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Abstract

We prove the precompactness of a collection of Borel probability measures

over an arbitrary metric space precisely under a new legitimate notion, which we

term topological stationarity, regulating the sequential behavior of Borel probab-

ility measures directly in terms of the open sets. Thus the important direct part

of Prokhorov’s theorem, which permeates the weak convergence theory, admits a

new version with the original and sole assumption — tightness — replaced by to-

pological stationarity. Since, as will be justified, our new condition is not vacuous

and is logically independent of tightness, our result deepens the understanding of

the connection between precompactness of Borel probability measures and metric

topologies.
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1 Introduction

If S is a metric space, if M is a collection of probability measures on the Borel sigma-

algebra BS generated by the metric topology of S, and if M is tight, i.e. and if

supK infP∈M P(K) = 1 as K runs through all the compact subsets of S, then every

sequence in M has a subsequence converging weakly to some probability measure on

BS . Given its significance, the above assertion will simply be referred to as Prokhorov’s

theorem, although it would in many places be referred to as the direct part of Prokhorov’s

theorem. Owing to the analogy between the conclusion of Prokhorov’s theorem and

the usual notion of precompactness associated with closure, throughout a collection of
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probability measures (defined on the same sigma-algebra) satisfying the conclusion of

Prokhorov’s theorem is called precompact.

The prototype of Prokhorov’s theorem may be Theorem 1.12 in Prokhorov [6], where

a complete separable metric space is considered throughout. Theorem 8.6.2 in Bogachev

[3] in particular gives another proof of the prototypical Prokhorov’s theorem. Prok-

horov’s theorem in the present sense (i.e. without assuming completeness and separabil-

ity) would be first given by Theorem 6.1 in Billingsley [1]; we might add that Billingsley

[2] gives another proof of Prokhorov’s theorem.

Arguably, Prokhorov’s theorem plays a central role in the theory of weak convergence

of measures, and the weak convergence theory would be a mathematics of fundamental

importance in analysis with applications ranging over, among others, not only (classical)

probability and statistics but analytic number theory (e.g. Hardy-Ramanujan weak law

of large of numbers).

To the best of the author’s observations, Prokhorov’s theorem, for arbitrary metric

spaces, had never been explored such that the seemingly crucial tightness assumption

may be replaced by a logically independent non-vacuous condition, although there exist

works for rather special cases with additional structures (e.g. Grigelionis and Lebedev

[5] and certain references therein). At any rate, precompactness of Borel probability

measures over an arbitrary metric space had seemed to be connected precisely with

tightness.

We introduce a new legitimate notion gauging the sequential behavior of the col-

lection of Borel probability measures under consideration directly in terms of the open

sets such that the collection is stable in a suitable sense. It will be shown that this

new concept is non-vacuous and logically independent of tightness. We then prove the

sufficiency of our new condition for precompactness of Borel probability measures over

a given metric space; thus a new alternative version of Prokhorov’s theorem is obtained.

In passing, to obtain precompactness of Borel probability measures over a given

metric space, an additional condition is more or less necessary even if the ambient met-

ric space is complete and separable; Example 2.5 in Billingsley [2] furnishes a counter-

example showing that weak convergence of finite-dimensional distributions of a sequence

of Borel probability measures over the metric space C([0, 1],R) equipped with the uni-

form metric does not imply that of the sequence of Borel probability measures, and

therefore precompactness of Borel probability measures cannot be an intrinsic property

of a complete separable metric space.

Our main result, hopefully useful in applications as well, then deepens the under-

standing of the relationship between precompactness of Borel probability measures and

metric topologies.
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2 Results

Throughout, the symbol BS denotes the Borel sigma-algebra generated by the metric

topology of a given metric space S; and every topological property is considered precisely

with respect to the metric topology of S.

We begin by giving

Definition 1. Let S be a metric space; let M be a collection of probability measures

on BS .

ThenM is called topologically stationary if and only if for every sequence (Pn)n∈N in

M there is some subsequence (Pnj )j∈N of (Pn)n∈N such that either i) the real sequence

(Pnj (G))j∈N is monotone (in contrast with “strictly monotone”) for all open G ⊂ S or ii)

limj→∞ Pnj
(G) exists for all open G ⊂ S, and for every sequence of open G1, G2, · · · ⊂ S

there is some sequence of real b1, b2, · · · ≥ 0 such that supj∈N Pnj
(Gk) ≤ bk for all k ∈ N

and
∑

k∈N bk < +∞.

IfM is a topologically stationary singleton, the unique element ofM is also referred

to as topologically stationary. (This agrees with the usual usage of “tight”.)

Given the existing, aged usage of “stationarity” in the literature of applied probab-

ility, the term “topological stability” would be a more appropriate name for the above

notion; but since it has been reserved for another concept in the literature of dynamical

systems, we take a conceding position.

The notion of topological stationarity is not vacuous:

Proposition 1. If S is a metric space, then every probability measure on BS is topo-

logically stationary.

Proof. Every metric space has some Borel probability measure over it. Indeed, let x ∈ S;

then the Dirac measure Dx : BS → {0, 1}, B 7→ 1B(x), defined in terms of the indicator

functions 1B , serves the purpose.

If P is a probability measure on BS , then P(G) is constant for every open G ⊂ S; so

{P} is topologically stationary.

The notion of tightness and that of topological stationarity sometimes agree:

Proposition 2. (i) Every metric space S has #(S)-many probability measures on BS

that are both tight and topologically stationary. (ii) If S is a complete separable metric

space, then a tight probability measure on BS is precisely a topologically stationary

probability measure on BS.

