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Abstract—Monte Carlo (MC) methods are widely used
for Bayesian inference and optimization in statistics, signal
processing and machine learning. Two well-known class of
MC methods are the Importance Sampling (IS) techniques
and the Markov Chain Monte Carlo (MCMC) algorithms.
In this work, we introduce the Group Importance Sampling
(GIS) framework where different sets of weighted samples
are properly summarized with one summary particle and one
summary weight. GIS facilitates the design of novel efficient
MC techniques. For instance, we present the Group Metropolis
Sampling (GMS) algorithm which produces a Markov chain
of sets of weighted samples. GMS in general outperforms
other multiple try schemes as shown by means of numerical
simulations.
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I. INTRODUCTION

Many applications in statistical signal processing, machine
learning and statistics, require the computation of a-posteriori
estimators induced by complicated posterior probability dis-
tributions [1], [2]. The approximation of these estimators
needs often the use of Monte Carlo methods [3]–[5]. The
most popular MC approaches are the Importance Sampling
(IS) methods and the Markov chain Monte Carlo (MCMC)
algorithms [1], [4]. IS schemes produce a random discrete
approximation of the posterior distribution by a population of
weighted samples [4], [6], [7]. MCMC techniques generate
a Markov chain (i.e., a sequence of correlated samples) with
a pre-established target probability density function (pdf) as
invariant density [5], [8].

In this work, we introduce the Group Importance Sampling
(GIS) framework where different sets of weighted samples can
be properly summarized with one summary particle and one
summary weight. This idea has been indirectly and implicitly
employed in different Monte Carlo schemes: parallel particle
filters [9], [10], particle island and related methods [11]–[13],
tracking and model selection algorithms [14], nested sequential
Monte Carlo schemes [15], [16] are some examples.

Furthermore, we also show that the GIS theory facilitates
the design of novel efficient Monte Carlo techniques. As an
example, we present the Group Metropolis Sampling (GMS)
algorithm that generates a Markov chain of sets of weighted
samples. All these resulting sets of samples are jointly em-
ployed obtaining a unique particle approximation of the target
distribution. On the one hand, GMS can be considered as an
MCMC method since it produces a Markov chain of sets of
samples. On the other hand, the GMS can be also considered
as an iterated importance sampler where different estimators

are finally combined in order to build a unique IS estimator.
This combination is obtained dynamically through random
repetitions given by MCMC-type acceptance tests. GMS is
closely related to Multiple Try Metropolis (MTM) techniques
and Particle Metropolis-Hastings (PMH) algorithms [17]–[22],
as we discuss below. The GMS algorithm can be also seen as
an extension of the method in [23], for recycling auxiliary
samples in a MCMC method.

The paper has the following structure. Section II recalls
some background material. The GIS theory is introduced in
Section III. In Section IV, we present the GMS algorithm.
Section V provides some numerical results and in Section VI
we discuss some conclusions.

II. PROBLEM STATEMENT AND BACKGROUND

In many applications the goal is to infer a variable of
interest, x ∈ X ⊆ Rdx , given a set of related observations
or measurements, y ∈ Rdy . The statistical information is
summarized in the posterior probability density function (pdf)
given by

π̄(x) = p(x|y) =
`(y|x)g(x)

Z(y)
, (1)

where `(y|x) is the likelihood function, g(x) is the prior
pdf and Z(y) is the marginal likelihood (a.k.a., Bayesian
evidence). In general Z is unknown and often impossible
to compute, so we only assume to be able to evaluate the
unnormalized target function,1

π(x) = `(y|x)g(x). (2)

The computation of integrals involving π̄(x) = 1
Zπ(x) are

often intractable. We consider the problem of approximating
via Monte Carlo a complicated integral involving the target
π̄(x) and an integrable function h(x) with respect to π̄, i.e.,

I = Eπ̄[h(X)] =

∫
X
h(x)π̄(x)dx, X ∼ π̄(x). (3)

A. Importance Sampling

Let us consider a proposal density q(x),2 The impor-
tance sampling (IS) method consists of drawing N samples,
x1, . . . ,xN , from q(x) (also called particles in this work),

1We drop the dependence on y of the marginal likelihood, i.e. Z ≡ Z(y)
for the ease of notation.

