c(x,y)dydx

(
ϕ (y)−

∫ (
e
∫
e−

∫
c(x,y)dydx−

∫
c(x,y)dy

∫
d (x, y) e

∫
c(x,y)dydy

)
dx

)
,

(103)
where ϕ(y) is an arbitrary unary function.

Using (94, 96), other solvable equations can also be constructed, and the readers can try it
by themself.

Example 5. In R2 space, if a source equation is

f (x, y)umx + g (x, y)un = 0, (m 6= 0). (104)

Using Method 1 obtains the analytical solution of the nonlinear PDE corresponding to it’s the
first type first-order sub-equation.

Solution. According to (104)

f (x, y)umx + g (x, y)un = 0 =⇒ u
−n
m ux =

(
− g
f

) 1
m

=⇒ m
m−nu

1− n
m = φ1 (y) +

∫ (
− g
f

) 1
m
dx.

So the general solution of (104) is

u =

(
m− n
m

(
φ (y) +

∫ (
− g
f

) 1
m

dx

)) m
m−n

. (105)

The first type first-order sub-equation of (104) is

mfum−1
x uxx + fxu

m
x + ngun−1ux + gxu

n = 0.

Namely

uxx +
fx
mf

ux +
ng

mf
un−1u2−m

x +
gx
mf

unu1−m
x = 0. (106)

The corresponding equation of (106) is

uxx + a (x, y)ux + b (x, y)un−1u2−m
x + c (x, y)unu1−m

x = 0. (107)

Comparing the coefficients in (106) and (107), we get

a (x, y) =
fx
mf

=⇒ f = φ1 (y) em
∫
a(x,y)dx,

gx
mf

= c (x, y) =⇒ g = φ2 (y) +mφ1 (y)

∫
c (x, y) em

∫
a(x,y)dxdx,

b (x, y) =
ng

mf
= e−m

∫
a(x,y)dx

(
nφ2 (y)

mφ1 (y)
+ n

∫
c (x, y) em

∫
a(x,y)dxdx

)
.

Since b(x, y) does not contain any arbitrary function, set φ1(y) = 1 and φ2(y) = 0, incorporate
n into the integral constant of e−m

∫
a(x,y)dx, then

b (x, y) = e−m
∫
a(x,y)dx

∫
c (x, y) em

∫
a(x,y)dxdx, (108)

f = em
∫
a(x,y)dx, g = m

∫
c (x, y) em

∫
a(x,y)dxdx. (109)
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From (105) and (109), the analytical solution of (107) under the condition of (108) is

u =

(
m− n
m

(
φ (y) +

∫
e−

∫
a(x,y)dx

(
−m

∫
c (x, y) em

∫
a(x,y)dxdx

) 1
m

dx

)) m
m−n

, (110)

where φ(y) is an arbitrary function. After validation we get m = 1, that is

uxx + a (x, y)ux + b (x, y)un−1ux + c (x, y)un = 0, (111)

b (x, y) = e−
∫
a(x,y)dx

∫
c (x, y) e

∫
a(x,y)dxdx. (112)

The analytical solution of (111) under the condition of (112) is

u =

(
(1− n)

(
φ (y)−

∫
e−

∫
a(x,y)dx

(∫
c (x, y) e

∫
a(x,y)dxdx

)
dx

)) 1
1−n

. (113)

If we set φ1(y) and φ2(y) are determined functions and n is not incorporated into the integral
constant of e−m

∫
a(x,y)dx, the result of the verification is m = n, which indicates that different

settings have a different result.

Next we propose Theorem 13.

Theorem 13. In R2, the general solution of

uxx − nu−1u2
x + a (x, y)ux + b (x, y)un = 0 (114)

is

u =

(
(1− n)

(
φ (y)−

∫
e−

∫
a(x,y)dx

(
ψ (y) +

∫
b (x, y) e

∫
a(x,y)dxdx

)
dx

)) 1
1−n

. (115)

where a(x, y) and b(x, y) are arbitrary known functions, φ(y) and ψ(y) are arbitrary functions.

