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Abstract

This paper proves inequalities among generalised f-means and provides formal
conditions which a function of several inputs must satisfy in order to be a
‘meaningful’ mean. The inequalities we prove are generalisations of classical
inequalities including the Jensen inequality and the inequality among the
Quadratic and Pythagorean means. We also show that it is possible to have
meaningful means which do not fall into the general category of f-means.

1 Introduction

Definition 1. Given an invertible and continuous real function f , define the
f -mean (denoted by F (x1 , x2 , . . . , xn)) of n numbers x1 , x2 , . . . , xn in the
domain of f as follows

F (x1 , x2 , . . . , xn) = f−1
(
f(x1) + f(x2) + . . . + f(xn)

n

)
If the choice of f is arbitrary, we will call this a ‘functional-mean’.

This definition was first given by Kolmogorov Andrey[1], and we see that it
generalises the classical means as follows – the Quadratic Mean (QM) is the
special case f(t) = t2, the Arithmetic Mean (AM) is the special case f(t) = t,
the Geometric Mean (GM) is the special case f(t) = ln(t) and the Harmonic
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Mean (HM) is the special case f(t) = 1
t
.

Definition 2 (Weighted f -mean). Similar to the f -mean, we will define the
‘weighted f -mean’ (where f : R→ R is an invertible function) of n numbers
x1 , x2 , . . . , xn ∈ R, given n positive real numbers a1 , a2 , . . . , an such that
a1 + a2 + . . . + an = 1 (denoted by F0(x1 , x2 , . . . , xn)) as follows

F0(x1 , x2 , . . . , xn) = f−1 [a1 f(x1) + a2 f(x2) + . . . + an f(xn)]

Property 1. The (pf + q)-mean is the same as the f -mean, where p and q
are some real numbers (p 6= 0). This is also true for the weighted f -mean.
We may re-frame this by saying that under the transformation T , defined as
T{f} = pf + q, the f -mean is an invariant.

Furthermore, f ′′

f ′
is an important entity in Theorems 1 to 5 as we will see

later, and it too is an invariant under T . This is no coincidence.

Remark. In the context of working with f -means, this property allows us to
assume WLG (without loss of generality) that given a monotonic (alterna-
tively, invertible) differentiable function f : R → R, f ′(t) ≥ 0 ∀ t ∈ R. This
assumption will be used extensively in this paper.

In Theorems 1 and 3, we prove the Jensen inequality[2] (JI for short) for
two variables for the non-weighted and weighted cases respectively. These
theorems have been proved using a method similar to the proofs of Theorems
2 and 4 in order to build intuition and generality gradually for the reader.

Theorem 2 shows that given a pair of invertible and twice differentiable func-
tions f : R → R and g : R → R with f ′′

f ′
> g′′

g′
, the f -mean is greater than

or equal to the g-mean for an input of two variables. Theorem 4 generalises
this to the weighted version.

Theorem 5 (from §3 ) generalises Theorem 4 to an arbitrary number of inputs
via induction, and we get the final generalisation of the JI stating that given a
pair of invertible and twice differentiable functions f : R→ R and g : R→ R
with f ′′

f ′
> g′′

g′
, we have

f−1 [a1 f(x1) + a2 f(x2) + . . . + an f(xn)] ≥

g−1 [a1 g(x1) + a2 g(x2) + . . . + an g(xn)]
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Where a1, a2, . . . , an are positive weights adding up to 1. Comparing this
to the JI, we see that the JI is the special case in which g is the identity
function.
This level of generalisation also brings about the question of exactly what
properties we expect of a ‘mean’ if the definition of the same can be made
so general; an attempt is made in §4 to formalise the intuitive notion of
what makes a given function of several inputs a ‘meaningful’ mean using a
check-list of 4 conditions which are as follows. Here, M(S) denotes the mean
(under some definition of the concept) of the elements of a finite subset S of
R. Note that by definition, we are assuming that the order of inputs of M
does not matter.

Condition 1. M(S) varies continuously if any elements of S are varied
continuously.

Condition 2. M(S ∪ {x1}) > M(S ∪ {x2}) iff x1 > x2.

Condition 3. M({x , x , . . . , x}) = x ∀ x ∈ R.