2We assume that q(x) > 0 for all x where π̄(x) 6= 0, and q(x) has heavier
tails than π̄(x).



and then assign to each sample the following unnormalized
weights

wn = w(xn) =
π(xn)

q(xn)
, n = 1, . . . , N. (4)

If Z is known, a possible (unbiased) IS estimator [4], [5] is
given by ÎN = 1

ZN

∑N
n=1 wnh(xn). If Z is unknown, defining

the normalized weights, w̄n = wn∑N
i=1 wi

with n = 1, . . . , N ,
an alternative self-normalized (biased) IS estimator is

IN =

N∑
n=1

w̄nh(xn). (5)

Both ÎN and IN are consistent estimators of I in Eq. (3) [4],
[5]. Moreover, an unbiased estimator of marginal likelihood,
Z =

∫
X π(x)dx, is given by Ẑ = 1

N

∑N
i=1 wi. More generally,

the pairs {xi, wi}Ni=1 represents a particle approximation of the
posterior distribution,

π̂(x|x1:N ) =

N∑
n=1

wn

NẐ
δ(x− xn) =

N∑
n=1

w̄nδ(x− xn). (6)

B. Concept of proper weighting

The standard IS weights in Eq. (4) are broadly used in the
literature. However the definition of proper weighted sample
can be extended as suggested in [4, Section 14.2], [5, Section
2.5.4], and [24]. More specifically, given a set of samples,
they are proper weighted with respect to the target π if, for
any square integrable function h,

Eq[w(xn)h(xn)] = cEπ̄[h(xn)], ∀n = {1, . . . , N}, (7)

where c is a constant value, also independent from the index
n, and the expectation of the left hand side is performed,
in general, w.r.t. the joint pdf of w(x) and x, i.e., q(w,x).
Namely, the weight w(x), (for a given value of x), could
even be considered a random variable. Thus, in order to obtain
consistent estimators, one can design any joint q(w,x) as long
as the restriction of Eq. (7) is fulfilled.

C. The Independent Metropolis-Hastings (IMH) algorithm

The Metropolis-Hastings (MH) method [4], [5], [25] is one
of the most popular MCMC algorithm. It generates a Markov
chain {xt}∞t=1 with π̄(x) as stationary density. Considering a
proposal pdf q(x) independent from the previous state xt−1,
the independent MH method is given in Table I.

Observe that α(xt−1,v
′) = min

[
1, w(v′)

w(xt−1)

]
in Eq. (8) in-

volves the ratio between the importance weight of the proposed
samples v′ and the importance weight of the previous state
xt−1. Note that at each iteration only one new sample v′ is
generated to be compared with the previous state xt−1 by the
acceptance probability α(xt−1,v

′).

III. GROUP IMPORTANCE SAMPLING (GIS)

Let us consider the M disjoint sets of weighted samples
(a.k.a., particles)

Sm = {xm,n, wm,n}Nm
n=1, m = 1, . . . ,M,

Table I
The IMH algorithm

Initialization: Choose an initial state x0.
For t = 1, . . . , T :

1) Draw a sample v′ ∼ q(x).
2) Accept the new state, xt = v′, with probability

α(xt−1,v
′) = min

[
1,
π(v′)q(xt−1)

π(xt−1)q(v′)

]
(8)

= min

[
1,

w(v′)

w(xt−1)

]
, (9)

where w(x) = π(x)
q(x) (importance weight). Otherwise,

set xt = xt−1.
Return: {xt}Tt=1.

where xm,n ∼ qm(x) i.e., a different proposal pdf for each set
Sm. In the most general case we consider that Ni 6= Nj , ∀i 6=
j with i, j ∈ {1, ...,M}. We can summarize the statistical
information of each set using a pair of summary sample, x̃m,
and summary weight, Wm, m = 1, . . . ,M , in such a way that
the following estimator

ĨM =
1∑M

j=1Wm

M∑
m=1

Wmh(x̃m), (10)

is a consistent estimator of I . We denote the importance weight
of the n-th sample in the m-th group as wm,n = w(xm,n) =
π(xm,n)
qm(xm,n) , the m-th marginal likelihood estimator

Ẑm =
1

Nm

Nm∑
i=1

wm,n, (11)

and the normalized weights within a set as w̄m,n =
wm,n

NmẐm
,

for n = 1, . . . , N and m = 1, . . . ,M .

Definition 1. A summary particle x̃m for the m-group is a
resampled particle,

x̃m ∼ π̂m(x|xm,1:Nm) =

Nm∑
n=1

w̄m,nδ(x− xm,n), (12)

i.e., x̃m is selected within {xm,1, . . . ,xm,Nm} according to
the probability mass function (pmf) defined by w̄m,n, n =
1, . . . , Nm.

It is possible to use the Liu’s definition in order to assign
a proper importance weight to a resampled particle [26], as
stated in the following theorem.

Theorem 1. Let us consider a resampled particle
x̃m ∼ π̂m(x). A proper unnormalized weight following
the Liu’s definition in Eq. (7) for this resampled particle is
w̃m = w̃(x̃m) = Ẑm.

