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Abstract. A sign pattern is a matrix with entries in {+,−, 0}. An n×n sign

pattern S is spectrally arbitrary if, for any monic polynomial f of degree n with
real coefficients, one can replace the + and− signs in S with real numbers of the

corresponding signs so that the resulting matrix has characteristic polynomial
f . This paper refutes a long-standing conjecture with a construction of an

n× n spectrally arbitrary sign pattern with less than 2n entries nonzero.

1. Introduction

Qualitative problems in linear algebra intend to extract some meaningful infor-
mation from the signs of the numbers in a given data set [45]. A classical result in
this line of study is the Perron–Frobenius theorem [23, 51], which guarantees that
the largest eigenvalue of a real n×n matrix A is real and positive, provided that the
entries of A are all positive. Another notable example is the study of a slightly more
general class of nonnegative matrices, which provides important tools in different
contexts of pure and applied mathematics [3, 29, 42, 60]. Other areas that benefit
from linear algebraic qualitative methods include ecology [6, 44], optimization [34],
economics [41, 45, 52], graph theory [58], dynamical systems [59].

A particularly important problem is, for a given property of spectra of n×n real
matrices, to determine the sign patterns that represent matrices with this property.
This includes the study of sign patterns which are sign stable [39, 44], potentially
stable [38, 40], potentially nilpotent [22, 61], spectrally arbitrary [5, 17], inertially
arbitrary [10, 24], and many others presented in the comprehensive survey [7]. We
are going to focus on one problem, which was posed in 2004 by Britz, McDonald,
Olesky, van den Driessche [5] and later appeared as the main topic of the workshop
held in 2006 in the American Institute of Mathematics in Palo Alto [56, 57]. We
proceed with the statement of this problem, which is referred to as the 2n conjecture
in many published papers, monographs, degree theses and conference talks.

Conjecture 1.1 (The 2n conjecture [2, 7, 8, 15, 16, 30, 35, 47, 53, 54, 57, 62]).
Every n× n spectrally arbitrary sign pattern has at least 2n nonzero entries.

In one of the earliest studies of spectrally arbitrary sign patterns, Drew, Johnson,
Olesky, van den Driessche [17] constructed a 2× 2 spectrally arbitrary sign pattern
T2 with four nonzero entries and a 3 × 3 spectrally arbitrary sign pattern T3 with
six nonzero entries. Since every real polynomial can be written as the product of
several real polynomials of degrees 1 and 2, one can use the direct sums of T2 and
T3 to check that, if Conjecture 1.1 is true, then the bound of 2n is best possible
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for all nontrivial cases, that is, for n 6= 1. Many other sign patterns attaining the
bound of 2n in Conjecture 1.1 are known [4, 5, 27, 28, 53], and we mention an earlier
conjecture in [17, 21] proved by Garnett, Shader [27], who presented a tridiagonal
spectrally arbitrary n× n sign pattern with 2n nonzero entries.

As said above, the n = 1 case of Conjecture 1.1 is trivial, and the n = 2 version
is implied by the above mentioned paper [17], which gives a more general result
that the spectrally arbitrary tree sign patterns satisfy the bound in Conjecture 1.1.
The n = 3 case of Conjecture 1.1 follows from a description of the 3× 3 spectrally
arbitrary sign patterns as given by Britz, McDonald, Olesky, van den Driessche [5]
and also by Cavers, Vander Meulen [10]. The paper [5] gives an explicit statement
of Conjecture 1.1 and proves that every irreducible spectrally arbitrary n× n sign
pattern has at least 2n− 1 nonzero entries, where an irreducible pattern is the one
that cannot be put to the block triangular form by a permutation similarity.