Condition 4. For some positive integer k, let x , y1 , y2 , . . . , yk ∈ R be any
real numbers. Let Sn be the set containing n copies of x and all of the yi’s.
Then, lim

n→∞
M(Sn) = x.

Remark. Another important condition is that minx∈S{x} ≤M(S) ≤ maxx∈S{x}.
However, this is implied from Condition 2 and Condition 3.

We see that functional-means always satisfy this check-list.

Our next goal is to show that it is possible to define meaningful means which
are not functional-means under the said formalisation. Special cases of such
means are given below, the general versions of which are derived in §4.

For a pair of inputs, the mean M defined as follows is a meaningful mean
and also not a functional mean.

M(x, y) =
F 2 (x, y)

G(x, y)
for f(t) = t and g(t) = t3

For more than 2 inputs, M(x1 , x2 , . . . , xn) defined as follows for
x1 , x2 , . . . , xn ∈ R+ is a meaningful mean as well as not a functional mean.

M(x1 , x2 , . . . , xn) =
F 2(x1 , x2 , . . . , xn)

G(x1 , x2 , . . . , xn)
for f(t) = t and g(t) = t

n+1
n
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2 Intuition and motivation

Consider the comparison between the f -mean with f(t) = et (exp-mean for
short) and the AM for the inputs x = 1 and y = 1000. The exp-mean will
be

ln(e + e1000)− ln(2) ≈ 999.5

However, the AM will be 500.5. We can say that the bigger number will ‘get
more attention’ if the function grows faster. We can see this with the four
standard means QM, AM, GM and HM too, but an exaggerated example like
exp-mean versus AM makes it clearer. Likewise, the HM gives much more
attention to the smaller number (the HM of 1 and 1000 is ∼ 2).

The visual intuition of this phenomenon can be obtained by noticing how
sharply the graph of et curves up in comparison to that of t (which does not
curve at all). This intuition works for the JI as well; the generalisation proved
in this paper is based on the intuition that the functional-mean correspond-
ing to a ‘less curving’ function should be lesser than the functional-mean
corresponding to a ‘more curving’ function.

Armed with this visual intuition and the observation that both the f -mean
and the quantity f ′′

f ′
are invariants under the transform T{f} = pf + q (as

seen in Property 1 ), it is but a natural guess that perhaps it is f ′′

f ′
which

controls the value of the f -mean!

On the other hand, the proven result deviates from the above intuition when
comparing the QM and the exp-mean with the dataset lying in (0, 1); one
would expect that the exp-mean wins the fight, but the math disagrees. We
see a verification of the same in the following graph, which plots the difference
between the QM and exp-mean for a given pair of inputs.
Link to graph : https://www.desmos.com/calculator/wdqk3dlwcq

In §4 where we formalise the concept of a ‘meaningful’ mean, the defini-
tion for M used to provide an example of a meaningful mean which is not
a functional-mean is motivated by the fact that GM2

AM
= HM. In this case we

combine a pair of functional-means to get another functional-mean, so the
natural next question about whether it is possible to do the same combina-
tion – while maintaining the meaningfulness of the result as a mean – and
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get a result which is not a functional mean was asked.

Inspiration from this relation between the Pythagorean means was also taken
in noticing that the smaller among the means in the LHS (i.e. GM) was
squared in the numerator and the larger (i.e. AM) was in the denominator.
The same is done in the definition of M in Theorems 6 and 7, since doing it
the other way around violates Condition 2 in the check-list for meaningful
means.

3 Generalising the Jensen inequality

Remark. Theorems 1, 2, and 3 are special cases of Theorem 4. The prior
have been proved separately in order to build generality and intuition for
the methods used gradually, but the reader may skip them without loss of
context.

Theorem 1. Given a monotonic and twice differentiable function f : R→ R,
we have the following inequality.

f ′′(t)

f ′(t)
> 0 ∀ t ∈ R =⇒ F (x, y) >

x + y

2
∀ y > x ∈ R

Proof. For simplicity, we will write F (x, y) as F henceforth. Also, note
that our assumption (using Property 1 ) that f ′(t) > 0 ∀ t ∈ R implies that
f ′′(t) > 0 ∀ t ∈ R.