Prove. According to Method 1, set the source equation of (114) be

f (x, y)ux + g (x, y)un = 0. (116)

Then

u =

(
(1− n)

(
φ (y)−

∫
g

f
dx

)) 1
1−n

, (117)

the first type first-order sub-equation of (116) is

uxx +
fx
f
ux +

ng

f
un−1ux +

gx
f
un = 0. (118)

Using (116), we gain

f (x, y) = −gu
n

ux
, g (x, y) = −fux

un
, u =

(
−fux

g

) 1
n

, ux = −gu
n

f
. (119)

By (119), a second type first-order sub-equation of (116) is

uxx − nu−1u2
x +

fx
f
ux +

gx
f
un = 0. (120)
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The corresponding equation of (120) is

uxx − nu−1u2
x + a (x, y)ux + b (x, y)un = 0. (114)

Comparing the coefficients in (114) and (120), we get

a (x, y) =
fx
f

=⇒ f = φ1 (y) e
∫
a(x,y)dx,

gx
f

= b (x, y) =⇒ g = φ2 (y) + φ1 (y)

∫
b (x, y) e

∫
a(x,y)dxdx.

According to (117), the general solution of (114) is

u =
(

(1− n)
(
φ (y)−

∫ g
f dx

)) 1
1−n

=
(

(1− n)
(
φ (y)−

∫ φ2(y)+φ1(y)
∫
b(x,y)e

∫
a(x,y)dxdx

φ1(y)e
∫
a(x,y)dx dx

)) 1
1−n

.

That is

u =

(
(1− n)

(
φ (y)−

∫
e−

∫
a(x,y)dx

(
ψ (y) +

∫
b (x, y) e

∫
a(x,y)dxdx

)
dx

)) 1
1−n

. (115)

The theorem is proved. �

5. Special application of Method 1

First we propose Definition 4.

Definition 4. If a differential equation includes arbitrary known functions, and a continu-
ous solution could be derived from them, then it is called a known functional solution.

A known functional solution may be a general solution, an analytic solution or a particular
solution. Using Method 1, theoretically an infinite number of ODEs and PDEs can be solved.
These equations have a universal feature that they include arbitrary known functions and have
known functional solutions, such as an ODE

y′ + b (x) y + c (x) = 0. (11)

The general solution of (11) is

y = e−
∫
b(x)dx

(
C −

∫
c (x) e

∫
b(x)dxdx

)
. (12)

b(x) and c(x) in (11) are all arbitrary known functions. The solution formula is obtained by
using arbitrary known b(x) and c(x), that is, (12) is a known functional solution of (11). For
the partial differential equation

ux + b (x, y) p (u) = 0, (88)

which general solution is

ϕ (y) +

∫
1

p (u)
du+

∫
b (x, y) dx = 0, (89)
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b(x, y) and p(u) in (89) are all arbitrary known functions, and (89) is the known functional
solution of (88).

Now we ask two new questions. Does a differential equation with arbitrary known functions
necessarily have known functional solutions? If not, how to prove it? These two questions are
quite meaningful, just like the root formulas do not exist for general algebraic equations more
than 5 times. If we can prove that known functional solutions of some equations do not exist,
people do not need to waste time and energy in finding them. And this will promote people to
further understand rules of solutions of differential equations. Here we use Method 1 to research
this problem.

5.1. Typical cases for ODEs.

Next we propose Theorem 14.

Theorem 14. In a continuous region D, (D ⊆ R), for an arbitrary known function b(x),
the equation y′′ + b (x) y = 0 does not have known functional solutions in the form of y = y(x).

Proof. Assuming y′′ + b (x) y = 0 has a known functional solution in the form of y = y(x)
in the continuous area D, the solution must be expressed as

f(x)y + k = 0. (121)

So
f(x)y + k = 0 =⇒ f (x) y′ + f ′ (x) y = 0 =⇒ f (x) y′′ + 2f ′ (x) y′ + f ′′ (x) y = 0.