A zero-nonzero pattern is a matrix with entries in {0, ∗}, where the ∗ element
represents an arbitrary nonzero number. We remark that Conjecture 1.1 is im-
plied by its variation that appeals to the zero-nonzero patterns instead of the sign
patterns. It makes sense to further replace R with an arbitrary ground field F,
and we refer to the resulting statement as the 2n-conjecture over F. This general-
ized statement was proved for n = 4 by Corpuz, McDonald [12], and, as explained
above, this implies the n = 4 version of Conjecture 1.1. Further progress came from
the paper of DeAlba, Hentzel, Hogben, McDonald, Mikkelson, Pryporova, Shader,
Vander Meulen [15], who showed that a k×k irreducible component of a spectrally
arbitrary sign pattern should have at least 2k nonzero entries if k 6 5, and this
result confirms the n = 5 version of Conjecture 1.1. The validity of the n = 6
case was reported by Shader [53], and the confirmation of the n = 7 version was
announced by Deaett, Garnett [14]. It seems that the results with n = 6 and n = 7
are yet to go through the peer review or independent verification, and several recent
sources [9, 62] mention n 6 5 as the known range of the validity of Conjecture 1.1.

As explained by Shader [53], the Nilpotent Jacobian method [5, 17, 28] cannot
be sufficient to confirm that a given potential counterexample to the 2n conjecture
is, in fact, spectrally arbitrary. The complex number version of this conjecture is
true for n 6 4 as shown by McDonald, Yielding [49], but, nevertheless, it is false
over C for large n [55]. The 2n conjecture is true over any finite field as shown
by Shader [47], and the bound of 2n is optimal for all sufficiently large finite fields
by the work of Bodine, McDonald [4]. The lower bound of 2n − 1 for the number
of the ∗ entries in an irreducible n × n spectrally arbitrary zero-nonzero pattern
is valid over arbitrary fields [54]. Kim, McDonald, Olesky, van den Driessche [37]
constructed a family of inertially arbitrary n×n patterns with less than 2n nonzero
entries and invalidated a possible stronger version of the 2n conjecture. Cavers,
Vander Meulen, Vanderspek [11] considered the restriction of Conjecture 1.1 to
irreducible patterns, and they improved on the above mentioned result in [37] with
a construction of irreducible inertially arbitrary n× n sign patterns with less than
2n nonzero entries. Several authors considered the analogue of Conjecture 1.1 for
complex sign patterns in which the signs of the entries are taken separately for the
real and imaginary parts [26, 43] and also for ray patterns [25, 48], and one of these
problems was solved by Mei, Gao, Shao, Wang [46] with a proof that the minimum
number of nonzeros in an n×n irreducible spectrally arbitrary ray pattern is 3n−1.

The goal of this paper is to refute Conjecture 1.1.
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2. Building blocks

The idea of our construction develops an earlier approach in [55]. Before we
explain it in detail, we reproduce one standard result for ease of reference.

Theorem 2.1 (See [5, 17, 27]). For any n > 2, there exists an n × n spectrally
arbitrary sign pattern which has exactly 2n nonzero entries.

We are going to look for a counterexample to Conjecture 1.1 in the form S ⊕P ,
where, for some k and sufficiently large n, the sign pattern S has 2k − 1 nonzero
entries and size k×k, and P is a pattern satisfying the assumptions of Theorem 2.1.
Here and in what follows, the direct sum A⊕ B is the block diagonal matrix with
the corresponding diagonal blocks equal to A and B, respectively.

Definition 2.2. Let F be a field. For any positive integer k, we write Fk to denote
the set of all monic polynomials of degree k in F[t].

Definition 2.3. If P is a k × k sign pattern, then we define χ(P ) as the set of all
polynomials realized by P , which means that, for every such polynomial f , there
exists a matrix with sign pattern P and characteristic polynomial f .

Remark 2.4. The inclusion χ(P ) ⊆ Rn holds for any n × n sign pattern P . Con-
jecture 1.1 states that this inclusion is strict if P has less than 2n nonzero entries.

We are ready for the first step towards a counterexample. In the following
auxiliary definition, the term ‘sap’ corresponds to a commonly used shorthand for
the collocation ‘spectrally arbitrary pattern’ [8, 15, 17, 27].

Definition 2.5. A k×k sign pattern S is almost sap if there is an integer q > k+2
such that every polynomial in Rq is divisible by some polynomial in χ(S).

Observation 2.6. If there exists an almost sap k × k pattern with less than 2k
nonzero entries, then Conjecture 1.1 is false.