Now, we shall manipulate f(F ) in such a way that it becomes straightforward
to compare it to f

(
x+y
2

)
.

f(F ) =
f(x) + f(y)

2
= f(y)− 1

2
[ f(y)− f(x)]

= f(y)− 1

2

∫ y

x

f ′(t) dt

= f(y)− 1

2

∫ x+y
2

x

f ′(t) dt− 1

2

∫ y

x+y
2

f ′(t) dt
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=⇒ f(F ) = f(y)− 1

2

∫ y−x
2

0

f ′(x + t) dt− 1

2

∫ y

x+y
2

f ′(t) dt (1)

Likewise, we may also manipulate f
(
x+y
2

)
in a similar fashion.

f

(
x + y

2

)
= f(y)−

[
f(y)− f

(
x + y

2

)]
= f(y)−

∫ y

x+y
2

f ′(t) dt

= f(y)− 1

2

∫ y

x+y
2

f ′(t) dt− 1

2

∫ y

x+y
2

f ′(t) dt

=⇒ f

(
x + y

2

)
= f(y)− 1

2

∫ y−x
2

0

f ′
(
x + y

2
+ t

)
dt− 1

2

∫ y

x+y
2

f ′(t) dt (2)

Hence, subtracting (2) from (1) yields

f(F )− f

(
x + y

2

)
=

1

2

∫ y−x
2

0

[
f ′
(
x + y

2
+ t

)
− f ′(x + t)

]
dt

Since f ′′(t) > 0 ∀ t ∈ R, this means that

f(F )− f

(
x + y

2

)
> 0

Now, since f ′(t) > 0 ∀ t ∈ R, we have

F >
x + y

2

Theorem 2. Given monotonic and twice differentiable functions f : R→ R
and g : R→ R, we have the following inequality.

f ′′(t)

f ′(t)
>

g′′(t)

g′(t)
∀ t ∈ R =⇒ F (x, y) > G(x, y) ∀ y > x ∈ R
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Proof. As before, we will write F (x, y) and G(x, y) as F and G respectively
for simplicity.

Now, we shall manipulate f(F ) to make it easier to compare to f(G) as
follows

f(F ) =
f(x) + f(y)

2
= f(y)− 1

2
[ f(y)− f(x)]

= f(y)− 1

2

∫ y

x

f ′(t) dt

=⇒ f(F ) = f(y)− 1

2

∫ G

x

f ′(t) dt− 1

2

∫ y

G

f ′(t) dt

Substituting g(t)− g(x) = u into the left integral, we have

f(F ) = f(y)− 1

2

∫ 1
2(g(y)−g(x))

0

h
[
g−1(u + g(x))

]
du− 1

2

∫ y

G

f ′(t) dt (3)

Where h(t) = f ′(t)
g′(t)

.

In a similar fashion, we shall manipulate f(G) as follows

f(G) = f(y)− [f(y)− f(G)]

= f(y)−
∫ y

G

f ′(t) dt

=⇒ f(G) = f(y)− 1

2

∫ y

G

f ′(t) dt− 1

2

∫ y

G

f ′(t) dt

Substituting g(t)− g(G) = u into the left integral, we have

f(G) = f(y) − 1

2

∫ 1
2(g(y)−g(x))

0

h

[
g−1

(
u +

g(x) + g(y)

2

)]
du − 1

2

∫ y

G

f ′(t) dt

(4)
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Hence, subtracting 4 from 3 yields

f(F )−f(G) =
1

2

∫ 1
2(g(y)−g(x))

0

{
h

[
g−1

(
u +

g(x) + g(y)

2

)]
− h

[
g−1(u + g(x))

]}
du

Given that f ′′(t)
f ′(t)

> g′′(t)
g′(t)

and f ′(t) , g′(t) > 0 ∀ t ∈ R, it’s easy to see that

h′(t) > 0 ∀ t ∈ R. Hence, we have

f(F )− f(G) > 0

Now, since f ′(t) > 0 ∀ t ∈ R, we have

F > G

Theorem 3. Given a monotonic and twice differentiable function f : R→ R,
with F0(x, y) = f−1[af(x) + bf(y)] where a and b are positive real numbers
with a + b = 1, we have the following inequality.

f ′′(t)

f ′(t)
> 0 ∀ t ∈ R =⇒ F0(x, y) > ax + by ∀ y > x ∈ R

Proof. As before, we will write F0(x, y) as F0 for simplicity.

