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Abstract

We have worked out a new geometric approach to linear ordinary differential equa-
tions of second order which makes it possible to obtain general solutions to infinite
number of equations of this sort. No need new families of special functions and their
theories arose, solutions are composed straightforwardly. In this work we present a
number of particular cases of equations with their general solutions. The solutions are
divided into four groups the same way one encounters in any book on special functions.

1 Introduction

Linear ordinary differential equations of second order (LODEII) are of special interest to
physicists because they always appear as a result of separation main equations of classical
theories. Originally they have been discovered in the form [1]

1

f

d

dx

(
f

dy

dx

)
+

(
k2 +

m2

f 2

)
= 0, (1)

where the form of the function f(x) is predetermined by choice of the coordinate system.
They have been solved by great mathematicians of XIX century for several special cases of
the function f and thanks to them mathematical physics was developed and took the form
found in numerous classical books on the subject. Each solution obtained then was a new
found class of special transcendent functions, so, general solutions of an equation of this sort
includes a complicated theory of a sertain kind of special functions called after the name
of its discoverer. Presently, solutions found in literature on special functions as well as the
method they have been obtained by, are insatisfactory.

Development of physics goes on and variety of equations physicists encounter, grows.
Presently physicists need complete solutions of LODEII of general form which can be repre-
sented in the form

f
d

dx

(
1

f

dy

dx

)
+ Fy = 0, (2)

thus, contains two arbitrary functions f and F . Their form is predetermined by both choice
of coordinate system and varying properties of the medium, [2, 3]. It must be pointed out
that all equations (1) solved mainly in XIX century, were done by substituting power series
for the desired function. Afterwards opportunities of this approach have been exhausted and
as a result a belief was created that
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• to solve an equation like (2) is the same as to create another theory of special functions

• all special functions are already discovered and usable theories of special functions are
already known, so, it is pointless to ty to create new and more sophisticated ones

• the era of analytical solutions in classical physics is over, so, only numerical simulations
will make sense in the future, or, in other words, it is pointless to spend efforts to
unsolved differential equations.

This belief is completely wrong.
We have worked out a new approach to equations of the form (2) based on geometric

considerations. Since these considerations cannot be expressed in textual form we do not
present details. Main properties of our approach are:

• provides general solutions to the equations of this form which contain two arbitrary
functions, one of which is the function f(x) and another one which specifies both the
function F (x) and explicit form of general solution.

• our approach does not create new transcendental functions and corresponding theories

The main deficience of our method is that explicit form of the function F (x) is being gener-
ated along with the solution, so, it cannot be prescribed arbitrarily. Therefore, for example,
it cannot be applied to the typical quantum mechaincal problem of spectrum calculation.
However, they have other useful applications. Below we present a number of examples of
equation (2) along with their general solutions.

2 The method of generating equations with their com-

plete solutions

In the next section we present examples of equations and their complete solutions generated
by our method. An ordered exposition of the material requires that the equations are
classified and divided into classes and subclasses that we have done as follows. First, all
possible LODEII’s were divided into two main classes of “typical” and “atypical” ones. Each
of these two classes is divided into subclasses specified by a certain form of the function f(x).
After that we have a number of subclasses of equations which differ only in the form of the
function F (x) which, however, do not exhaust abilities of the method. Each subclass can be
extended with infinite number of new examples and infinite number of new subclasses can
be built by our method.

Each subclass is specified by a certain form of the function f(x) whichcan bes chosen
arbitrarily. For simplicity, we chose these functions such a way that the indefinite integral

t =

∫
dx f(x) (3)

is a function of of sufficiently simple form. Hereafter the variable t actually plays the role
of the main one, in particular, the function ρ(t) which can be chosen arbitrarily, now is
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regarded as a function of the variable t. We chose it also from the simplicity reason, so that
the “phase function”

ϕ =

∫
dxf(x)

ρ2(t)
(4)

also is as simple as possible. We need simplicity of the expressions only because in this
particular work we only demonstrate our method, but in general, the simplicity reason can
be ignored that allows one to generate much more examples of solved equations.

