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ABSTRACT

We introduce a Particle Metropolis-Hastings algorithm driven
by several parallel particle filters. The communication with
the central node requires the transmission of only a set of
weighted samples, one per filter. Furthermore, the marginal
version of the previous scheme, called Distributed Particle
Marginal Metropolis-Hastings (DPMMH) method, is also
presented. DPMMH can be used for making inference on
both a dynamical and static variable of interest. The er-
godicity is guaranteed, and numerical simulations show the
advantages of the novel schemes.

Index Terms— Particle MCMC, Particle Filtering, Monte
Carlo, Bayesian inference, state-space models

1. INTRODUCTION

Particle filtering and Markov Chain Monte Carlo (MCMC)
are broadly used Monte Carlo techniques in order to make
inference about a variable of interest [1, 2, 3, 4]. The Particle
Metropolis-Hastings (PMH) algorithm combines the parti-
cle filtering approach with a well-known MCMC method,
the Metropolis-Hastings (MH) technique [5, 6, 4]. It has
been particularly designed for making inference and smooth-
ing about a hidden state in state-space models [7, 8]. In
PMH, two trajectories obtained by different runs of a particle
filter are compared according to suitable MH-type accep-
tance probability. Its marginal version, the so-called Particle
Marginal MH (PMMH) method, is widely applied in signal
processing for making inference jointly about both dynamic
and static parameters: typically, the hidden state and a static
unknown parameter of a state-space model [8, 9].

In this work, we show how several parallel particle filters
(PFs) can drive a PMH-type technique. The PFs can use a dif-
ferent proposal pdf or, more generally, can be different kind
of algorithms, for instance, some of them can be bootstrap
PFs and other auxiliary PFs [2, 10, 7, 11, 12]. In the novel
Distributed PMH scheme, the use of M parallel processor
speeds up the final resulting technique. The communication
to the central node requires the transfer of only M weighted
particles, one per filter. Furthermore, we also introduce the
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Distributed Particle Marginal MH method, i.e., the marginal
version of the novel scheme. Numerical simulations show the
benefits of the proposed schemes.

2. BACKGROUND

In many applications the goal is to infer a variable of in-
terest, x = x1:D = [x1 . . . , xD]> ∈ X ⊆ RD×ξ (where
xd ∈ Rξ), given a set of related observations or measure-
ments, y ∈ Rdy . The statistical information is summarized in
the posterior probability density function (pdf) given by

π̄(x) = p(x|y) =
`(y|x)g(x)

Z(y)
, (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf
and Z(y) is the marginal likelihood (a.k.a., Bayesian evi-
dence). Generally, Z is unknown and often impossible to
be computed in closed form, hence we only assume to be
able to evaluate the unnormalized target function, π(x) =
`(y|x)g(x).1 Furthermore, the computation of integrals in-
volving π̄(x) are often intractable. We consider the problem
of approximating via Monte Carlo a complicated integral in-
volving the target π̄(x) = 1

Zπ(x) and an integrable function
h(x) : RD×ξ → Rdh , i.e.,

I = Eπ̄[h(X)] =
1

Z

∫
X
h(x)π(x)dx, X ∼ π̄(x). (2)

In this work, we compute an estimator Î of I using an MCMC
technique driven by a particle approximation of measure of
π̄(x) obtained via Sequential Importance Resampling (SIR)
[3, 2, 4].

2.1. Particle Filtering

Let us assume that the target density can be factorized as

π̄(x) ∝ π(x) = γ1(x1)

D∏
d=2

γd(xd|xd−1). (3)

1We intentionally drop the dependence on y of the marginal likelihood,
i.e. Z ≡ Z(y) for the ease of notation.



For instance, this factorization is possible in the state-space
model framework [2, 7]. Given a proposal pdf factorized in
the same way, i.e., q(x) = q1(x1)

∏D
d=2 qd(xd|xd−1), we

can draw N samples from the proposal, x(n) = x
(n)
1:D =

[x
(n)
1 . . . , x

(n)
D ]> ∼ q(x), where x(n)

d ∼ qd(xd|xd−1), and

we assign the importance weight w(n) = π(x(n))
q(x(n))

. The weight
above can be computed recursively and, in this case, the re-
sulting technique is called Sequential Importance Sampling
(SIS). If resampling steps are incorporated during the recur-
sion, the method is known as Sequential Importance Resam-
pling (SIR) or alternatively particle filtering [2, 7]. Table 1
shows a SIR scheme where a resampling step is performed
at each iteration (a.k.a., bootstrap particle filter) and a proper
weighting of a resampled particle is applied [13, 14, 15]. With
a SIR procedure, we obtain a particle approximation of the
measure of the target pdf, i.e.,

π̂(x|x(1:N)) =
1

NẐ

N∑
n=1

w(n)δ(x− x(n)),

=

N∑
n=1

w̄(n)δ(x− x(n)), (4)

where w̄(n) = w(n)∑N
j=1 w

(j) and Ẑ = 1
N

∑N
j=1 w

(j) is an unbi-

ased estimator of the marginal likelihood.