In the same vein as the proof for Theorem 1, we shall manipulate f(F0) as
follows.

f(F0) = af(x) + bf(y) = f(y)− a[f(y)− f(x)]

= f(y)− a

∫ y

x

f ′(t) dt

= f(y)− a

∫ ax+by

x

f ′(t) dt− a

∫ y

ax+by

f ′(t) dt

= f(y)− a

∫ b(y−x)

0

f ′(x + t) dt− a

∫ y

ax+by

f ′(t) dt

=⇒ f(F0) = f(y)−
∫ ab(y−x)

0

f ′
(
x +

t

a

)
dt− a

∫ y

ax+by

f ′(t) dt (5)
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Likewise, we may also manipulate f (ax + by) in a similar fashion.

f (ax + by) = f(y)− [f(y)− f (ax + by)]

= f(y)−
∫ y

ax+by

f ′(t) dt

= f(y)− b

∫ y

ax+by

f ′(t) dt− a

∫ y

ax+by

f ′(t) dt

= f(y)− b

∫ a(y−x)

0

f ′ (ax + by + t) dt− a

∫ y

ax+by

f ′(t) dt

=⇒ f(ax + by) = f(y)−
∫ ab(y−x)

0

f ′
(
ax + by +

t

b

)
dt − a

∫ y

ax+by

f ′(t) dt

(6)
Hence, subtracting (6) from (5) yields

f(F0)− f (ax + by) =

∫ ab(y−x)

0

[
f ′
(
ax + by +

t

b

)
− f ′

(
x +

t

a

)]
dt

Since f ′′(t) > 0 ∀ t ∈ R, this means that

f(F0)− f (ax + by) > 0

Now, since f ′(t) > 0 ∀ t ∈ R, we have

F0 > ax + by

Theorem 4. Given monotonic and twice differentiable functions f : R →
R and g : R → R, with F0(x, y) = f−1[af(x) + bf(y)] and G0(x, y) =
g−1[ag(x) + bg(y)] where a and b are positive real numbers with a+ b = 1, we
have the following inequality.

f ′′(t)

f ′(t)
>

g′′(t)

g′(t)
∀ t ∈ R =⇒ F0(x, y) > G0(x, y) ∀ y > x ∈ R

9



Proof. As before, we will write F0(x, y) and G0(x, y) as F0 and G0 respec-
tively.

Now, we shall manipulate f(F0) to make it easier to compare to f(G0) as
follows

f(F0) = af(x) + bf(y) = f(y)− a [ f(y)− f(x)]

= f(y)− a

∫ y

x

f ′(t) dt

=⇒ f(F0) = f(y)− a

∫ G0

x

f ′(t) dt− a

∫ y

G0

f ′(t) dt

Substituting a[g(t)− g(x)] = u into the left integral, we have

f(F0) = f(y)−
∫ ab(g(y)−g(x))

0

h
[
g−1

(u
a

+ g(x)
) ]

du− a

∫ y

G0

f ′(t) dt (7)

Where h(t) = f ′(t)
g′(t)

.

In a similar fashion, we shall manipulate f(G0) as follows

f(G0) = f(y)− [f(y)− f(G0)]

= f(y)−
∫ y

G0

f ′(t) dt

=⇒ f(G0) = f(y)− b

∫ y

G0

f ′(t) dt− a

∫ y

G0

f ′(t) dt

Substituting b[g(t)− g(G0)] = u into the left integral, we have

f(G0) = f(y) −
∫ ab(g(y)−g(x))

0

h
[
g−1

(u
b

+ ag(x) + bg(y)
) ]

du − a

∫ y

G0

f ′(t) dt

(8)
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Hence, subtracting (8) from (7) yields

f(F0)−f(G0) =

∫ ab(g(y)−g(x))

0

{
h
[
g−1

(u
b

+ ag(x) + bg(y)
) ]
− h

[
g−1

(u
a

+ g(x)
) ]}

du

Given that f ′′(t)
f ′(t)

> g′′(t)
g′(t)

and f ′(t) , g′(t) > 0 ∀ t ∈ R, it’s easy to see that

h′(t) > 0 ∀ t ∈ R. Hence, we have

f(F0)− f(G0) > 0

Now, since f ′(t) > 0 ∀ t ∈ R, we have

F0 > G0

Up until this point, we have proved the final result for the case when the
data set has only two entries (x and y). Now, we will show that Theorem 4
implies the final result, which is as follows.