Namely

y′′ +
2f ′ (x)

f (x)
y′ +

f ′′ (x)

f (x)
y = 0. (122)

Comparisons with
y′′ + b (x) y = 0. (123)

In D, we get

2
f ′ (x)

f (x)
≡ 0, (124)

f ′′ (x)

f (x)
= b (x) . (125)

By (124), f ′(x) ≡ 0 can be obtained in D, and then f ′′(x) ≡ 0. According to (125), b(x) ≡ 0 can
be get. Since there is a contradiction that b(x) is an arbitrary known function, so (123) cannot
have a solution in the form of y = y(x), Theorem 14 is proved. �

(123) is an equation that has been extensively and deeply studied [41-44], Hill differential
equation and Mathieu differential equation [45] are its special cases.

y
′′

+ b(x)y = 0 is an equation with a very simple structure. According to the equation,
which has no known functional solutions, it can be initially judged that related more complex
equations also have no known functional solutions, such as

y′′ + b (x) y + c (x) = 0, (126)

y′′ + a (x) y′ + b (x) y = 0, (127)

y′′ + a (x) y′ + b (x) y + c (x) = 0, (128)
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where a(x), b(x) and c(x) are arbitrary known functions. In fact, according to Method 1, it can
be proved that (126-128) have no known functional solutions, namely

Theorem 15. In a continuous area D, (D ⊆ R), for arbitrary known functions a(x), b(x)
and c(x), the equations

y′′ + b (x) y + c (x) = 0, (126)

y′′ + a (x) y′ + b (x) y = 0, (127)

y′′ + a (x) y′ + b (x) y + c (x) = 0, (128)

do not have known functional solutions in the form of y = y(x).

Proof. Assuming y′′ + a (x) y′ + b (x) y + c (x) = 0 has a known functional solution in the
form of y = y(x) in D, the solution must be expressed as

y = − g (x)

f (x)
.

So

y = − g (x)

f (x)
=⇒ f(x)y + g(x) = 0 =⇒ f (x) y′′ + 2f ′ (x) y′ + f ′′ (x) y + g′′ (x) = 0.

Namely

y′′ + 2
f ′ (x)

f (x)
y′ +

f ′′ (x)

f (x)
y +

g′′ (x)

f (x)
= 0. (129)

Comparisons with
y′′ + a (x) y′ + b (x) y + c (x) = 0. (128)

In D, we get

2
f ′ (x)

f (x)
= a (x) , (130)

f ′′ (x)

f (x)
= b (x) , (131)

2
f ′ (x)

f (x)
= a (x) =⇒ f = C1e

1
2

∫
a(x)dx =⇒ f ′′ =

1

2
C1a

′ (x) e
1
2

∫
a(x)dx +

1

4
C1a

2 (x) e
1
2

∫
a(x)dx.

So

b (x) =
f ′′ (x)

f (x)
=

1
2C1a

′ (x) e
1
2

∫
a(x)dx + 1

4C1a
2 (x) e

1
2

∫
a(x)dx

C1e
1
2

∫
a(x)dx

=
1

2
a′ (x) +

1

4
a2 (x) ,

there is a contradiction that a(x) and b(x) are arbitrary known functions, so (128) cannot have
a solution in the form of y = y(x). Similarly, it can be proved that (126, 127) cannot have a
known function solution in the form y = y(x), Theorem 15 is proved. �

(127) is an ordinary differential equation that has been studied emphatically [46, 47]. If a(x)
and b(x) are special functions, obviously (127) has a solution. If set y = sinx, a(x) = x, then

y′′ + a (x) y′ + b (x) y = sinx+ xcosx+ b (x) sinx = 0
=⇒ b (x) = −sinx−xcosx

sinx = −1− xcotx.

Namely
y′′ + xy′ − (1 + xcotx) y = 0. (132)

The particular solution of (132) is y = sinx. This case is not contradictory to Theorem 15,
because the solution of (132) does not have a unified functional relationship with different a(x)
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and b(x).