The proof of this theorem is given in [27] and further
discussions in [26].

Definition 2. The summary weight for the m-th group of



samples is Wm = Nmw̃m = NmẐm, defined in Eq. (11).

Given the M summary pairs {x̃m,Wm}Mm=1 in a common
computational node, we can obtain the following particle
approximation of π̄(x), i.e.,

π̂(x|x̃1:M ) =
1∑M

j=1NjẐj

M∑
m=1

NmẐmδ(x− x̃m), (13)

involving M weighted samples in this case. For a given
function h(x), the corresponding specific GIS estimator in Eq.
(10) is

ĨM =
1∑M

j=1NjẐj

M∑
m=1

NmẐmh(x̃m). (14)

It is a consistent estimator of I . Indeed, the expression
in Eq. (14) can be interpreted as a standard IS estimator
(then consistent) since w̃(x̃m) = Ẑm is a proper weight
of a resampled particle [26]. Moreover, we are giving more
importance to the resampled particle belonging to a set with
more cardinality. The joint use of the concepts of summary
particle and summary weight is not strictly needed. In some
application, both are required whereas in other applications
only one of them is employed as we shown in the next section.

IV. GROUP METROPOLIS SAMPLING (GMS)

In this section, we show how GIS facilitates the design
of novel efficient techniques. More specifically, we use the
concept of summary weight associated to a set of samples in
order to generalize the IMH algorithm in Table I. Unlike in the
IMH scheme, GMS produces a sequence of sets of weighted
samples. The Group Metropolis Sampling (GMS) is shown
in Table II. Note that the GMS algorithm uses the idea of
summary weight for comparing sets.

Table II
Group Metropolis Sampling (GSM)

Initialization: Choose an initial set S0 = {xn, ρn,0}Nn=1

and Ẑ0 = 1
N

∑N
n=1 ρn,0.

For t = 1, . . . , T :
1) Draw N samples, v1, . . . ,vN ∼ q(x).
2) Weight them wn = π(vn)

q(vn) , n = 1, . . . , N , define S ′ =

{vn, wn}Nn=1 and compute Ẑ ′ = 1
N

∑N
n=1 wn.

3) Set St = {xn,t = vn, ρn,t = wn}Nn=1 (i.e., St = S ′),
and Ẑt = Ẑ ′, with probability

α(St−1,S ′) = min

[
1,

Ẑ ′

Ẑt−1

]
. (15)

Otherwise, set St = St−1 and Ẑt = Ẑt−1.
Return: {St}Tt=1.

Given the generated sets St = {xn,t, ρn,t}Nn=1, for t =

1, . . . , T , GMS provides the global particle approximation

π̂(x|x1:N,1:T ) =
1

T

T∑
t=1

N∑
n=1

ρn,t∑N
i=1 ρi,t

δ(x− xn,t),

=
1

T

T∑
t=1

N∑
n=1

ρ̄n,tδ(x− xn,t), (16)

Relationship with IMH. The acceptance probability α in Eq.
(15) is the extension of the acceptance probability of IMH
in Eq. (9), considering the proper GIS weighting of a set of
weighted samples (note that, in GMS, all the sets are the same
number of samples).
Relationship with multiple try methods. GMS is strictly
related to Multiple Try Metropolis (MTM) schemes [19], [21],
[28], [29] and Particle Metropolis Hastings (PMH) techniques
[17], [29]. The difference between GMS and the PMH and
MTM methods is that GMS does not use resampling steps at
each iteration for generating summary samples, indeed GMS
uses the entire set. Another difference with PMH is that
PMH generates sequentially the set of N candidates using a
Sequential Importance Resampling (SIR) procedure (so that N
candidates are correlated in PMH, in general) [29]. However,
considering a sequential of a batch procedure for generating
the N tries at each iteration, we can recover a MTM (or PMH)
chain by the GMS output applying T resampling steps,

x̃t =

ṽt ∼
N∑
n=1

ρ̄n,tδ(x− xn,t), if St 6= St−1,

x̃t−1, if St = St−1,

(17)