Theorem 5. Given n numbers x1 , x2 , . . . , xn ∈ R and n positive real num-
bers a1 , a2 , . . . , an (with a1 + a2 + . . . + an = 1), we have the following

F0(x1 , x2 , . . . , xn) = f−1 [a1 f(x1) + a2 f(x2) + . . . + an f(xn)] >

G0(x1 , x2 , . . . , xn) = g−1 [a1 g(x1) + a2 g(x2) + . . . + an g(xn)]

Where f : R → R and g : R → R are invertible and twice differentiable
functions, with the condition that

f ′′(t)

f ′(t)
>

g′′(t)

g′(t)

Proof. We will perform induction on n, with base case n = 2.

The claim has been proven for n = 2 as Theorem 4. Hence, we will now
assume that it is true for n− 1 given some n ≥ 3 and prove that it’s true for
n.

Let F = f−1
[

a1
1−an f(x1) + a2

1−an f(x2) + . . . + an−1

1−an f(xn)
]
, and define G anal-

ogously. Now, we have

F0(x1 , x2 , . . . , xn) = f−1 [ a1 f(x1) + a2 f(x2) + . . . + an f(xn) ]
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=⇒ F0(x1 , x2 , . . . , xn) = f−1 [ (1− an) f(F) + an f(xn) ] (9)

Likewise we have a similar result for the weighted g-mean, which is as follows

G0(x1 , x2 , . . . , xn) = g−1 [ (1− an) g(G) + an g(xn) ] (10)

We have F > G using the induction hypothesis. Hence, we have

f−1 [ (1− an) f(F) + an f(xn) ] > f−1 [ (1− an) f(G) + an f(xn) ]

Theorem 4 yields

f−1 [ (1− an) f(G) + an f(xn) ] > g−1 [ (1− an) g(G) + an g(xn) ]

Hence, combining these two inequalities yields the desired result.

4 What exactly is a ‘mean’?

In this section, we explore the following question : Is it possible to define a
‘meaningful’ mean which is not just a special case of the f -mean for some
choice of f? The answer is affirmative if we rigorously define what we mean
by ‘meaningful’ using the check-list discussed previously; the same has been
reproduced here for convenience (M(S) denotes the mean (under some defi-
nition of the concept) of the elements of a finite subset S of R. Note that by
definition, we are assuming that the order of inputs of M does not matter).

Condition 1. M(S) varies continuously if any elements of S are varied
continuously.

Condition 2. M(S ∪ {x1}) > M(S ∪ {x2}) iff x1 > x2.

Condition 3. M({x , x , . . . , x}) = x ∀ x ∈ R.

Condition 4. For some positive integer k, let x , y1 , y2 , . . . , yk ∈ R be any
real numbers. Let Sn be the set containing n copies of x and all of the yi’s.
Then, lim

n→∞
M(Sn) = x.

12



We can see that given any monotonic and continuous function f : R → R,
the f -mean satisfies all of these conditions; the continuity of f guarantees
Conditions 1 and 4, the monotonic nature of f guarantees Condition 2, and
Condition 3 is obvious.
We will now show that

(a) it is possible to define a mean on 2 variables satisfying all the above con-
ditions (with Condition 4 not being applicable and Condition 2 being true
iff |S| < 2), while also not being a functional-mean.

(b) the proposed solution for (a) generalises to an arbitrary number of vari-
ables if all inputs are positive under some additional conditions.

Consider a pair of monotonic and differentiable functions f : R → R and
g : R → R, and let x1 , x2 , . . . , xn ∈ R be arbitrary numbers. Define M as
follows.