Set y = e
∫
zdx, the linear equation y

′′
+ a(x)y

′
+ b(x)y = 0 can be transformed into Riccati

Equation
z′ + z2 + a (x) z + b (x) = 0.

So Theorem 15 indirectly proves that this type of Riccati Equation has not a known function
solution! So we can propose Theorem 16.

Theorem 16. In a continuous area D, (D ⊆ R), for arbitrary known functions a(x) and
b(x), the Riccati Equation

z′ + z2 + a (x) z + b (x) = 0 (133)

does not have known functional solutions in the form of z = z(x).

According to Theorem 16, it can be preliminarily judged that Riccati Equation and Abel
Equation in the general form have not a known function solution.

Next we propose Theorem 17.

Theorem 17. In a continuous area D, (D ⊆ R), for an arbitrary known functions a(x),
b(y), the equation y′ + a(x) + b(y) = 0 does not have known functional solutions in the form of
ϕ(y) = φ(x).

Proof. Assuming y′+a(x)+b(y) = 0 has a known functional solution in the form of ϕ(y) = φ(x)
in the continuous area D, note that ϕ and φ cannot be arbitrary functions, then

ϕ(y) = φ(x) =⇒ ϕ′ (y) y′ − φ′ (x) = 0.

That is

y′ − φ′ (x)

ϕ′ (y)
= 0. (134)

Comparisons with
y′ + a(x) + b(y) = 0. (135)

So

−φ
′ (x)

ϕ′ (y)
= a (x) + b (y) .

Namely
−φ′ (x) = a (x)ϕ′ (y) + b (y)ϕ′ (y) . (136)

Since ϕ(y) is not an arbitrary function, and b(y) is an arbitrary known function, a(x)ϕ′(y) +
b(y)ϕ′(y) must include y, so (136) cannot set up, then Theorem 17 is proved. �

On the basis of Theorem 17, it can be preliminarily judged that y′ + a(x)b(y) + c(x) = 0
and y′+a(x)b(y)+d(y) = 0 also do not have a known function solution in the form of ϕ(y) = φ(x).

5.2. Typical cases for PDEs.

The idea and method to prove that there are no known functional solutions for PDEs are
almost completely similar to ODEs, and it will be explained through specific cases.

Theorem 18. In a continuous area D, (D ⊆ Rn, n ≥ 2), for an arbitrary known functions
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b(x1, . . . xn), the equations uxixi + b (x1, . . . xn)u = 0 and uxixj + b (x1, . . . xn)u = 0, (i, j =
1, 2, . . . n) do not have a known functional solution in the form of u = ϕ(x1, . . . xn).

Proof. Assuming uxixi + b (x1, . . . xn)u = 0 has a known functional solution in the form of
u = ϕ(x1, . . . xn) in the continuous area D, the solution must be expressed as

f (x1, . . . xn)u+ k = 0. (137)

So
f (x1, . . . xn)u+ k = 0 =⇒ fuxi + fxiu = 0 =⇒ fuxixi + 2fxiuxi + fxixiu = 0.

Namely

uxixi +
2fxi
f
uxi +

fxixi
f

u = 0. (138)

Comparisons with
uxixi + b (x1, . . . xn)u = 0. (139)

In D, we get
2fxi
f
≡ 0, (140)

fxixi
f

= b (x1, . . . xn) . (141)

By (140), fxi ≡ 0 can be obtained in D, and then fxixi ≡ 0. According to (141), b(x1, . . . xn) ≡ 0
can be obtained, this is inconsistent with b(x1, . . . xn) being any known function, so (139) cannot
have a known functional solution in the form of u = (x1, . . . xn). Similar methods can be used
to prove that uxixj + b (x1, . . . xn)u = 0, (i, j = 1, 2, . . . n) does not have a continuous known
functional solution in the form of u = ϕ(x1, . . . xn), so the theorem is proved. �

Theorem 19. In a continuous area D, (D ⊆ Rn, n ≥ 2), for arbitrary known functions
b(x1, . . . xn) and c(x1, . . . xn), uxixi +b (x1, . . . xn)u+c(x1, . . . xn) = 0 and uxixj +b (x1, . . . xn)u+
c(x1, . . . xn) = 0 do not have a known functional solution in the form of u = ϕ(x1, . . . xn).

