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1 Abstract and Introduction

The aim of this paper is to introduce a general definition of means (of which
the Quadratic, Arithmetic, Geometric and Harmonic Means (QM, AM, GM
and HM respectively) are special cases), and to prove inequalities for com-
paring such means.

The most general result proven in this paper states that given a pair of
invertible and twice differentiable functions f : R → R and g : R → R (with
f ′′(t)
f ′(t)

>
g′′(t)
g′(t)

∀ t ∈ R), n numbers x1, x2, . . . , xn ∈ R and n positive real
numbers a1, a2, . . . , an s.t. a1 + a2 + . . .+ an = 1, we have

f−1

(

n
∑

i=1

ai f(xi)

)

≥ g−1

(

n
∑

i=1

ai g(xi)

)

With equality holding iff x1 = x2 = . . . = xn.

Note that R may be replaced by any open subset of the real line in all the
occurrences it has in the above result, and the result will hold just as well.
The same applies to all results proven in this paper.

In order to make the arguments easy to follow, I have provided the results
in ascending order of generality. However, if one wishes to simply see the
most general and final result I obtained (of which all other results are special
cases), one may go through Section 2 and then skip to Result 4 and Result
5 (Pages 7 to 10).
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Abstract

The definitions of the Quadratic, Arithmetic, Geometric and Harmonic

means all follow a certain generalisable pattern. The aim of this paper is to

explicitly state that pattern, hence generalising the definition of a 'mean',

and to prove inequalities for comparing different means (of which those

between the four means stated previously is a special case).

1. Introduction



2 General Definitions and a Basic Property

Definition 2.1
We will define the ‘f -mean’ (where f : R → R is an invertible function) of n
numbers x1 , x2 , . . . , xn ∈ R (denoted by F (x1 , x2 , . . . , xn) ) as follows

F (x1 , x2 , . . . , xn) = f−1

(

f(x1) + f(x2) + . . .+ f(xn)

n

)

One may note that the QM is the special case f(t) = t2, the AM is the
special case f(t) = t, the GM is the special case f(t) = ln(t) and the HM is
the special case f(t) = 1

t
.

Definition 2.2
Similar to the f -mean, we will define the ‘weighted f -mean’ (where f : R → R

is an invertible function) of n numbers x1 , x2 , . . . , xn ∈ R, given n posi-
tive real numbers a1 , a2 , . . . , an s.t a1 + a2 + . . . + an = 1 (denoted by
F0(x1 , x2 , . . . , xn)) as follows

F0(x1 , x2 , . . . , xn) = f−1 [a1 f(x1) + a2 f(x2) + . . .+ an f(xn)]

Property 2.3
The (pf + q)-mean is the same as the f -mean, where p and q are some real
numbers (p 6= 0) and f is an invertible real function.

Hence, we may say that under the transformation T , defined as T{f} =
pf + q, the f -mean is an invariant.

Furthermore, one may also notice that f”
f ′

is an important entity in the final
result, and just like the f-mean, it too is an invariant under T . This is no
coincidence.
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Result 1 : f-mean Versus AM

In this section, we prove the following result

f ′′(t)

f ′(t)
> 0 ∀ t ∈ R =⇒ F (x, y) >

x+ y

2
∀ y > x ∈ R

for f : R → R being a monotonic and twice differentiable function.

Proof

For simplicity, we will write F (x, y) as F , henceforth. Also, we may assume
that f ′(t) > 0 ∀ t ∈ R WLG using Property 2.3. Note that this also means
that f ′′(t) > 0 ∀ t ∈ R.

Now, we shall manipulate f(F ) in such a way that it becomes straightforward
to compare it to f

(

x+y

2

)

.

f(F ) =
f(x) + f(y)

2
= f(y)−

1

2
[ f(y)− f(x)]

= f(y)−
1

2

∫ y

x

f ′(t) dt

=⇒ f(F ) = f(y)−
1

2

∫
y−x

2

0

f ′(x+ t) dt−
1

2

∫ y

x+y

2

f ′(t) dt (1)

Likewise, we may also manipulate f
(

x+y

2

)

in a similar fashion.

f

(

x+ y

2

)

= f(y)−

[

f(y)− f

(

x+ y

2

)]

= f(y)−

∫ y

x+y

2

f ′(t) dt

=⇒ f

(

x+ y

2

)

= f(y)−
1

2

∫
y−x

2

0

f ′

(

x+ y

2
+ t

)

dt−
1

2

∫ y

x+y

2

f ′(t) dt (2)

Hence, subtracting (2) from (1) yields
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f(F )− f

(

x+ y

2

)

=
1

2

∫
y−x

2

0

[

f ′

(

x+ y

2
+ t

)

− f ′(x+ t)

]

dt

Since f ′′(t) > 0 ∀ t ∈ R, this means that

f(F )− f

(

x+ y

2

)

> 0

Now, since f ′(t) > 0 ∀ t ∈ R, we have

F >
x+ y

2
�

Result 2 : f-mean Versus g-mean

In this section, we prove the following result

f ′′(t)

f ′(t)
>

g′′(t)

g′(t)
∀ t ∈ R =⇒ F (x, y) > G(x, y) ∀ y > x ∈ R

for f : R → R and g : R → R being monotonic and twice differentiable
functions.