Namely, {x̃t}Tt=1 is the chain obtained by one run of the MTM
(or PMH) technique.
Ergodicity. As also discussed above, the acceptance probabili-
ties and the dynamics of GMS exactly coincides with the PMH
or MTM steps (with a sequential or batch particle generation,
respectively), so that the ergodicity of the chain is ensured
[17], [19], [21], [29]. Indeed, we can recover the MTM (or
PMH) chain as shown in Eq. (17).
Recycling samples. The GMS algorithm can be seen as a
method of recycling auxiliary weighted samples in PMH and
MTM schemes. In [23], the authors show how recycling and
including the rejected samples in a MH run into a unique
consistent estimator. GMS can be considered an extension of
this technique where, unlike in [23] N samples are generated
at each iteration.
Iterated IS. GMS can be also interpreted as an iterative
importance sampling scheme where an IS approximation of
N samples is built at each iteration and compared with the
previous IS approximation. This procedure is iterated T times
and all the accepted IS estimators are finally combined for
providing a unique global approximation of NT samples. Note
that, the temporal combination of the IS estimators is obtained
dynamically by the random repetitions due to the rejections in
the MH test.
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Figure 1. MSE (loglog-scale; averaged over 103 independent runs) obtained with the MTM and GMS algorithms (left) as function of N fixing T = 20 and
(right) as function of T setting N = 100.

V. NUMERICAL SIMULATIONS

We test the proposed GMS approach for the estima-
tion of hyperparameters of a Gaussian process (GP) regres-
sion model [30], [31]. Let us assume observed data pairs
{yj , zj}Pj=1, with yj ∈ R and zj ∈ RL. We also denote
the corresponding P × 1 output vector as y = [y1, . . . , yP ]>

and the L× P input matrix as Z = [z1, . . . , zP ]. We address
the regression problem of inferring the unknown function f
which links the variable y and z. Thus, the assumed model
is y = f(z) + e, where e ∼ N(e; 0, σ2), and that f(z) is a
realization of a GP [31]. Hence f(z) ∼ GP(µ(z), κ(z, r))
where µ(z) = 0, z, r ∈ RL, and we consider the kernel
function

κ(z, r) = exp

(
−

L∑
`=1

(z` − r`)2

2δ2

)
, (18)

Given these assumptions, the vector f = [f(z1), . . . , f(zP )]>

is distributed as p(f |Z, δ, κ) = N (f ; 0,K), where 0 is a P ×1
null vector, and Kij := κ(zi, zj), for all i, j = 1, . . . , P ,
is a P × P matrix. Therefore, the vector containing all the
hyper-parameters of the model is θ = [δ, σ], i.e., all the
parameters of the kernel function in Eq. (18) and standard
deviation σ of the observation noise. In this experiment, we
focus on the marginal posterior density of the hyperparameters
[31], p(θ|y,Z, κ) ∝ p(θ|y,Z, κ) = p(y|θ,Z, κ)p(θ), which
can be evaluated analytically, but we cannot compute integrals
involving it. Considering a uniform prior within [0, 20]2 and
since p(y|θ,Z, κ) = N (y; 0,K + σ2I), we have

log [p(θ|y,Z, κ)] =− 1

2
y>(K + σ2I)−1y

− 1

2
log
[
det
(
K + σ2I

)]
,

where clearly K depends on δ [31]. The moments of this
marginal posterior cannot be computed analytically. Then, in

order to compute the Minimum Mean Square Error (MMSE)
estimator θ̂ = [δ̂, σ̂], i.e., the expected value E[Θ] with
Θ ∼ p(θ|y,Z, κ), we approximate E[Θ] via Monte Carlo
quadrature. More specifically, we apply a the novel GMS
technique and compare with an MTM sampler.

We generated P = 200 pairs of data, {yj , zj}Pj=1, according
to the GP model setting δ∗ = 3, σ∗ = 10. L = 1,
and drawing zj ∼ U([0, 10]). Keeping fixed the generated
data for each scenario, we then computed the ground-truth
θ̂ ≈ [δ̂ ≈ 3.5200, σ̂ ≈ 9.2811] using an exhaustive and
costly grid approximation, in order to compare the different
techniques. For both GMS and MTM schemes, we consider
the same adaptive Gaussian proposal pdf qt(x|µt, λ2I) =
N (x|µt, λ2I), with λ = 5 and µt is adapted considering
the arithmetic mean of the outputs after a training period,
t ≥ 0.2T , in the same fashion of [32], [33] (µ0 = [1, 1]>).
First, we test both techniques fixing T = 20 and varying the
number of tries N . Then, we set N = 100 and vary the number
of iterations T . Figure 1 (log-log plot) shows the Mean Square
Error (MSE) in the approximation of θ̂ averaged over 103

independent runs. Observe that always GMS outperforms the
corresponding MTM scheme.

VI. CONCLUSIONS

In this work, we introduce the Group Importance Sampling
(GIS) theory which facilitates the design of novel Monte Carlo
algorithms. For instance, we present the Group Metropolis
Sampling (GMS) method that outperforms the correspond-
ing benchmark Monte Carlo techniques without any extra
computational cost, as we have shown in an hyperparameter
estimation problem for GP regression models.
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