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ABSTRACT

Monte Carlo (MC) algorithms are widely used for Bayesian

inference in statistics, signal processing, and machine learn-

ing. In this work, we introduce an Markov Chain Monte

Carlo (MCMC) technique driven by a particle filter. The

resulting scheme is a generalization of the so-called Parti-

cle Metropolis-Hastings (PMH) method, where a suitable

Markov chain of sets of weighted samples is generated. We

also introduce a marginal version for the goal of jointly infer-

ring dynamic and static variables. The proposed algorithms

outperform the corresponding standard PMH schemes, as

shown by numerical experiments.

Index Terms— Particle MCMC, Particle Filtering, Monte

Carlo, Bayesian inference, state-space models

1. INTRODUCTION

Particle filtering and Markov Chain Monte Carlo (MCMC)

methods are Monte Carlo techniques widely applied in sta-

tistical models, in order to make inference about a dynamic

and static parameters [1, 2, 3, 4]. The particle Metropolis-

Hastings (PMH) algorithm combines the particle filtering

approach with the Metropolis-Hastings (MH) technique, a

well-known MCMC method [5, 6, 4]. The PMH scheme has

been particularly designed for making inference and smooth-

ing about a hidden state in state-space models [7, 8]. In

PMH, two trajectories obtained by different runs of a particle

filter are compared according to suitable MH-type accep-

tance probability. Its marginal version, the so-called Particle

Marginal MH (PMMH) method, has found a vast application

in signal processing for estimating jointly both dynamic and

static parameters [8, 9].

In this work, we introduce a novel MCMC technique

driven by a particle filter (PF), called particle group Metropo-

lis sampling (PGMS). The proposed algorithm yields a

Markov chain of sets of weighted particles. The accep-

tance probabilities and the dynamics of the chain coincide
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exactly with those of the standard PMH scheme. Indeed, a

PMH chain can be recovered by resampling the PGMS out-

puts. Furthermore, we also introduce the marginal version of

PGMS method for the double goal of smoothing trajectories

traced by a dynamic variable and estimating static parameters

of the considered dynamic model. Numerical simulations

show the benefits of the proposed schemes.

2. BACKGROUND

In many applications the goal is to infer a D-dimensional

variable, x = x1:D = [x1 . . . , xD]⊤ ∈ X ⊆ R
D×ξ (where

xd ∈ R
ξ), given a set of related data, y ∈ R

dy . In a Bayesian

setting, the statistical information is summarized in the poste-

rior probability density function (pdf), i.e.,

π̄(x) = p(x|y) =
ℓ(y|x)g(x)

Z(y)
, (1)

where ℓ(y|x) is the likelihood function, g(x) is the prior pdf

and Z ≡ Z(y) is the marginal likelihood (a.k.a., Bayesian

evidence). Generally, Z is unknown, hence we only assume

that we are able to evaluate π(x) = ℓ(y|x)g(x). Furthermore,

the integrals involving π̄(x) are often analytically intractable.

For instance, one often needs to calculate expected values as

I = Eπ̄[h(X)] =
1

Z

∫

X

h(x)π(x)dx, (2)

where h(x) : R
D×ξ → R

dh is an integrable function and

π̄(x) = 1
Z

π(x). In this work, we compute an estimator Î of I

using an MCMC technique driven by a particle approximation

of measure of π̄(x) obtained by a particle filtering scheme

[3, 2, 4].

Particle Filtering. Let us assume that the target density can

be factorized as

π̄(x) ∝ π(x) = γ1(x1)
D∏

d=2

γd(xd|xd−1). (3)

For instance, this factorization is possible in the state-space

models [2, 7]. Given a proposal pdf factorized in the same

way, i.e., q(x) = q1(x1)
∏D

d=2 qd(xd|xd−1), we can draw N



samples from the proposal, x(n) = x
(n)
1:D = [x

(n)
1 . . . , x

(n)
D ]⊤ ∼

q(x), where x
(n)
d ∼ qd(xd|xd−1), and we assign the impor-

tance weight w(n) = π(x(n))
q(x(n))

. The weight above can be

computed recursively and, in this case, the resulting tech-

nique is called sequential importance sampling (SIS). If a

resampling step is incorporated during the recursion, the

method is known as sequential importance resampling (SIR)