Proof. (i) The cardinality of the collection of all Dirac measures on BS equals the

cardinality #(S) of S. But since every Dx with x ∈ S is evidently tight by considering
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the singleton {x}, and since Dx is also topologically stationary by Proposition 1, the

first assertion follows.

(ii) The Ulam’s theorem implies that every probability measure on BS is tight. But

every probability measure on BS is also topologically stationary by Proposition 1; the

second assertion follows.

The two notions are logically independent:

Proposition 3. (i) There are some metric space S and some collectionM of probability

measures on BS such that M is tight but not topologically stationary. (ii) There are

some metric space S and some collection M of probability measures on BS such that

M is topologically stationary but not tight.

Proof. (i) Let S be the metric space R equipped with the usual Euclidean metric. If

M := {D1/n}n∈N, then M is evidently tight by considering the compact interval [0, 1].

To see that M is not topologically stationary, an immediate observation is that, by the

Hausdorffness of S, for every sequence (Pm) in M there is some open G ⊂ S such that

(Pm(G))m is not monotone. Moreover, if (Pm) is a sequence in M, then there are by

the Hausdorffness of S some open G1, G2, · · · ⊂ S such that Pm(Gm) = 1 for all m ∈ N;

but then supk Pk(Gm) ≥ 1 for all m. Thus M is not topologically stationary.

(ii) Let S be the metric space ]0, 1] ≡ {x ∈ R | 0 < x ≤ 1} equipped with the usual

Euclidean metric, so that BS is the Borel sigma-algebra of R relativized to ]0, 1]. If

M is the uniform (probability) distribution B 7→ 2L(B ∩ ]0, 1/2]) on BS , where L is

Lebesgue measure, let P := 1
2M + 1

2D
1. Then P is evidently a probability measure, and

hence P is topologically stationary by Proposition 1. Since ]0, 1] is not compact, we have

P(K) ≤ 1/2 for every compact K ⊂ S; so P is not tight. This completes the proof.

We should like to proceed to proving our main result, which serves as a new version

of Prokhorov’s theorem:

Theorem 1. Let S be a metric space; let M be a collection of probability measures on

BS. If M is topologically stationary, then M is precompact.

Proof. If (Pn)n∈N is a sequence in M, choose by the assumed topological stationarity

of M some subsequence (Pnj )j∈N of (Pn) having the defining properties of topological

stationarity. If T is the metric topology of S, define

P0(G) := lim
j→∞

Pnj (G)

for all G ∈ T .
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Since P0(∅) = 0, it follows by an elementary general construction of outer measure

(Rogers [7] or Folland [4]; for concreteness) that the function

P∗ : A 7→ inf

{ ∑
C∈C

P0(C)

∣∣∣∣ C ⊂ T is a countable cover of A

}
defined on 2S is an outer measure.

We first claim that the restriction P := P∗|BS
of P∗ to BS is a measure. To this end,

it suffices to show that every element of T is measurable-P∗. Let G ∈ T . If A ⊂ S,

then for every ε > 0 there are some G1, G2, · · · ∈ T such that
⋃

k∈N Gk ⊃ A and

P∗(A) + ε >
∑
k

P0(Gk).

If Uk := G ∩ Gk and Vk := Gc ∩ Gk for all k ∈ N, then A ∩ G ⊂
⋃

k Uk and

A ∩ Gc ⊂
⋃

k Vk. Since both (Pnj (Uk))j and (Pnj (Gk))j are convergent for all k,

and since (Pnj
(Vk))j is bounded for all k, the additivity of the limit superior and the

limit inferior of each of the sequence (Pnj
(Uk) + Pnj

(Vk))j = (Pnj
(Gk))j implies that

limj→∞ Pnj
(Vk) = P0(Vk) exists for all k. Then

P∗(A ∩G) + P∗(A ∩Gc) ≤
∑
k

P0(Uk) +
∑
k

P0(Vk)

=
∑
k

P0(Gk)

< P∗(A) + ε;

and the desired P∗-measurability of G follows.

Now we claim that P∗(G) = P0(G) for all G ∈ T . If G ∈ T , then evidently we

have P∗(G) ≤ P0(G). If P∗(G) < P0(G), then there are some G1, G2, · · · ∈ T such that⋃
k Gk ⊃ G and

∑
k P0(Gk) < P0(G). But∑

k

P0(Gk) =
∑
k

lim
j→∞

Pnj (Gk)

= lim
j→∞

∑
k

Pnj
(Gk)

≥ lim
j→∞

Pnj
(
⋃
k

Gk)

≥ P0(G),

where, by considering counting measure, we have applied monotone convergence the-

orem or Lebesgue dominated convergence theorem by means of the assumed topological

stationarity. Since we then have P0(G) < P0(G), the desired equality is obtained.

In particular, we have P∗(S) = P0(S) = 1. As P∗ = P on BS by definition, the

measure P is indeed a probability measure.
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Moreover, since

P(G) = lim
j→∞

Pnj
(G) = lim inf

j→∞
Pnj

(G)

for all G ∈ T , the weak convergence of (Pnj
)j to P then follows from the fundamental

portmanteau theorem in weak convergence theory; we have completed the proof.

Several classical results depending on precompactness of probability measures now

naturally admit new versions. For instance, by Theorem 1 we have

Corollary 1. Let S be a metric space; let (Pn)n∈N be a sequence of probability measures

on BS that is topologically stationary as a collection; let P be a probability measure on

BS. If every finite-dimensional distribution of Pn converges weakly to that of P, then

(Pn) converges weakly to P.
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