Proof. We take a pattern S as in Definition 2.5 with at most 2k−1 entries nonzero.
By Theorem 2.1, there exists a (q− k)× (q− k) spectrally arbitrary sign pattern P
with exactly 2(q− k) nonzero entries. Then S ⊕P is a spectrally arbitrary pattern
of the order 2q, and it has at most 2q − 1 < 2q nonzero entries. �

In the earlier paper [55], we disproved the complex number analogue of the 2n
conjecture with a similar idea. We showed, implicitly, that the complex number
analogue of the property in Definition 2.5 applies to a zero-nonzero pattern S if

• the polynomials tk and (t+ 1)k are realized by S over C, and
• a generic monic polynomial of degree k is realized by S over C.

These conditions are still necessary in the real number setting, but the situation gets
much more complicated. One reason for this is the richer structure of semialgebraic
sets compared to their algebraic counterparts over C, and, in particular, the fact
that χ(S) may not be dense even if it contains a generic polynomial. Also, the set
of irreducible polynomials is larger over the reals, and proving the property

(t2 + at+ 1)m ∈ χ(S)

for every a ∈ [−2, 2] may be a tedious task for a given sign pattern S. We are going
to avoid these obstructions with a specific construction of the pattern S which allows
a better control over the space χ(S) as compared to the example in [55]. Similar
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constructions can be helpful to study other problems on the topic, which may
include the restriction of Conjecture 1.1 to irreducible patterns [9, 11], the complex
number analogue of this question in which the signs of the real and imaginary parts
of the entries are considered separately [26, 43], and similar questions over different
ground fields [4, 49, 54]. In order to reduce the complexity of our constructions and
the amount of computation needed to check their validity, we decided to focus on
Conjecture 1.1, which is arguably the most well studied problem on the topic. In
fact, all calculations required to check our result can be made quite quickly even if
we do not rely upon the work of any computer program.

The outline of our further considerations is as follows. Section 3 contains several
basic definitions, standard techniques, and further remarks in algebraic geometry.
In Section 4, we use the preparations of the previous section and give one condi-
tion that is sufficient to invalidate Conjecture 1.1. This condition depends on the
existence of certain sign pattern S and algebraic set H that should satisfy several
further assumptions. Section 5 is devoted to the construction of an appropriate
algebraic set H, and, in Section 6, we describe the pattern S up to the existence of
one additional construction that is called an admissible pattern. In Section 7, we
provide a general framework of our construction of an admissible pattern, and, in
Section 8, we confirm its validity and complete the proof of the main result.

3. Several basic results of algebraic geometry

To begin with, we specify several cases where we gain some notational simiplicity
from the identification of a monic polynomial to the list of its coefficients.

Definition 3.1. Let F be either R or C. The Euclidean topology on Fk is defined
as the corresponding topology on Fk up to the identification of

tk + ck−1t
k−1 + . . .+ c1t+ c0 and (c0, c1, . . . , ck−1).

Definition 3.2. A polynomial mapping Φ : Ck → C is defined by the formula

Φ(tk + ck−1t
k−1 + . . .+ c1t+ c0) = ϕ(c0, c1, . . . , ck−1)

whenever ϕ is a polynomial in C[x1, . . . , xk].

The results of this section require several basic concepts and techniques from
algebraic geometry. Although the main topic of the paper concerns the matrices
over the reals, we need to consider algebraic sets and varieties over C.

Definition 3.3. A subset V ⊂ Ck or V ⊂ Ck is called an algebraic hypersurface
if V is the zero locus of some polynomial f of total degree at least one. In other
words, V is the set of all points p such that f(p) = 0.

Definition 3.4. A set V ⊂ Ck or V ⊂ Ck is called algebraic if it can be written
as the intersection of finitely many algebraic hypersurfaces.

Definition 3.5. If k = 2 in Definition 3.3, then V is called a plane curve. This
curve is said to have degree d if the total degree of the corresponding polynomial f
equals d. If f is irreducible, then such a curve is called irreducible.