According to the equation (10), the function ϕ can also be represented as a function of
the variable t:

ϕ =

∫
dt

ρ2(t)
(5)

and as a result, the general solution appears as a function of this variable:

y(x,C) = ρ(t) sin(kϕ+ C). (6)

Now, applying the operator of the equation

1

f

d

dx

(
f

d

dx

)
to this function and using the fact that

dt

dx
= f,

we obtain finally that the function F (x) in the equation (2) has the form

F (x) = f 2(x)

(
k2

ρ4
− ρ′′

ρ

)
(7)

where the function t(x) is to be substituted from the formula (10). All particular cases
presented below are composed in this techniques. The desired solution (6) appears as a
function of the variable t where t as a function of the variable x (10) is to be substituted.
As a result y turns into a function of the variable x and can be substituted into the original
equation (2). Completing this operation shows that the equation turns into an idenetity and
thereby, that y(x,C) built this way indeed is the complete solution of the equation.

3 Typical cases

3.1 Introduction

In this section we present explicit form and general solution of equations which belong to the
class of “typical cases”. By “typical cases” we mean class of equations (2) whose first term
has the same form as that in equations known from the theory of special functions. In this
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work we consider only the simplest cases when the equation has the form similar to that of
one-dimensional Schrödinger, Bessel and Legendre equations. Thus, in turn, these classical
equations belong to the corresponding “typical cases” of equations as their particular cases.

Now, let us pass to examples of generated pairs of equations and their complete solutions.
Since the function f(x) is known for each particular case, no need for explicit form of the
equation. It suffices to specify explicit form of the function F (x). So, the pairs can be
represented as (F (x), y(x,C)).

3.2 One-dimensional Schrödinger equation

The general form of equation is
y′′ + F (x)y = 0. (8)

We present only explicit form of two functions, which are F (x) and y(x,C). The earlier
specifies explicit form of the equation (8) and the latter does its general solution. Pairs
generated by our method are:

F (x) = 1
2

(
k2x2 − 3

2x2

)
, y(x,C) =

1√
x
· sin k

(
x2

2
+ C

)
F (x) = − 1

x2
·
(
k2 + 1

4

)
y(x,C) =

√
x · sin k lnCx

F (x) = k2x4 − 2
x2
, y(x,C) =

1

x
· sin k

(
x3

3
+ C

)

F (x) = k
x4
, y(x,C) = x sin

(
C − k

x

)
F (x) = k2 − 1

(1 + x)2
, y(x,C) =

√
1 + x2 sin(k · arctanx+ C).

Hyperbolic version of these solutions have the form

F (x) = −1
2

(
k2x2 + 3

2x2

)
, y(x,C) =

1√
x
· sinh k

(
x2

2
+ C

)
F (x) = 1

x2
·
(
k2 − 1

4

)
y(x,C) =

√
x · sinh k lnCx

F (x) = −
(
k2x4 + 2

x2

)
, y(x,C) =

1

x
· sinh k

(
x3

3
+ C

)

F (x) = − k
x4
, y(x,C) = x sin

(
C − k

x

)
F (x) = − k2 + 1

(1 + x)2
, y(x,C) =

√
1 + x2 sin(k · arctanx+ C).

It is easy to derive the general rule which reads tha hyperbolic version is the same as the
trigonometric one with the only difference in sign of k2. Nevertheless, we provide each of
them explicitly for two cases.
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3.3 Bessel-like case

By Bessel-like case we mean the class of equations of the form (2) with f(x) = k/x which
contain the original Bessel equation as a particular case. These equations can be represented
in the form

y′′ +
1

x
y′ + Fy = 0. (9)

Again, the results are presrnted below as pairs (F (x), y(x,C)) where the function F (x)
specifies explicit form of the equation (9) and y(x,C) stands for its general solution.

F (x) = 1
x2

(
k2

x2
− 1

2

)
, y(x,C) =

√
x sin

(
C − k

x

)
F (x) = − 1

x2

(
4k2

x2
+ 1

)
, y(x,C) = x sin k

(
C − 1

2x2

)
F (x) = k2x4 − 9

4x2
, y(x,C) = x−3/2 sin k

(
x3

3
+ C

)
,

F (x) = k2x2 − 2
x2
, y(x,C) =

1

x
· sin k

(
x2

2
+ C

)
F (x) = k2 − 1

x2(1 + ln2 x)2
, y(x,C) =

√
1 + ln2 x · sin(k · arctan lnx+ C).

