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Abstract: 

The predominating objective of this short paper is to lay forth a series of results derived from 

the optimization of canonical utility and indifference functions (insofar as they are used 

conventionally), and then analogizing them in the context of payoffs. It concerns the 

categorizations of utility functions, indifference curves and other analytical constraints.  

To commence, it draws a generalization as to how utilities change with regards to marginal 

rates of substitution. Following this, it invokes a series of arguments as to how they can be 

maximized in both univariate and multivariate states. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Marginal Rates of Substitution in the context of opportunity cost 

Firstly, consider an indifference curve associated with any two commodities/goods. 

 

Notice that this curve is the equivalent production possibilities frontier in an economy with decreasing 

opportunity cost. As the obtainment/production of any one good grows, the equivalent sacrifice made 

with regards to the other continually decreases over the range of both axes. A convex curve implies 

precisely this. 

A consumer (or agent) will necessarily be indifferent to any combination on the curve relative to any 

other. The tangent to an indifference curve derives its marginal rate of substitution at any point.  

𝑀𝑅𝑆𝑥1𝑥2 = −
𝑑[𝑥2]

𝑑[𝑥1]
 

𝑀𝑅𝑆𝑥1𝑥2 = −
𝑑[𝑥1]

𝑑[𝑥2]
 

wherein 𝑀𝑅𝑆𝑎𝑏 is representative of the degree to which one is willing to interchange a quantity 

associated with commodity a in exchange for commodity b.  

Both signs are reversed in order to obtain absolute values of 𝑀𝑅𝑆𝑎𝑏. In either case, either 𝑑[𝑥2] or 

𝑑[𝑥1] lies in the negative. 

In the event that the overlying indifference curve is concave, it will be naturally representative of an 

increasing opportunity cost amongst its distributed commodities. 

While all formulations for marginal rates of substitutions are invariant to their associated opportunity 

cost, one must recognize that their relative size with regards to the individual goods they are 

connected to are not. 

For any function that is convex downward, the tangent that is drawn in association with any point on 

its curve necessarily lies below the curve. 

 



 

Consequently, the value of the related tangent function (whose gradient equals 𝑀𝑅𝑆𝑎𝑏) will be 

inferior to or equal to the value of its indifference curve/PPF (herein thought of as a second 

commodity). 

Habitually, one describes indifference curves for two commodities using  

𝑓(𝑥, 𝑦) = 𝑐 

wherein c remains a constant. 

Note that the first convex curve (for two goods) described above assumes the form of a decreasing 

exponential function. Subsequently, if one were to derive its derivative 𝑀𝑅𝑆𝑎𝑏, one must first 

reconstitute it to obtain the form  
𝑓(𝑎) = 𝑏 

or 

𝑏 = 𝛾𝑘𝑎 

wherein                                                             𝑘 < 1 

and                                                                   𝛾 > 0 

 

Herein, one must presuppose the above constraints to ensure that the resultant function assumes the 

convex curve necessitated by a decreasing opportunity cost. 

Note: 𝑓(𝑎) = 𝑏 does not imply that the extent of one’s obtainment or utility drawn from commodity 

a unconditionally determines one’s consumption of commodity b. Instead, it is solely a precondition 

to discerning a general form of 𝑀𝑅𝑆𝑎𝑏, and a few other conditions associated with a convex PPF.  

 

𝑀𝑅𝑆𝑎𝑏 = −
𝑑[𝑏]

𝑑[𝑎]
= −

𝑑

𝑑[𝑎]
𝛾𝑘𝑎 

−
𝑑

𝑑[𝑎]
𝛾𝑘𝑎 = −𝛾

𝑑

𝑑[𝑎]
𝑘𝑎 = −𝛾 ln[𝑘] 𝑘𝑎 

 

Parametrically, this implies that the marginal rate of substitution associated with any indifference 

curve is a function of the curve’s initial value 𝛾, decay constant 𝑘 (which is rendered by a decreasing 

opportunity cost to be sub-zero), and an independent consumption variable (a). 

Notice that the initial value of the curve is merely the point on the indifference curve that corresponds 

to quantity b when a equals 0.  



Should all other prerequisites remain unaltered,  𝛾 and 𝑀𝑅𝑆𝑎𝑏 will maintain a directly 

proportionality. This is precisely what one would gauge intuitively. When the principal size associated 

with a second quantity is elevated, its favoring 𝑀𝑅𝑆 will be accordingly tractable. 

Now that we’ve developed a formulation associated with a marginal rate of substitution, we can 

unravel the constraints associated with a convex indifference. 