[2, 7]. Table 1 shows a SIR scheme where a resampling step

is performed at each iteration (a.k.a., bootstrap particle filter)

and a proper weighting of a resampled particle is applied

[10, 11, 12]. With a SIR procedure, we obtain a particle

approximation of the measure of the target pdf, i.e.,

π̂(x|x(1:N)) =
1

NẐ

N∑

n=1

w(n)δ(x − x(n)),

=
N∑

n=1

w̄(n)δ(x − x(n)), (4)

where w̄(n) = w(n)
P

N
j=1 w(j) and Ẑ = 1

N

∑N
j=1 w(j) is an unbi-

ased estimator of the marginal likelihood. The latter estimator

is valid only if the resampled particles are properly weighted

with w̃
(n)
d = 1

N

N∑
n=1

w
(n)
d [10, 11, 12]. Otherwise, an alterna-

tive estimator is Ẑ =
∏D

d=1

[
1
N

∑N
n=1 β

(n)
d

]
. See Appendix

C in [11] for further details.

St−1 St+1St

Fig. 1: Graphical representation of a Markov chain of set of

weighted particles yielded by PGMS schemes.

3. PARTICLE GROUP METROPOLIS SAMPLING

In this section, we introduce a novel algorithm belonging to

the class of group Metropolis sampling (GMS) methods. The

GMS scheme, introduced in [11], is an MCMC technique

which generalizes the independent multiple try Metropolis (I-

MTM) algorithm [13]. It can be seen as a method which recy-

cles auxiliary weighted samples in an I-MTM scheme. More-

over, the acceptance probability used in GMS is the exten-

sion of the acceptance probability of the acceptance probabil-

ity employed in an independent Metropolis-Hastings (I-MH)

method, considering the concept of proper weighting of a set

of weighted samples [11, 13]. Here, we introduce a novel

GMS technique specifically designed for scenarios when the

Table 1: Bootstrap particle filtering

Initialization: Choose x
(n)
0 and set w̃

(n)
0 = 1

N
for n =

1, . . . , N .

For d = 1, . . . , D:

1. Propagation: Draw x
(n)
d ∼ qd(xd|x

(n)
d−1), for n =

1, . . . , N .

2. Weighting: Compute the weights

w
(n)
d = w̃

(n)
d−1β

(n)
d , (5)

where β
(n)
d =

γd(x
(n)
d
|x

(n)
d−1)

qd(x
(n)
d
|x

(n)
d−1)

, for n = 1, . . . , N .

3. Resampling:

(a) Resample N particles from the current approx-

imation, x̃
(n)
d ∼

∑N
i=1 w̄

(i)
d δ(x − x

(i)
d ), where

w̄
(i)
d =

w
(i)
d

P

N
j=1 w

(j)
d

and n = 1, . . . , N .

(b) Set x
(n)
d = x̃

(n)
d and w̃

(n)
d = 1

N

N∑
n=1

w
(n)
d , for

all n = 1, . . . , N (see [10]).

Return: Set {x(n) = x
(n)
1:D, w(n) = w

(n)
D }N

n=1, so that

π̂(x|x(1:N)) =
1

NẐ

N∑

n=1

w(n)δ(x − x(n)).

target density can be factorized as in Eq. (3). The resulting al-

gorithm, called particle group Metropolis sampling (PGMS)

generalizes the Particle MH (PMH) sampler [8, 9]. Unlike

PMH, the PGMS method produces a Markov chain of sets

of weighted samples, as graphically represented in Figure 1.

The PGMS scheme is summarized in Table 2. The PGMS

method can be interpreted a way to recycle weighted trajec-

tories (drawn in a PMH run) and include them in the final

estimators. For this reason, PGMS outperforms PMH with-

out any additional computational cost. The difference be-

tween PGMS and the PMH method is that PGMS does not

use resampling steps at each iteration for selecting one sam-

ple among the N weighted samples. Indeed, PGMS stores the

entire set, if accepted. Each set contains a group of weighted

trajectories x(n) obtained by a particle filter. If we are inter-

ested in estimating a unique integral I, we can store only the

estimator Ît =
∑N

n=1 w̄(b)h(x(n)) instead of all the particles.