3.4 Legendre-like case

The original Legendre equation can be represented in the form (2) with f = sinx, F = const.
Therefore by Legendre-like case we mean equations of this form with the function F (x)
generated by our procedure along with the general solution. Below we use notation

t = arctanh cosx (10)

and the identity
dt

dx
=

1

sinx
. (11)

The pairs generated are:

F (x) = 1
sin2 x

(
k2t2 − 3

4t2

)
, y(x,C) =

1√
t

sin(kt2 + C)

F (x) = 1
t2 sin2 x

(
1
4 + k2

)
, y(x,C) =

√
t sin k lnCt

F (x) = k2

t4 sin2 x
, y(x,C) = t sin k

(
C − k

t

)
F (x) = 1

sin2 x

(
k2e2t − 1

4

)
, y(x,C) = e−t/2 sin k(et + C)

F (x) = k2 − 1
(1 + t2) sin2 x

, y(x,C) =
√

1 + t2 sin k(arctan t+ C)
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Their hyperbolic version is

F (x) = − 1
sinh2 x

(
k2t2 + 3

4t2

)
, y(x,C) =

1√
t

sinh(kt2 + C)

F (x) = 1
t2 sinh2 x

(
1
4 − k

2
)
, y(x,C) =

√
t sinh k lnCt

F (x) = − k2

t4 sinh2 x
, y(x,C) = t sinh k

(
C − k

t

)
F (x) = − 1

sinh2 x

(
k2e2t + 1

4

)
, y(x,C) = e−t/2 sinh k(et + C)

F (x) = − k2 + 1
(1 + t2) sinh2 x

, y(x,C) =
√

1 + t2 sinh k(arctan t+ C)

4 Atypical cases

Unlike cases considered above, atypical ones have no fixed form of the function f(x) in the
equation (2). There exist infinite number of atypical cases which can be defined by the form
of this function. The only requirement to it reads that this form has never appeared before.
Below we consider few atypical cases specifies with some certain forms of the function f(x).
So, material of this section is divided into six subsections, the first of wihch outlines the
general principle of composing particular examples and others present the simplest atypical
cases specified by certain forms of the function f(x).

4.1 The case f(x) = coth x

In this case the function f(x) is fixed as f(x) = coth x and we use the following notation:

t = ln sinh x. (12)

As usual, it suffices to specify pairs of functions (F (x), y(x,C)) which are

F (x) = f 2

(
k2t2 − 3

4t2

)
, y(x,C) =

1√
t

sin(kt2 + C)

F (x) =
f 2

2t2

(
k2 +

1

4

)
, y(x,C) =

√
t · sin k lnCt

F (x) = −k
2 f 2

t4
, y(x,C) = t sin k

(
C − 1

t

)
F (x) =

f 2(k2 − 1)

(1 + t2)2
, y(x,C) =

√
1 + t2 · sin(karctan t+ C)

F (x) = f 2 ·
(
k2t4 − 2

t2

)
, y(x,C) =

1

t
· sin k

(
t3

3
+ C

)
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4.2 The case f(x) = 1√
1 + x2

In this case the variable t is
t = arcsinhx (13)

and below the simplest pairs (F (x), y(x,C) are presented, which specify explicit forms of the
equation (2) and its general solution.

F (x) = f 2

(
k2 − 1

4

)
, y(x,C) =

√
t sin k lnCt;

F (x) =
f 2k2

t4
, y(x,C) = t · sin k

(
C − 1

t

)
;

F (x) = f 2 ·
(
k2t2 − 3

4t2

)
, y(x,C) =

1√
t
· sin k

(
t2

2
+ C

)

F (x) = f 2 ·
(

2

t2
− k2t4

)
, y =

1

t
sin k

(
t3

3
+ C

)
;

F (x) =
k2 − 1

(1 + t2)2
, y(x,C) =

√
1 + t2 · sin k(arctan t+ C).

Those are the simplest pairs of equations and their general solutions, more complicated ones
can be composed by analogy.

4.3 The case f(x) = tanh xsechx

One more atypical case which provides relatively simple solutions is specified by choosing
the function f(x) of this form. In this case the variable t is

t = sechx, (14)

but it is convenient to express the result in the variable x. Equations and their general
solutions generated by our procedure are presented below in the form of pairs (F (x), y(x,C)

F (x) = tanh2 x

(
k2 +

1

4

)
,

y(x,C) =
√

sechx sin ln(Csechx)

. . .