3. DISTRIBUTED PARTICLE
METROPOLIS-HASTINGS ALGORITHM

The Particle Metropolis-Hastings (PMH) algorithm com-
bines the SIR method with the MH technique. It has been
particularly designed for making inference about a dynamic
variable when the posterior can be factorized as in Eq. (3)
[8]. In PMH, two different trajectories obtained by differ-
ent runs of a particle filter (as in Table 1) are compared
according to suitable MH-type acceptance probability. In
this work, we show how several parallel particle filters, each
one consider a different proposal pdf, can drive a PMH-type
technique. Let us consider the problem of making inference
about the variable of interest x = x1:D = [x1, . . . , xD]>

according to the posterior π̄ factorized as in Eq. (3). The
standard PMH method uses a single proposal pdf q(x) =

q1(x1)
∏D
d=2 qd(xd|x1:d−1), employed in a SIR method in

order to generate new candidates before of applying the
MH-type test [4]. Here, we assume that M independent pro-
cessing units are available jointly with a central node. We
use M parallel particle filters, each one with a different pro-
posal pdf, qm(x) = qm,1(x1)

∏D
d=2 qm,d(xd|x1:d−1), one

per each processor. Then, after one run of the parallel particle
filters2, we obtain M particle approximations, π̂(x|v(1:N)

m ),

2We consider the same number of particles N for all the filters, for sim-
plicity.

Table 1: Sequential Importance Resampling (SIR)

- Initialization: Choose x(n)
0 and set w̃(n)

0 = 1
N for n =

1, . . . , N .
- For d = 1, . . . , D:

1. Propagation: Draw x
(n)
d ∼ qd(xd|x(n)

d−1), for n =
1, . . . , N .

2. Weighting: Compute the weights

w
(n)
d = w̃

(n)
d−1β

(n)
d , (5)

where β(n)
d =

γd(x
(n)
d |x

(n)
d−1)

qd(x
(n)
d |x

(n)
d−1)

, for n = 1, . . . , N .

3. Resampling:

(a) ResampleN particles from the current approx-
imation, x̃(n)

d ∼
∑N
i=1 w̄

(i)
d δ(x − x(i)

d ), where

w̄
(i)
d =

w
(i)
d∑N

j=1 w
(j)
d

and n = 1, . . . , N .

(b) Set x(n)
d = x̃

(n)
d and w̃(n)

d = 1
N

N∑
n=1

w
(n)
d , for

all n = 1, . . . , N (see [13]).

- Return: Set {x(n) = x
(n)
1:D, w

(n) = w
(n)
D }Nn=1, so that

π̂(x|x(1:N)) =
1

NẐ

N∑
n=1

w(n)δ(x− x(n)).

of the target pdf, where we have denoted with {v(n)
m }Nn=1 the

particles generated by the m-th filter. Since we aim to re-
duce the communication cost to the central node, we consider
that each machine only transmits the pair {x̃m, Ẑm}, where
x̃m ∼ π̂(x|v(1:N)

m ). The Distributed Particle Metropolis-
Hastings (DPMH) technique is summarized in Table 2.

In step 1 of Table 2, different kinds of particle filtering al-
gorithms can be also employed (not only using different pro-
posal pdfs). In step 2,M resampling steps are performed, one
per processor. An additional resampling step is performed
in the central node (step 3). The resampled particle x̃ is ac-
cepted as a new state of the chain with probability α in Eq.
(6). Otherwise, the chain remains in the previous state (i.e.,
xt = xt−1) as in a classical MH algorithm. The standard
PMH method is a special case of the DPMH of Table 2 for
M = 1. Note also that the method in Table 2 has the structure
of a Independent Multiple Try Metropolis (I-MTM) algorithm
using different proposal pdfs [16, 17, 18, 19] considering the
first two steps as a sophisticated proposal procedure for gen-
erating M different tries.
Ergodicity. The ergodicity of chain generated by DPMH is
ensured since it can be interpreted as a standard PMH method



Table 2: Distributed Particle MH algorithm
- Initialization: Choose x0 and Ẑm,0 for m = 1, . . . ,M .
- For t = 1, . . . , T :

1. (Parallel Processors) Construct M particle approx-
imations π̂(x|v(1:N)

m ) = 1

NẐm

∑N
n=1 w

(n)
m δ(x −

v
(n)
m ), where Ẑm = 1

N

∑N
n=1 w

(n)
m , with m =

1, . . . ,M , using M parallel SIR methods given in
Table 1, with a different proposal qm(x).