Proof. Assuming uxixi + b (x1, . . . xn)u + c(x1, . . . xn) = 0 has a known functional solution
in the form of u = ϕ(x1, . . . xn) in D, the solution must be expressed as

u = − g (x1, . . . xn)

f (x1, . . . xn)
, (f (x1, . . . xn) 6= 0) . (142)

So

u = − g(x1,...xn)
f(x1,...xn) =⇒ f (x1, . . . xn)u+ g (x1, . . . xn) = 0

=⇒ fuxixi + 2fxiuxi + fxixiu+ gxixi = 0.

Namely

uxixi + 2
fxi
f
uxi +

fxixi
f

u+
gxixi
f

= 0. (143)

Comparisons with
uxixi + b (x1, . . . xn)u+ c (x1, . . . xn) = 0. (144)

In D, we get

2
fxi
f
≡ 0, (145)
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fxixi
f

= b (x1, . . . xn) , (146)

gxixi
f

= c (x1, . . . xn) . (147)

By (145),fxi ≡ 0 can be obtained in D, and then fxixi ≡ 0. According to (146), b (x1, . . . xn) ≡ 0
can be obtained, which is inconsistent with b (x1, . . . xn) being any known function, so (144)
cannot have a known functional solution in the form of u = ϕ (x1, . . . xn). Similar methods can
be used to prove that uxixj + b (x1, . . . xn)u+ c(x1, . . . xn) = 0 does not have a known functional
solution in the form of u = ϕ (x1, . . . xn) , so the theorem is proved. �

Theorem 20. In a continuous area D, (D ⊆ Rn, n ≥ 2), for arbitrary known functions
a(x1, . . . xn), b(x1, . . . xn) and c(x1, . . . xn), uxixi +auxi +bu+c = 0 and uxixj +auxi +bu+c = 0
do not have a known functional solution in the form of u = ϕ (x1, . . . xn).

The proving method of Theorem 20 is the same as Theorem 19, and readers can try it by
themselves.

Theorem 21. In a continuous area D, (D ⊆ Rn, n ≥ 2), for arbitrary known functions
a(x1, . . . xn) and b(u), uxi + a (x1, . . . xn) + b (u) = 0 does not have a known functional solu-
tion in the form of ϕ (u) = φ (x1, . . . xn).

Proof. Assuming uxi + a (x1, . . . xn) + b (u) = 0 has a known functional solution in the form of
ϕ (u) = φ (x1, . . . xn) in D, note that ϕ and φ cannot be arbitrary functions, then

ϕ (u) = φ (x1, . . . xn) =⇒ ϕ′ (u)uxi − φxi = 0,

That is

uxi −
φxi
ϕ′ (u)

= 0, (148)

Comparisons with
uxi + a (x1, . . . xn) + b (u) = 0. (149)

Then

− φxi
ϕ′ (u)

= a (x1, . . . xn) + b (u) ,

namely
−φxi (x1, . . . xn) = a (x1, . . . xn)ϕ′ (u) + b (u)ϕ′ (u) . (150)

Since ϕ(u) is not an arbitrary function, and b(u) is an arbitrary known function, a (x1, . . . xn)ϕ′ (u)+
b (u)ϕ′ (u) must include u, so (150) cannot set up, then Theorem 21 is proved. �

Theorem 22. In a continuous area D, (D ⊆ Rn, n ≥ 2), for an arbitrary known functions
a(x1, . . . xn), the equations aux1 +ux2 + . . .+uxk = 0 does not have a known functional solution
in the form of u = ϕ (x1, . . . xn).