Note that the acceptance probabilities α and the dynam-

ics of PGMS coincides exactly with the PMH steps, so that

the ergodicity of the chain is ensured [8, 9]. Indeed, on could

recover a PMH chain from the PGMS outputs applying T re-



sampling steps i.e.,

x̃t =





vt ∼
N∑

n=1

ρ̄n,tδ(x − xn,t), if St 6= St−1,

x̃t−1 if St = St−1,

(6)

for t = 1, . . . , T . Namely, {x̃t}
T
t=1 is the chain obtained by

one run of the PMH technique. Figure 2 graphically sum-

marizes this procedure. Moreover, the main difference be-

tween PGMS scheme and the standard GMS method is that

the samples are generated by a particle filter, i.e., in a sequen-

tial way (following the target factorization). Due to the use of

resampling steps during the particle filtering stage, the result-

ing samples are correlated, not independent as in the standard

GMS technique.

Table 2: Particle group Metropolis sampling (PGMS)

Initialization: Start with an initial set S0 =
{xn,0, ρn,0}

N
n=1 and Ẑ0 = 1

N

∑N
n=1 ρn,0.

For t = 1, . . . , T :

1. Construct a particle approximation using a particle

filter (as described in Table 1),

π̂(x|x(1:N)) =

N∑

n=1

w̄(n)δ(x − x(n)),

and obtain Ẑ ′, as described in Section 2.

2. Define the set S ′ = {x(n), w̄(n)}N
n=1.

3. Given St = {xn,t, ρ̄n,t}, set St = S ′ and Ẑt = Ẑ ′,

with probability

α(St−1,S
′) = min

[
1,

Ẑ ′

Ẑt−1

]
. (7)

Otherwise, set St = St−1 and Ẑt = Ẑt−1.

Return: {St}
T
t=1 and {Ẑt}

T
t=1.

3.1. Marginal version of PGMS

In many applications, static and dynamical parameters must

be jointly estimated. More specifically, let again consider

x = x1:D ∈ X ⊆ R
D×ξ and an additional static parame-

ter θ ∈ R
dθ . For instance, in the state-space models, xd ∈ R

ξ

represents the hidden state (hence, x = x1:D is the hidden

trajectory to be estimated) and θ a static unknown parameter

of the model [14, 15, 16, 17, 12]. In this scenario, assuming a

prior pdf gθ(θ) over θ, the complete posterior pdf is

π̄c(x, θ) ∝ πc(x,θ) = gθ(θ)π(x|θ), (8)

t

x x x x

St St+1 St+2 St+3

x̃t

x̃t+1 x̃t+2

x̃t+3

Fig. 2: Graphical representation of the recovery of a PMH chain

by PGMS outputs. Each circle represents a possible trajectory

ext = [ex1,t, ..., exD,t] and the size of the circle represents its weight.

The green lines represent the transition of the recovered PMH chain,

obtaining by resampling at each iteration.

where

π(x|θ) = γ1(x1|θ)
D∏

d=2

γd(xd|x1:d−1,θ). (9)

In order to approximate π̄c(x,θ), we can apply the particle

marginal group Metropolis sampling (PM-GMS) algorithm,

that is summarized in Table 3. PM-GMS draws a candidate

θ
′ ∼ qθ(θ|θt−1) and then run a particle filter addressing the

target pdf π̄(x|θ′). PM-GMS is a generalization of the parti-

cle marginal MH (PMMH) algorithm, where a chain of set of

(weighted) trajectories and a chain regarding the parameter θ

are jointly produced.

Table 3: The PM-GMS algorithm

Initialization: Start with θ0, S0 and Ẑ(θ0).
For t = 1, . . . , T :

1. Draw θ
′ ∼ qθ(θ|θt−1).

2. Run a particle filter to obtain the approximation

π̂(x|v(1:N),θ′) =
∑N

n=1 w̄(n)δ(x − v(n)) and the

estimator Ẑ(θ′).

3. Define the set S ′ = {v(n), w̄(n)}N
n=1.

4. Given St = {xn,t, ρ̄n,t}, set St = S ′, θt = θ
′ and

Ẑt = Ẑ(θ′), with probability

α = min

"
1,

bZ(θ′)gθ(θ′)qθ(θt−1|θ′)

bZ(θt−1)gθ(θt−1)qθ(θ′|θt−1)

#
.

Otherwise, set St = St−1, θt = θt−1 and Ẑt =

Ẑ(θt−1).

Return: The Markov chain {St,θt, Ẑt}
T
t=1.
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Fig. 3: Smoothing of the trajectory with PGMS (with N = 5, λ = 0.1) at different iterations (a) t = 2, (b) t = 10, and (c) t = 100, in one

specific run. The true values, x∗ = x∗1:D , are shown dashed lines whereas the estimated trajectory by PGMS, bxt = bx1:D,t, with solid lines.