Proof

As before, we will write F (x, y) and G(x, y) as F and G respectively, for
simplicity. Also, we may assume that f ′(t) , g′(t) > 0 ∀ t ∈ R, as before.

Now, we shall manipulate f(F ) to make it easier to compare to f(G) as
follows

f(F ) =
f(x) + f(y)

2
= f(y)−

1

2
[ f(y)− f(x)]

= f(y)−
1

2

∫ y

x

f ′(t) dt

=⇒ f(F ) = f(y)−
1

2

∫ G

x

f ′(t) dt−
1

2

∫ y

G

f ′(t) dt
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Substituting g(t)− g(x) = u into the left integral, we have

f(F ) = f(y)−
1

2

∫ 1

2(g(y)−g(x))

0

h
[

g−1(u+ g(x))
]

du−
1

2

∫ y

G

f ′(t) dt (3)

Where h(t) = f ′(t)
g′(t)

.

In a similar fashion, we shall manipulate f(G) as follows

f(G) = f(y)− [f(y)− f(G)]

= f(y)−

∫ y

G

f ′(t) dt

=⇒ f(G) = f(y)−
1

2

∫ y

G

f ′(t) dt−
1

2

∫ y

G

f ′(t) dt

Substituting g(t)− g(G) = u into the left integral, we have

f(G) = f(y) −
1

2

∫ 1

2(g(y)−g(x))

0

h

[

g−1

(

u+
g(x) + g(y)

2

)]

du −
1

2

∫ y

G

f ′(t) dt

(4)
Hence, subtracting 4 from 3 yields

f(F )−f(G) =
1

2

∫ 1

2(g(y)−g(x))

0

{

h

[

g−1

(

u+
g(x) + g(y)

2

)]

− h
[

g−1(u+ g(x))
]

}

du

Given that f ′′(t)
f ′(t)

>
g′′(t)
g′(t)

and f ′(t) , g′(t) > 0 ∀ t ∈ R, it’s easy to see that

h′(t) > 0 ∀ t ∈ R. Hence, we have

f(F )− f(G) > 0

Now, since f ′(t) > 0 ∀ t ∈ R, we have

F > G �
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Result 3 : Weighted f-mean Versus Weighted

AM

In this section, we prove the following result

f ′′(t)

f ′(t)
> 0 ∀ t ∈ R =⇒ F0(x, y) > ax+ by ∀ y > x ∈ R

for f : R → R being a monotonic and twice differentiable function, F0(x, y) =
f−1[af(x) + bf(y)] and a and b being positive real numbers with a+ b = 1.

Proof

As before, we will write F0(x, y) as F0 for simplicity, and assume that f ′(t) >
0 ∀ t ∈ R WLG.

Now, we shall manipulate f(F0) in a similar vein as in the proof of Result 1.

f(F0) = af(x) + bf(y) = f(y)− a[f(y)− f(x)]

= f(y)− a

∫ y

x

f ′(t) dt

= f(y)− a

∫ b(y−x)

0

f ′(x+ t) dt− a

∫ y

ax+by

f ′(t) dt

=⇒ f(F0) = f(y)−

∫ ab(y−x)

0

f ′

(

x+
t

a

)

dt− a

∫ y

ax+by

f ′(t) dt (5)

Likewise, we may also manipulate f (ax+ by) in a similar fashion.

f (ax+ by) = f(y)− [f(y)− f (ax+ by)]

= f(y)−

∫ y

ax+by

f ′(t) dt

= f(y)− b

∫ a(y−x)

0

f ′ (ax+ by + t) dt− a

∫ y

ax+by

f ′(t) dt
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=⇒ f(ax+ by) = f(y)−

∫ ab(y−x)

0

f ′

(

ax+ by +
t

b

)

dt − a

∫ y

ax+by

f ′(t) dt

(6)
Hence, subtracting (6) from (5) yields

f(F0)− f (ax+ by) =

∫ ab(y−x)

0

[

f ′

(

ax+ by +
t

b

)

− f ′

(

x+
t

a

)]

dt

Since f ′′(t) > 0 ∀ t ∈ R, this means that

f(F0)− f (ax+ by) > 0

Now, since f ′(t) > 0 ∀ t ∈ R, we have

F0 > ax+ by �

Result 4 : Weighted f-mean Versus Weighted

g-mean

In this section, we prove the following result

f ′′(t)

f ′(t)
>

g′′(t)

g′(t)
∀ t ∈ R =⇒ F0(x, y) > G0(x, y) ∀ y > x ∈ R

for f : R → R and g : R → R being monotonic and twice differentiable
functions, F0(x, y) = f−1[af(x) + bf(y)], G0(x, y) = g−1[ag(x) + bg(y)] and
a and b being positive real numbers with a+ b = 1.