Proof. Assuming aux1 + ux2 + . . . + uxk = 0 has a known functional solution in the form
of u = ϕ (x1, . . . xn) in the continuous area D, the solution must be expressed as

u = f(a). (151)

So
aux1 + ux2 + . . .+ uxk = af ′aax1 + f ′aax2 + . . .+ f ′aaxk = 0.
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Namely
aax1 + ax2 + . . .+ axk = 0. (152)

Since a general function a(x1, . . . xn) does not satisfy aax1 + ax2 + . . .+ axk = 0, so (152) cannot
have a known functional solution in the form of u = ϕ (x1, . . . xn), the theorem is proved. �

If a differential equation does not have a known function solution, it does not mean that
it is unsolvable under any circumstances, and it might be solved in special circumstances. For
example, theorem 15 points out that y′′ + b (x) y′ + c (x) y + d (x) = 0 has no known function
solution, but its special case

y′′ + b (x) y′ +

(
1

2
b′ (x) +

1

4
b2 (x)

)
y + d (x) = 0, (17)

the general solution of (17) is

y = e
−1
2

∫
b(x)dx

(
C1 + C2x−

∫∫
d (x) e

1
2

∫
b(x)dxdxdx

)
. (18)

That is (17) is solvable.
For another example, Theorem 22 states that a(x, y)ux + uy = 0 does not have a known

function solution, but its special case b(x)c(y)ux + uy = 0, we can use the characteristic equa-

tion method to obtain its general solution u = f
(∫

dx
b(x) −

∫
c (y) dy

)
, note that the solution still

cannot be expressed by the known function a(x, y) = b(x)c(y).

6. New principles and methods III

Below we propose definitions 5.

Definition 5. In a continuous area D, (D ⊆ Rn, n ≥ 1), if a differential equation has known
functional solutions, it is called an Φ equation; if a differential equation has no known functional
solution, it is called a Ψ equation.

In the preceding paper [48], we proposed the concept and laws of the dependent variable
transformation equation, and now we go further into this concept. The specific choice for a de-
pendent variable transformation can be an Φ equation or a Ψ equation, so we propose definition 6.

Definition 6. A dependent variable transformation using an Φ equation is called an Φ trans-
formation; a dependent variable transformation using a Ψ equation is called a Ψ transformation.

We proved in Section 3 that

y′′ + b (x) y + c (x) = 0 (126)

is a Ψ equation, so
z (x) = y′′ + b (x) y, (153)

this dependent variable transformation is a Ψ transformation, and

z (x) = y′ + b (x) y, (154)

is an Φ transformation because the transformation uses the Φ equation y′ + b(x)y + c(x) = 0.
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Based on the above concepts, we can propose the following theorems.

Theorem 23. After a Ψ transformation, an Φ equation becomes a Ψ equation.

Proof. For ODEs, according to the theorem [48]:

In the domain D, (D ⊂ R1), if the solution w = f(x) of an ODE G
(
x,w,w′, w′′, . . . w(n)

)
= 0

is known, set w = h
(
x, y, y′, y′′, . . . y(m)

)
, then the solution of its DVTE F

(
x, y, y′, y′′, . . . y(m+n)

)
= 0 is the solution of h

(
x, y, y′, y′′, . . . y(m)

)
= f (x).

A Ψ transformation w = f(x) = h
(
x, y, y′, y′′, . . . y(m)

)
does not have any known functional

solution. Since the dependent variable transformation equations F
(
x, y, y′, y′′, . . . y(m+n)

)
= 0

and h
(
x, y, y′, y′′, . . . y(m)

)
= f (x) have the same solutions, F = 0 is a Ψ equation.

For PDEs, according to the theorem [48]:
In the domain D, (D ⊂ Rn), if the solution v = f(x1, . . . xn) of a PDE

G(x1, . . . xn, v, vx1 , . . . vxn , vx1x2 , . . .) = 0 is known, set v = h (x1, . . . xn, u, ux1 , . . . uxn , ux1x2 , . . .) ,
then the solution of its DVTE F (x1, . . . xn, u, ux1 , . . . uxn , ux1x2 , . . .) = 0 is the solution of
h(x1, . . . xn, u, ux1 , . . . uxn , ux1x2 , . . .) = f(x1, . . . xn).