2. (Parallel Processors) Draw x̃m ∼ π̂(x|v(1:N)
m ), for

m = 1, . . . ,M , and transmit {x̃m, Ẑm}Mm=1.

3. (Central Node) Draw x̃ ∼ π̂(x|x̃1:M ) =∑M
m=1

Ẑm∑M
j=1 Ẑj

δ(x− x̃m).

4. (Central Node) Set xt = x̃ and Ẑm,t = Ẑm, for
m = 1, . . . ,M , with probability

α = min

[
1,

∑M
m=1 Ẑm∑M

m=1 Ẑm,t−1

]
. (6)

Otherwise, with prob. 1 − α, set xt = xt−1 and
Ẑm,t = Ẑm,t−1, for all m.

- Return: The Markov chain {xt}Tt=1.

considering a single particle approximation

π̂(x|v(1:N)
1:M ) =

M∑
m=1

Ẑm∑M
j=1 Ẑj

π̂(x|v(1:N)
m ), (7)

This particle approximation can be interpreted as being
obtained by a single particle filter splitting the particles
in M disjoint sets and then applying the partial resam-
pling approach [13, 14], i.e., performing resampling steps
within these sets. Hence, we resample once, i.e., draw
x̃ ∼ π̂(x|v(1:N)

1:M ). This procedure is equivalent to steps
1-2-3 of Table 2. The proper weight of this resampled par-
ticle is Ẑ = 1

M

∑M
m=1 Ẑm, so that the acceptance function

of the equivalent classical PMH method is α(xt−1, x̃) =

min
[
1, Ẑ

Ẑt−1

]
= min

[
1,

1
M

∑M
m=1 Ẑm

1
M

∑M
m=1 Ẑm,t−1

]
, where Ẑt−1 =

1
M

∑M
m=1 Ẑm,t−1 [8, 13].

Benefits. An advantage of the DPMH scheme is that the gen-
eration of samples can be parallelized (i.e., fixing the compu-
tational cost, DPMH allows the use of M processors in par-
allel) and the communication to the central node requires the
transfer of only M particles, x̃′m, and M weights, Ẑ ′m, in-
stead of NM particles and NM weights. Another important
benefit of DPMH is that different types of particle filters can
be jointly employed, for instance, different proposal pdfs can
be used. Its marginal version is described below.

3.1. Distributed Particle Marginal MH

In several applications, a static and a dynamical variable
should be estimated. Let us consider x = x1:D ∈ X ⊆ RD×ξ
and an additional model parameter θ ∈ Rdθ . For instance,
in the state-space models, xd ∈ Rξ represents the hidden
state (hence, x = x1:D is the hidden trajectory to be es-
timated) and θ a static unknown parameter of the model
[20, 21, 22, 23, 15]. Assuming a prior pdf gθ(θ) over θ, and
a factorized complete posterior pdf, we have

π̄c(x,θ) ∝ πc(x,θ) = gθ(θ)π(x|θ),

where π(x|θ) = γ1(x1|θ)
∏D
d=2 γd(xd|x1:d−1,θ). The Dis-

tributed Marginal PMH (DPMMH) technique is then summa-
rized in Table 3. We can easily design a marginal version of
DPMH in Section 3, drawing θ′ ∼ qθ(θ|θt−1) and run M
particle filters addressing the target pdf π̄(x|θ′).

Table 3: Distributed Particle Marginal MH (DPMMH)

- Initialization: Choose x0, θ0, and Ẑ(θ0).
- For t = 1, . . . , T :

1. Draw θ′ ∼ qθ(θ|θt−1) and x̃m ∼
π̂(x|v(1:N)

m ,θ′) = 1

NẐm(θ′)

∑N
n=1 w

(n)
m (θ′)δ(x −

v
(n)
m ), for m = 1, . . . ,M , where each approxima-

tion π̂ is obtained with one run of a particle filter.
Transmit to the central node {θ′, x̃m, Ẑm}Mm=1.

2. Draw x̃ ∼
∑M
m=1

Ẑm∑M
j=1 Ẑj

δ(x− x̃m).

3. Set θt = θ′, xt = x̃, with probability

α = min

1,
[∑M

m=1 Ẑm(θ′)
]
gθ(θ

′)qθ(θt−1|θ′)[∑M
m=1 Ẑm(θt−1)

]
gθ(θt−1)qθ(θ′|θt−1)

 .
Otherwise, set θt = θ′ and xt = xt−1.