M(x1 , x2 , . . . , xn) =
F 2(x1 , x2 , . . . , xn)

G(x1 , x2 , . . . , xn)

Note that regardless of the choice of f and g, Conditions 1, 3 and 4 hold
under this definition. Hence for any given f and g, showing that Condition
2 holds for the corresponding M suffices to show that it is a meaningful mean.

Let F ′ denote the partial derivative of F with respect to x1, and likewise
for G′ and M ′. We want M ′ ≥ 0 always. Note that the choice of x1 comes
without loss of generality, since switching the values of any inputs does not
matter.

We will show that if f(t) = sgn(t) |t|p and g(t) = sgn(t) |t|q (where sgn(t) = 1
iff t ≥ 0, and sgn(t) = −1 otherwise) for any real p and q with 0 < p < q,
then M as defined is a meaningful mean as well as not a functional-mean if
n = 2. We will also show that under certain conditions on p and q, this can
also be generalised to a mean of n > 2 positive real numbers x1 , x2 , . . . , xn.

This choice of f and g is motivated by the fact that F and G must share all
roots in order for Conditions 1 and 2 to hold. Clearly if we allow n > 2 and
let signs of x1 , x2 , . . . , xn be arbitrary simultaneously, F and G would not
share all roots and hence M would not be a meaningful mean.
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The discussion henceforth will be that of a case when F 6= 0 6= G. Using the
quotient rule, we get the following expression for M ′.

M ′ =
2FF ′

G
− F 2G′

G2

Condition 2 yields that M ′ ≥ 0 for all inputs, so the following must be true
for all inputs.

2
FF ′

G
≥ F 2

G2
G′

=⇒ 2F ′ ≥ F

G
G′
(

‘cancelling’
F

G
from both sides

)
(11)

Note that the cancellation of F
G

from both sides is allowed since F and G are
of the same sign in all cases that we are concerned about (namely the case
when n = 2 and F and G share all roots, and that when x1, x2, . . . , xn > 0).

Theorem 6. (11) Holds for f(t) = sgn(t) |t|p, g(t) = sgn(t) |t|q and n = 2
for all real p and q such that q > p > 0.

Proof. We will use F as short for F (x1 , x2), and likewise for F ′, G and G′.
Also, let f be short for f(x1), and likewise for f ′, g and g′. Let x = x1 and
y = x2. For now, we will deal with the case x1 6= −x2 (and so F 6= 0 6= G)
unless specified otherwise. We see that

F ′ =
f ′

n f ′(F )
(12)

Likewise,

G′ =
g′

n g′(G)
(13)

We also have

f ′ = p |x| p−1 (14)

Likewise,

g′ = q |x| q−1 (15)
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Hence, combining (11) to (15) yields that we wish to prove the following
(note that f ′, g′, F ′, G′ > 0).

2
F ′

G′
≥ F

G

=⇒ 2
f ′

g′
≥ f ′(F )F

g′(G)G

=⇒ 2 |x| p−q ≥ |F |
p

|G| q

=⇒ 2 |G| q ≥ |x| q−p |F | p (16)

=⇒ 2 | |x| q sgn(x) + |y| q sgn(y) | ≥ |x| q−p | |x| p sgn(x) + |y| p sgn(y) |

Since at least one of x and y is non-zero, we may assume that x 6= 0. Let
X = y

x
. Hence, wish to show that

2| 1 + |X| q sgn(X) | ≥ | 1 + |X| p sgn(X) |

If |X| ≤ 1 or X > 1, then this inequality is clearly true (note that this also
covers the x = −y case). If X < −1, then we wish to prove the following.

2 |X| q − |X| p ≥ 1

Which is clearly true because |X| q > |X| p > 1. Hence, we have proved the
desired result.

Theorem 7. (11) Holds for f(t) = tp, g(t) = tq and x1 , x2 , . . . , xn > 0 for

all real p and q such that q > p > 0 and n− 1 ≤ p

q − p

(
q

p

) p
q−p

.

Proof. We will use the same notational short-cuts as before. Also, define Xr

(for all r > 0) as follows.

Xr =
x r
2 + x r

3 + . . . + x r
n

x r

Hence, (16) yields that we wish to prove the following.