A Ψ transformation v = f (x1, . . . xn) = h (x1, . . . xn, u, ux1 , . . . uxn , ux1x2 , . . .) has no known
functional solution. Since the dependent variable transformation equations
F (x1, . . . xn, u, ux1 , . . . uxn , ux1x2 , . . .) = 0 and h (x1, . . . xn, u, ux1 , . . . uxn , ux1x2 , . . .) = f (x1, . . . xn)
have the same solutions, F = 0 is a Ψ equation, so the theorem is proved. �

Using methods similar to the proof of Theorem 23, we can get Theorems 24-26, which readers
can try by themselves.

Theorem 24. After a Ψ transformation, a Ψ equation is still a Ψ equation.

Theorem 25. After a Φ transformation, a Ψ equation is still a Ψ equation.

Theorem 26. After a Φ transformation, an Φ equation is still an Φ equation.

Theorem 26 has particularly important application value, because the essence of using the
transformation of dependent variables to solve differential equations is to use theorem 26.

In [48], we put forward the concept and law of the transformation equation of the indepen-
dent variable of PDEs. Below we propose the analogous concept and law of ODEs.

Definition 7. In a continuous region D, (D ⊂ R1), set x = x(t), t = t(x) are known, and trans-
form the n-th order ODE F

(
x, y, y′, y′′, . . . y(n)

)
= 0 into the n-th order ODE G

(
t, y, y′, y′′, . . . y(n)

)
= 0, then G = 0 is the independent variable transformation equation of F = 0.

Theorem 27. In a continuous D, (D ⊂ R1), if the solution y = f(x) of the n-th order
ODE F

(
x, y, y′, y′′, . . . y(n)

)
= 0 is known, then the solution of the independent variable trans-

formation equation G
(
t, y, y′, y′′, . . . y(n)

)
= 0 is y = f(x) = g(t).

Proof. Use t = t(x) to transform G
(
t, y, y′, y′′, . . . y(n)

)
= 0 into F

(
x, y, y′, y′′, . . . y(n)

)
= 0.

Since the solution y = f(x) of F = 0 is known, it is also the solution of G = 0, so use x = x(t)
convert y = f(x) to y = g(t), y = g(t) is the solution of G = 0, the theorem is proved. �
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Below we propose Theorem 28, 29.

Theorem 28. An independent variable transformation equation of a Ψ equation is still a Ψ
equation.

Proof. Disprove method: For ODEs, suppose that the independent variable transformation
equation G

(
t, y, y′, y′′, . . . y(n)

)
= 0 of the Ψ equation F

(
x, y, y′, y′′, . . . y(n)

)
= 0 is an Φ equa-

tion, and the solution ofG = 0 is y = g(t). Then use t = t(x) to transformG
(
t, y, y′, y′′, . . . y(n)

)
=

0 into F
(
x, y, y′, y′′, . . . y(n)

)
= 0, so F = 0 has a known function solution y = f(x), which con-

tradicts that F = 0 is a Ψ equation, so the theorem is established for ODEs.
For PDEs, assume that the independent variable transformation equation

G (y1, . . . yn, u, uy1 . . . uyn , uy1y2 . . .) = 0 of the Ψ equation F (x1, . . . xn, u, ux1 . . . uxn , ux1x2 . . .) =
0 is an Φ equation, and the solution ofG = 0 is u = g(y1, y2, . . . yn). Then use yi = yi (x1, x2 . . . xn)
to transform G (y1, . . . yn, u, uy1 . . . uyn , uy1y2 . . .) = 0 into F (x1, . . . xn, u, ux1 . . . uxn , ux1x2 . . .) =
0, so F = 0 has a known function solution u = g (y1, y2, . . . yn) = f (x1, x2 . . . xn), which contra-
dicts that F = 0 is a Ψ equation, that is, the theorem holds for PDEs, so the theorem is proved. �

Theorem 29. An independent variable transformation equation of an Φ equation is still an
Φ equation.