- Return: The Markov chain {θt,xt}Tt=1.

4. NUMERICAL SIMULATIONS

We consider the challenging problem of estimating the Leaf
Area Index (LAI) from remote sensing (satellite) observa-
tions. Let us denote LAI as xd ∈ R+ (where d ∈ N+ also
represents a temporal index) [24]. Since xt > 0, we con-
sider Gamma prior pdfs over the evolutions of LAI and Gaus-
sian perturbations for the “in-situ” received measurements,
yt. More specifically, we assume the following state-space
model, {

gd(xd|xd−1) = G
(
xd

∣∣∣xd−1

b , b
)
,

`d(yd|xd) = N (yd|xd, λ2)
(8)
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Fig. 1: (a) MSE in estimation of the trajectory (averaged over 2000 runs) obtained by DPMH as function T and different values of N ∈
{5, 7, 10, 20}. (b) Averaged values of the normalized weightsWm = Ẑm∑M

j=1 Ẑj
(withN = 5 andN = 10) associated to each filter. DPMH is

able to detect the best variances (b2 and b3) of the proposal pdfs among the values b1 = 0.01, b2 = 0.05, b3 = 0.1 and b4 = 1 (as confirmed
by Table 4).

for d = 2, . . . , D, with initial probability g1(x1) = G(x1|1, 1),
where b, λ > 0. Note that the expected value of the Gamma
pdf above is xd−1 and the variance is b. Considering that all
the parameters of the model are known, the posterior pdf is

π̄(x|y) ∝

(
D∏
d=2

`d(yd|xd)gd(xd|xd−1)

)
g1(x1),

with x = x1:D ∈ RD. For generating the ground-truth (i.e.,
the trajectory x∗ = x∗1:D = [x∗1, . . . , x

∗
D]), we simulate the

temporal evolution of LAI in one year (i.e., 1 ≤ d ≤ D =
365) by using a double logistic function (as suggested in the
literature [24]), i.e.,

xd = a1 + a2

(
1

1 + exp(a3(d− a4))
+

1

1 + exp(a5(d− a6))
+ 1

)
,

(9)
with a1 = 0.1, a2 = 5, a3 = −0.29, a4 = 120, a5 = 0.1 and
a6 = 240 as employed in [24]. The observations y = y2:D

are then generated (each run) according to yd ∼ `d(yd|xd) =
1√

2πλ2
exp

(
− 1

2λ2 (yd − xd)2
)
. First of all, we test the stan-

dard PMH and DPMH (fixing λ = 0.1). For DPMH, we
use M = 4 parallel filters with different scale parameters
b = [b1 = 0.01, b2 = 0.05, b3 = 0.1, b4 = 1]>. Figure
1(a) depicts the evolution of the MSE obtained by DPMH
as a function of T and considering different values of N ∈
{5, 7, 10, 20}. The performance of DPMH improves as T
and N grow, as expected. DPMH detects the best parame-
ters among the four values in b, following the weights Wm

(see Figure 1(b)) and DPMH takes advantage of this abil-
ity. Indeed, we compare DPMH with N = 10, T = 200,
M = 4 using the variances in the vector b, with M = 4 dif-
ferent standard PMH algorithms with N = 40 and T = 200
(clearly, M = 1 for PMH) in order to keep the total number
of evaluation of the posterior fixed, E = NMT = 8 · 103,

each one using a parameter bm, m = 1, . . . ,M . The re-
sults, averaged over 2000 runs, are shown in Table 4. In terms
of MSE, DPMH always outperforms the 4 possible standard
PMH methods. Moreover, due to the parallelization, in this
case DPMH can save≈ 15% of the spent computational time.

Table 4: Comparison among PMH and DPMH with E = NMT =
8 ·103 and T = 200 (λ = 0.1), estimating the trajectory x∗ = x∗1:D .

Proposal Var

Standard PMH DPMH
N = 40 N = 10
(M = 1) M = 4

MSE MSE
b1 = 0.01 0.0422

0.0108b2 = 0.05 0.0130
b3 = 0.1 0.0133
b4 = 1 0.0178
Average 0.0216 0.0108
Norm. Time 1 0.83

5. CONCLUSIONS

We have presented Distributed Particle Metropolis-Hastings
schemes driven by M parallel particle filters and where the
communication with the central node require the transmis-
sion only M weighted samples. Each particle filter uses a
different proposal density. Numerical simulations show the
benefits of the novel schemes and ability of the method in au-
tomatically detecting the better proposal pdf. Based on this
fact and the ideas in [1, 15, 11, 12], as future line, we plan
to design adaptive DPMH schemes. Furthermore, we plan
to tackle more challenging applications in Earth science and
communications.
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