F (x) = tanh2 xsech2x
k2t2

4
sinh2 2x,

y(x,C) = sechx · (C − coshx)
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F (x) = tanh2 xsech2x

(
k2sech2x− 3

4
cosh2 x

)
,

y(x,C) =
√

coshx · sin k

(
sech2x

2
+ C

)
. . .

F (x) = tanh2 xsech2x(k2sech4x− 2 cosh2 x),

y(x,C) = cosh x sin k

(
sech3x

3
+ C

)
. . .

F (x) = tanh2 x sech2x
k2 − 1

1 + cosh2 x
,

y(x,C) =
√

1 + sech2x sin k(arctan sechx+ C).

One can easily compose other pairs by analogy.

4.4 The case f(x) = x+ 1
x

In this subsection we simply count the pairs (F (x), y(x,C). It turns out that in this case
the variable t also is of no use and we express the result in functions of the variable x. So,

F (x) =

(
x+

1

x

)2

· k2 + 1

(x2 − 2 lnx)2
,

y(x,C) =

√
x2

2
+ lnx · sin k lnC

(
x2

2
+ lnx

)
; . . .

F (x) =

(
x+

1

x

)2

· 16k2

(x2 + 2 lnx)2
,

y(x,C) =

(
x2

2
+ lnx

)
· sin k

(
C − 2

x2 + 2 lnx

)
;

. . . F (x) =
k2

4

(
x+

1

x

)2
(

k2

(x2 + 2 lnx)4
+

3

(x2 + 2 lnx)2

)
,

y(x,C) =

√
2

(x2 + 2 lnx)2
sin k

(
(x2 + 2 lnx)2

8
+ C

)
;
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F (x) =

(
x+

1

x

)2
k2(x2

2
+ lnx

)4

− 8

(x2 + 2 lnx)2

 ,
y(x,C) =

2

2x2 + lnx
· sin k

(
(x2 + 2 lnx)3

3
+ C

)
;

. . .

F (x) = 16

(
x+

1

x

)2

· k2 − 1

[4 + (x2 + 2 lnx)2]2
,

y =

√
x2

2
+ lnx · sin karctan

(
x2

2
+ lnCx

)

4.5 The case f(x) = 1√
x(1 + x)

We finalize our review of pairs of equations and their solutions with this case. The corre-
sponding pairs (F (x), y(x,C)) are:

F (x) =
1

4x(1 + x)arcsinh2
√
x
·
(
k2 − 1

4

)
,

y(x,C) =

√
2 arcsin

√
x · sin k ln 2C arcsin

√
x

. . .

F (x) =
1

x(1 + x)
· k2

4arcsinh2
√
x
,

y(x,C) = 2arcsinh
√
x · sin k

(
C − 1

2arcsinh
√
x

)
. . .

F (x) =
1

x(1 + x)
·
(

4k2arcsinh2
√
x− 1

2 arcsin
√
x

)
,

y(x,C) =
1√

2arcsinh
√
x

· sin k
(

2arcsinh2
√
x+ C

)
. . .

F (x) =
1

x(1 + x)
·

(
16k2arcsinh4

√
x− 1

2arcsinh2√x

)
,

. . .

y(x,C) =
1

2arcsinh
√
x

(
8

3
arcsinh3

√
x+ C

)
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F (x) =
1

x(1 + x)
· k2 − 1

1 + 4arcsinh2
√
x
,

y(x,C) =

√
1 + 4arcsinh2

√
x · sin k(arctan arcsinh

√
x+ C)

5 Conclusion

A method for generating LODEII order along withe their complete solutions is discovered.
This method allows to generate pairs of equations of this sort with known complete solutions.
The procedure of generation is presented in the subsection ??. The procedure allows to
generate infinite number of solved equations of the sort. We have presented description of
the procedure in the subsection ??. Though variety of equations which can be generated
this way covers the complete varitey of all possible equations, presently, it does not allow to
solve an equation of the form (2) with both functions F (x) and f(x) specified arbitrarily.
However, abilities of the method still remain to be studied. Nevertheless, some of results
obtained and presented in this work can be applied to various problems of classical physics.
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