The proof of Theorem 29 is similar to Theorem 28, and readers can try it by themselves.

According to Theorems 2, in general, sub-equations of a Ψ equation are Ψ equations, sub-
equations of an Φ equation are Φ equations. For ODEs, such as

y′′ + b (x) y + c (x) = 0. (126)

If it is taken as a source equation, the first-order sub-equation of the first kind is

y′′′ + b (x) y′ + b′ (x) y + c′ (x) = 0. (155)

The second type first-order sub-equations are

y′′′ + b (x) y′ + b′ (x) y + c′ (x) = 0, (156)

y′′′ + b (x) y′ − b′ (x)
y′′ + c (x)

b (x)
+ c′ (x) = 0.

Namely

y′′′ − b′ (x)

b (x)
y′′ + b (x) y′ − b′ (x) c (x)

b (x)
+ c′ (x) = 0, (157)

and so on, it can be preliminarily judged that (155-157) are all Ψ equations.

For PDEs, such as the Ψ equation

uxixi + b (x1, . . . xn)u+ c (x1, . . . xn) = 0. (144)

If it is taken as a source equation, the first-order sub-equation of the first kind is

uxixixi + buxi + bxiu+ cxi = 0, (158)

uxixixj + buxj + bxju+ cxj = 0. (159)
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The second type first-order sub-equations are

uxixixi + auxixi + buxi + (bxi + ab)u+ cxi + ac = 0, (160)

uxixixi + buxi − bxi
uxixi + c

b
+ cxi = 0.

That is

uxixixi −
bxi
b
uxixi + buxi −

cbxi
b

+ cxi = 0, (161)

and so on, it can be preliminarily judged that (158-161) are all Ψ equations.

7. Conclusions and discussions

The solution of a differential equation may be a function, such as (12) and (113); it may
also be a functional equation, such as (57), (89) and so on. In order to obtain solutions of a
differential equation, we propose Method 1 and verification axiom for the first time. According
to actual cases, it can be found that, whether ODEs or PDEs, almost all solvable differential
equations or functional equations can be used as source equations, and any solvable source
equation theoretically has an infinite number of solvable sub-equations. The solutions obtained
by Method 1 are sometimes general solutions, sometimes exact solutions and sometimes require
additional conditions.

A differential equation may be solved through multiple different source equations, and the
conditions and exact solutions for different source equations are often different. If there are n
arbitrary known functions in the differential equation to be solved and m pending functions in
the source equation, generally, an unconditional solution can be obtained when m ≥ n, and a
conditional solution can be obtained when m < n. Since the order of the source equation is
lower than that of the equation to be solved, generally m ≤ n.

Method 1 can be used to judge whether there is a known functional solution to a certain
differential equation. To this end, we propose the concepts of Φ equation, Ψ equation, Φ trans-
formation, and Ψ transformation, and research the relevant laws. Through some cases, we point
out that if a differential equation does not have a known function solution, it does not mean
that it is unsolvable under any circumstances, and is often solvable under special conditions.
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half-linear advanced differential equations, Appl. Math. Comput. 347 (2019) 404-416.
[44] J. Sugie, K. Ishibashi, Nonoscillation of Mathieu equations with two frequencies, Appl.
Math. Comput. 346 (2019) 491-499.
[45] A. A. Abramov, S. V. Kurochkin, Calculation of Solutions to the Mathieu Equation and
of Related Quantities, Comput. Math. Math. Phys. 47 (3) (2007) 397-406.
[46] I. Jadlovsk, Oscillation criteria of Kneser-type for second-order half-linear advanced
differential equations, Appl. Math. Lett. 106 (2020) 106354.
[47] A. Ruiz, C. Muriel, On the integrability of Liénard I-type equations via λ-symmetries
and solvable structures, Appl. Math. Comput. 339 (2018) 888-898.
[48] H. L. Zhu, New Principles of Differential Equations , http://vixra.org/abs/1705.0410
(2017).