2 (1 + Xq) ≥ 1 + Xp

=⇒ Xq + (Xq −Xp) ≥ −1
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If Xp ≤ Xq, then this is clearly true. Hence, assume that Xp > Xq . We will
now show the following.

n− 1 ≤ p

q − p

(
q

p

) p
q−p

=⇒ Xq −Xp ≥ −1

Using Theorem 5, we know that the following is always true.(
Xq

n− 1

) 1
q

≥
(

Xp

n− 1

) 1
p

Hence, we have that

Xq ≥ X
q
p
p (n− 1) 1− q

p

Since we are interested in the quantity Xq −Xp, we subtract Xp from both
sides to get

Xq −Xp ≥ Xp

(
X

q
p
−1

p (n− 1) 1− q
p − 1

)
= h(Xp) (let) (17)

Differentiating h, we have

h′(a) =

(
q

p

)
a

q
p
−1 (n− 1) 1− q

p − 1

It is easy to see that for a > 0, h(a) first decreases and then increases.
Hence, the positive value of a for which h′(a) = 0 is the value for which h
has a minima in R+. Solving for this value of a, we have

a = (n− 1)

(
p

q

) p
q−p

Hence, the minimum value of h over R+ is

h

[
(n− 1)

(
p

q

) p
q−p

]
= −q − p

p

(
p

q

) p
q−p

(n− 1)

Hence, (17) yields

Xq −Xp ≥ −
q − p

p

(
p

q

) p
q−p

(n− 1)
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Hence, Xq −Xp ≥ −1 if

q − p

p

(
p

q

) p
q−p

(n− 1) ≤ 1

Yielding the desired result.

Remark. If we let z = p
q−p , then the condition on p and q in Theorem 7 can

be stated as n − 1 ≤ (z + 1)z

zz−1
. Since z is unbounded and the RHS of the

prior inequality grows as O(z), it is guaranteed that for every n, there are
values of p and q for which Theorem 7 holds (one such example of p = 1 and
q = n+1

n
is given in the introduction).

Theorem 8. For f(t) = sgn(t) |t|p and g(t) = sgn(t) |t|q, M = F 2

G
is not a

functional-mean for all real p and q with q > p > 0.

Proof. For a proof by contradiction, assume that there is some monotonic
and continuous function h : R→ R such that M = H.

Clearly, h must be differentiable since M is differentiable and h is continuous.
Also, we may assume that h′(t) ≥ 0 ∀ t ∈ R and h(0) = 0 using Property 2.3.
We will also be using the same notational short-cuts as before.

In the assumption H = M , we will plug x2 = x3 = . . . = xn = 0 and let
x1 = x be arbitrary. Hence, we have

h−1
[
h(x)

n

]
= n

1
q
− 2

p x

=⇒ h(x) = nh
(
n

1
q
− 2

px
)

(18)

It is intuitively clear that the only solution for this equation which also satis-

fies h(0) = 0 is h(t) = tk where k = pq
2q−p (note that k satisfies 1+k

(
1
q
− 2

p

)
=

0). To prove this rigorously, we simply divide both sides of (18) by xk, dif-
ferentiate both sides and plug (18) to form a linear differential equation for
h. The detailed calculation for this is left out.

Hence, we have shown that h(t) = tk, but it is also easy to see that in this
case H = M is false (leading to a contradiction). Hence, we have shown that
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our initial assumption (that there is some invertible and continuous function
h : R→ R such that M = H) must be false.

In conclusion,

(a) Theorems 6 and 8 together show that it is possible to define a meaningful
mean on 2 variables which is also not a functional-mean.

(b) Theorems 7 and 8 together show that it is possible to define a meaningful
mean on an arbitrary (but fixed) number of positive variables which is also
not a functional-mean.

Summary. Bringing together the definition of the ‘f-mean’ provided by Kol-
mogorov and the Jensen inequality, we first show that a more general version
of the Jensen inequality is true; we explore the intuition behind this gener-
alisation and how parts of it seem to arise naturally from basic properties
of the f-mean. Next, we discuss how one can formally define the concept of
a ‘mean’, how all f-means are ‘meaningful’ means and how it is possible to
define ‘meaningful’ means which are not functional means.
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