Our construction requires a generalization of the following basic result, which is
similar to the one used in the complex number counterexample [55].
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Observation 3.6. Let p ∈ C[x1, . . . , xv] be a nonzero polynomial with v variables
and total degree d. If F1, . . . , Fv ⊂ C are subsets of at least d+ 1 distinct numbers
each, then there exist ξ1 ∈ F1, . . . , ξv ∈ Fv such that p(ξ1, . . . , ξv) 6= 0.

Proof. This is immediate by the induction on v, since a nonzero polynomial of
degree at most d cannot have more than d roots. �

We are ready to prove the desired generalization. As we explain after the proof,
the assumption of the irreducibility of C in the following lemma is important.

Lemma 3.7. There exists a function ϕ : Z × Z → Z with the following property.
For all integers d and v, if

(i) C1, . . . , Cv are irreducible plane curves of degree at most d each,
(ii) f ∈ C[x1, y1, . . . , xv, yv] is a polynomial of total degree at most d,
(iii) there exist p1 ∈ C1, . . . , pv ∈ Cv such that f(p1, . . . , pv) 6= 0,
(iv) S1 ⊂ C1, . . . , Sv ⊂ Cv are subsets of cardinality at least ϕ(d, v) each,

then there exist π1 ∈ S1, . . . , πv ∈ Sv such that f(π1, . . . , πv) 6= 0.

Proof. According to the condition (i), every such curve Cj is the zero locus of
an irreducible polynomial gj ∈ C[x, y]. Up to taking a generic rotation of the
coordinate system, we can assume that no curve Cj contains a straight line parallel
to one of the coordinate axes x = 0, y = 0. In this case, for any j and

(3.1) for all ξ ∈ C, there are at most d values of γ ∈ C such that gj(ξ, γ) = 0.

Let V be the intersection of the zero loci of the v polynomials

g1(x1, y1), . . . , gv(xv, yv).

Then V is the product C1 × . . .×Cv, and, since every polynomial gj is irreducible,
we conclude that V is an irreducible variety of dimension v, see the discussion of
Lemma 1.54 in [33]. If H is the zero locus of f , then the condition (iii) implies
H ∩ V 6= V, which implies that the dimension of the algebraic set H ∩ V is less
than v by the irreducibility of V, see [13, Chapter 9]. Therefore, the projection of
a point in H ∩ V onto the (x1, . . . , xv) coordinates cannot be generic, and hence,
by Theorem 3 in [13, Chapter 3, §2], the corresponding ideal I generated by

f(x1, y1, . . . , xv, yv), g1(x1, y1), . . . , gv(xv, yv)

contains a nonzero polynomial ψ ∈ C[x1, . . . , xv]. If the total degree of ψ is δ,
then, according to Observation 3.6, the conclusion of the lemma is true if every
set Sj contains at least δ + 1 points with different x-coordinates. In view of the
condition (3.1), this means that the conclusion holds with ϕ(v, d) > δd + 1, so it
remains to show that the optimal value of δ is bounded by a function of v and d.
In fact, a Gröbner basis of the elimination ideal I ∩C[x1, . . . , xv] appears as a part
of any Gröbner basis of I with the lexicographic ordering

y1 > . . . > yv > x1 > . . . > xv

as shown in standard texts on the topic [1, Theorem 2.3.4], and the total degree of
any polynomial in any Gröbner basis of I cannot exceed

2

(
d2

2
+ d

)22v−1

by the main result of the paper of Dubé [18]. �
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Remark 3.8. As said above, the irreducibility assumption in the item (i) of
Lemma 3.7 is important. In fact, the polynomial f(x, y) = x is not an identi-
cal zero on a curve xy = 0 because of the point (1, 0), but still f vanishes on the
infinite family of the points of the form (0, y) on this curve.

4. A characterization of almost sap patterns

Now we employ Lemma 3.7 to present a condition that guarantees that a given
sign pattern is almost sap. According to Observation 2.6, this gives a sufficient
condition for the invalidity of Conjecture 1.1. To begin with, we recall one additional
definition that is commonly used in publications on the topic [11, 36].