Proof

As before, we will write F0(x, y) and G0(x, y) as F0 and G0 respectively, for
simplicity. Also, we may assume that f ′(t) , g′(t) > 0 ∀ t ∈ R WLG (without
loss of generality), using Property 2.3.

Now, we shall manipulate f(F0) to make it easier to compare to f(G0) as
follows
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f(F0) = af(x) + bf(y) = f(y)− a [ f(y)− f(x)]

= f(y)− a

∫ y

x

f ′(t) dt

=⇒ f(F0) = f(y)− a

∫ G0

x

f ′(t) dt− a

∫ y

G0

f ′(t) dt

Substituting a[g(t)− g(x)] = u into the left integral, we have

f(F0) = f(y)−

∫ ab(g(y)−g(x))

0

h
[

g−1
(u

a
+ g(x)

) ]

du− a

∫ y

G0

f ′(t) dt (7)

Where h(t) = f ′(t)
g′(t)

.

In a similar fashion, we shall manipulate f(G0) as follows

f(G0) = f(y)− [f(y)− f(G0)]

= f(y)−

∫ y

G0

f ′(t) dt

=⇒ f(G0) = f(y)− b

∫ y

G0

f ′(t) dt− a

∫ y

G0

f ′(t) dt

Substituting b[g(t)− g(G0)] = u into the left integral, we have

f(G0) = f(y) −

∫ ab(g(y)−g(x))

0

h
[

g−1
(u

b
+ ag(x) + bg(y)

) ]

du − a

∫ y

G0

f ′(t) dt

(8)

Hence, subtracting (8) from (7) yields

f(F0)−f(G0) =

∫ ab(g(y)−g(x))

0

{

h
[

g−1
(u

b
+ ag(x) + bg(y)

) ]

− h
[

g−1
(u

a
+ g(x)

) ]}

du
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Given that f ′′(t)
f ′(t)

>
g′′(t)
g′(t)

and f ′(t) , g′(t) > 0 ∀ t ∈ R, it’s easy to see that

h′(t) > 0 ∀ t ∈ R. Hence, we have

f(F0)− f(G0) > 0

Now, since f ′(t) > 0 ∀ t ∈ R, we have

F0 > G0 �

Result 5 : The Final Result

Up until this point, we have proved the final result for the case when the
data set has only two entries (x and y). Now, we will show that Result 4
implies the final result, which is that given n numbers x1 , x2 , . . . , xn ∈ R

and n positive real numbers a1 , a2 , . . . , an (with a1+ a2+ . . .+ an = 1), we
have the following

F0(x1 , x2 , . . . , xn) = f−1 [a1 f(x1) + a2 f(x2) + . . .+ an f(xn)] >

G0(x1 , x2 , . . . , xn) = g−1 [a1 g(x1) + a2 g(x2) + . . .+ an g(xn)]

Where f : R → R and g : R → R are invertible and twice differentiable
functions, with the condition that

f ′′(t)

f ′(t)
>

g′′(t)

g′(t)

Proof by induction on n

We will be assuming that f ′(t), g′(t) > 0 ∀ t ∈ R WLG, as before.

The claim has been proven for n = 2 as Result 4. Hence, we will now assume
that it is true for some n ≥ 2, and prove that it’s true for n+ 1.

Let F = f−1
[

a1
1−an+1

f(x1) +
a2

1−an+1
f(x2) + . . .+ an

1−an+1
f(xn)

]

, and define G

analogously. Now, we have

F0(x1 , x2 , . . . , xn+1) = f−1 [ a1 f(x1) + a2 f(x2) + . . .+ an+1 f(xn+1) ]

=⇒ F0(x1 , x2 , . . . , xn+1) = f−1 [ (1− an+1) f(F) + an+1 f(xn+1) ] (9)
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Likewise we have a similar result for the weighted g-mean, which is as follows

G0(x1 , x2 , . . . , xn+1) = g−1 [ (1− an+1) g(G) + an+1 g(xn+1) ] (10)

We have F > G using the induction hypothesis. Hence, we have

f−1 [ (1−an+1) f(F)+an+1 f(xn+1) ] > f−1 [ (1−an+1) f(G)+an+1 f(xn+1) ]

Result 4 yields

f−1 [ (1−an+1) f(G)+an+1 f(xn+1) ] > g−1 [ (1−an+1) g(G)+an+1 g(xn+1) ]

Hence, combining these two inequalities yields the desired result. �
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