As stated prior, with any such indifference; 

 

𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑙𝑖𝑛𝑒 𝑡𝑜 𝑓(𝑎) ≤ 𝑓(𝑎) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝒂 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 

  

The general equation of a tangent line is delineated using: 

 

𝑦 − 𝑓(𝑎) = 𝑓′(𝑎)(𝑥 − 𝑎) 

 

If we attach all the general forms we have thus far found,  

 

𝑓(𝑎) = 𝛾𝑘𝑎 

𝑓′(𝑎) = −𝑀𝑅𝑆𝑎𝑏 = 𝛾 ln[𝑘] 𝑘𝑎 

𝑦 − 𝛾𝑘𝑎 = 𝛾 ln[𝑘] 𝑘𝑎(𝑥 − 𝑎) 

𝑦 = 𝛾 ln[𝑘] 𝑘𝑎(𝑥 − 𝑎) + 𝛾𝑘𝑎 

𝑦 = 𝛾𝑘𝑎 + 𝛾𝑘𝑎 ln[𝑘] (𝑥 − 𝑎) 

𝑦 = 𝛾𝑘𝑎(1 + ln[𝑘] (𝑥 − 𝑎)) 

 

Now that we’ve materially constructed the function associated with the marginal rate of substitution 

amongst any two commodities, we can impose the inequality constraint associated with a decreasing 

OC/convex downward indifference between them. 

 

𝛾𝑘𝑎(1 + ln[𝑘] (𝑥 − 𝑎)) ≤ 𝑓(𝑎) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝒂 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 

𝛾𝑘𝑎(1 + ln[𝑘] (𝑥 − 𝑎)) ≤ 𝛾𝑘𝑎 

Inferring from the inequality reveals: 

(1 + ln[𝑘] (𝑥 − 𝑎)) ≤ 1 



Or, equivalently, ln[𝑘] (𝑥 − 𝑎) ≤ 0. 

Note, that  
𝑘 < 1 

For the decreasing exponential function we’ve assumed. 

ln[𝑘] < 0 

Using ln[𝑘] (𝑥 − 𝑎) ≤ 0, (𝑥 − 𝑎) ≥ 0.  

                                                           𝑆𝑖𝑛𝑐𝑒 (𝑥 − 𝑎) ≥ 0, 𝑥 ≥ 𝑎. 

In order to graphically illustrate what the conclusion above suggests, consider the curve below: 

 

 

Utility Functions and analogies 

For ordinal utility, the axioms of transitivity, completeness and preference warrant that utility 

functions be subject to reconstruction with unchanged implications. As far as the indifference curves 

above are concerned, every continuous point captured by them preserves consumer utility, ordinal 

and cardinal. 

The commonly cited Cobb-Douglas utility function assumes the form: 

 

𝑈(𝑥, 𝑦) =  𝑥𝑎𝑦𝑏  𝑓𝑜𝑟 𝑡𝑤𝑜 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵. 

 

For functions that are dependent on both variables, neither one of A or B is zero. 



If one were to maximize this concept using strictly a multivariate scheme, partial derivatives may be 

concurrently employed. 

𝜕𝑈

𝜕𝑥
=

𝜕𝑈

𝜕𝑦
= 0 

𝜕𝑈

𝜕𝑥
= 𝑦𝑏𝑎𝑥𝑎−1 = 0 

𝜕𝑈

𝜕𝑦
= 𝑥𝑎𝑏𝑦𝑏−1 = 0 

𝐼𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 

𝑒𝑖𝑡ℎ𝑒𝑟 𝑥 𝑜𝑟 𝑦 = 0  

 

While the bounds restated above reveal both maximal and minimal utility extremums, they entail a 

number of significant inferences. If one’s risk aversion and/or decision-making proclivities were 

commensurate with a function of the Cobb-Douglas variant 𝑈(𝑥, 𝑦) =  𝑥𝑎𝑦𝑏 , they’d invariably elect 

to maximize their utility consistently with a decisive, non-mixed set of variables (either X or Y). 

Similarly, if one were to axiomatise risk-indifference (with a linear utility function over an expected 

payoff): 

𝑈(𝑥) =  𝐴 + 𝐵𝑥 𝑓𝑜𝑟 𝑡𝑤𝑜 𝑝𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑛𝑑 𝑎𝑛 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑦𝑜𝑓𝑓 𝑥, 

𝑑𝑈

𝑑𝑥
= 𝐵 = 0 

𝑈(𝑥) = 𝐴 

 

One can reiterate the above schematic for a number of utility functions, consistent with prospect 

theory, Bernoulli’s hypothesis on risk aversion or otherwise.  

Marginal rates of substitution, however, are of simultaneous relevance in this area. Since they are 

representative of bundles (certainty equivalents or probability distributions) of commodities that 

agents or players are internally indifferent to, they are vital determinants in a multitude of 

applications associated with game theory and behavioral economics. 

 

 

 

 