4. NUMERICAL SIMULATIONS

We consider the challenging problem of estimating biophys-

ical parameters from remote sensing (satellite) observations.

In particular, we focus on the estimation of the leaf area index

(LAI) [18]. Let us denote LAI as xd ∈ R
+ (where d ∈ N

+

also represents a temporal index) in a specific region at a lati-

tude of 42◦ N [19]. Since xt > 0, we consider Gamma prior

pdfs over the evolutions of LAI and Gaussian perturbations

for the “in-situ” received measurements, yt. More specifi-

cally, we assume the following state-space model

{
gd(xd|xd−1) = G

(
xd

∣∣∣xd−1

b
, b
)

,

ℓd(yd|xd) = N (yd|xd, λ
2),

(10)

for d = 2, . . . , D, with initial probability g1(x1) = G(x1|1, 1),
where b, λ > 0 and cd > 0 is a normalizing constant. Note

that the expected value of the Gamma pdf above is xd−1 and

the variance is b.

First Experiment. First of all we consider that all the param-

eters of the model are known. The posterior pdf is

π̄(x|y) ∝ ℓ(y|x)g(x)

=

[
D∏

d=2

ℓd(yd|xd)

][(
D∏

d=2

gd(xd|xd−1)

)
g1(x1)

]
,

with x = x1:D ∈ R
D. For generating the ground-truth (i.e.,

the trajectory x∗ = x∗1:D = [x∗1, . . . , x
∗
D]), we simulate the

temporal evolution of LAI in one year (i.e., 1 ≤ d ≤ D =
365) by using a double logistic function as employed in [19].

In Figure 3, the true trajectory x1:D is depicted with dashed

lines and the estimation (at different iterations) provided by

PGMS in one specific run, in solid lines. The observations

y = y2:D are then generated each run according to the model

yd ∼ ℓd(yd|xd). We compare the standard PMH and PGMS,

setting λ = 0.1, N = 40 and T = 200 in terms of estimation

of the true trajectory. We also consider different scale values

b ∈ {0.01, 0.05, 0.1, 1}. The results, averaged over 2000

runs, are shown in Table 4. Note that PGMS outperforms the

standard PMH in all cases, providing always a smaller mean

square error (MSE).

Second Experiment. Now we consider that the param-

eter λ is also unknown, so that the complete variable of

interest [x, λ] ∈ R
D+1. Then the posterior is π̄(x, λ|y) ∝

ℓ(y|x, λ)g(x, λ) according to the model Eq. (10), where

g(x, λ) = g(x)gλ(λ) and gλ(λ) is a uniform pdf in [0.01, 5].
Then we test the standard PMMH and PM-GMS with qλ(λ) =
gλ(λ) (see 3.1), for estimating [x∗, λ∗] where x∗ = x∗1:D and

λ∗ = 0.7 are the true values. Table 5 compares the standard

PMMH and PM-GMS for estimating λ∗ (we set N = 40 and

T = 100). We can observe that PM-GMS always outper-

forms the standard PMMH in terms of smaller MSE.

Table 4: MSE in estimating the trajectory x
∗ = x∗1:D , by PGMS

and standard PMH with N = 40, T = 200, and λ = 0.1.

Method
Standard PMH PGMS

MSE MSE

b = 0.01 0.0422 0.0380

b = 0.05 0.0130 0.0100

b = 0.1 0.0133 0.0102

b = 1 0.0178 0.0140

Table 5: Comparison among PM-GMS and the standard PMMH

with N = 40 and T = 100, for estimating λ∗ = 0.7.

Method
Standard PMMH PM-GMS

MSE MSE

b = 0.01 0.0929 0.0901

b = 0.05 0.0186 0.0097

b = 0.1 0.0401 0.0288

b = 1 0.0223 0.0156

5. CONCLUSIONS

In this work, we present the particle group Metropolis sam-

pling (PGMS) scheme which is an extension of the related

PMH algorithm. PGMS outperforms the corresponding

benchmark Monte Carlo technique without any extra com-

putational cost, as we have shown in the numerical experi-

ments.The PGMS method can be interpreted a suitable way

of recycling particles in a PMH scheme and including them

in the final estimators.
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