Definition 4.1. The inertia of a nonzero polynomial p with real or complex coef-
ficients is the triple (n1, n2, n3), where n1 is the number of roots of p with positive
real part, n2 is the number of roots of p with negative real part, and n3 is the
number roots of p with zero real part. The roots are counted with multiplicities.

Definition 4.2. We write Pk, Nk, Ok ⊂ Rk to denote the sets of all polynomials
in Rk which have the inertias (n, 0, 0), (0, n, 0), (0, 0, n), respectively.

We proceed with the main result of the section.

Theorem 4.3. A 2m× 2m sign pattern S has to be almost sap if

(o) O2m ⊂ χ(S)

and there exists an algebraic set H ⊂ C2m such that

(i) for all real numbers p 6= 0 and q > 0, we have
(
t2 + pt+ q

)m
/∈ H,

(ii) every polynomial in P2m ∪N2m is contained in χ(S) ∪H.

Proof. We take a finite family F of polynomial mappings such that the intersection
of the zero loci of all these mappings is H, and we write d to denote the largest total
degree of the mappings in F . We need to check the conditions of Definition 2.5,
and, to this end, we take some polynomial ` ∈ Rq with arbitrarily large q, and we
need to check that ` is divisible by some polynomial in χ(S).

Special case 1. If ` has 2m roots with zero real parts, counting roots with
multiplicities, then the product of the corresponding irreducible factors of ` belongs
to O2m and hence to χ(S) by the assumption (o) in the lemma.

Using the result of the special case 1, we assume in the rest of this proof, without
loss of generality, that every root of ` has real part nonzero. In other words,
the inertia of ` is (k1, k2, 0), and we can further drop the irreducible factors of `
corresponding to the smaller value between k1 and k2 to still have the product of
the remaining factors of arbitrarily large degree, that is, of the degree that is not
bounded by any function of S and d fixed in advance. The resulting product has
inertia either (k, 0, 0) or (0, k, 0) for some k, and if k is odd, we get rid of one
further real root to assume that k is even. Therefore, we can assume without loss
of generality that the polynomial ` represents as the product of polynomials

(4.1) τj = t2 + pjt+ qj

with qj > 0 and with pj all of the same nonzero sign. Also, we denote by J the
indexing set containing all possible values of j. It is clear that∏

j∈J′
τj ∈ P2m ∪N2m
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for any subset J ′ ⊂ J of cardinality m, and hence, in order to conclude the proof
with the application of the assumption (ii), it remains to find such a set J ′ with

(4.2)
∏
j∈J′

(
t2 + pjt+ qj

)
/∈ H.

The possibility (4.2) is immediate from the assumption (i) if there are at least
m different values of j ∈ J for which the corresponding polynomials τj coincide.
Otherwise, the ratio of at least 1/m of all the elements of J correspond to pairwise
distinct polynomials of the form (4.1). Since m is a constant fixed in advance, we
can assume without loss of generality that in fact τi 6= τj whenever i 6= j.

We need one further technical notational convention. Namely, for any polynomial
mapping π : C2m → C, we define π ∈ C[x1, y1, . . . , xm, ym] by the formula

π(ξ1, γ1, . . . , ξm, γm) = π

(
m∏
i=1

(
t2 + ξit+ γi

))
.

Special case 2. Suppose that there exists a plane curve C ⊂ C2 of degree at
most d such that the family C ′, which we define as the set of all points (pj , qj)
that belong to C, has cardinality at least |J | − m. We can assume without loss
of generality that C is irreducible because it has at most d irreducible components
each of which has degree not exceeding the degree of C, and d is a constant fixed
in advance. We also note that there exists a polynomial ϕ ∈ F such that

ϕ

C × . . .× C︸ ︷︷ ︸
m times

 6= 0

because of the assumption (i), and hence we can apply Lemma 3.7 to find, since
the set C ′ ⊂ C is sufficiently large, a subfamily of m distinct points

(pj1 , qj1) , . . . , (pjm , qjm) ∈ C ′

that fulfill the condition

ϕ (pj1 , qj1 , . . . , pjm , qjm) 6= 0,

which means that the set J ′ = {j1, . . . , jm} satisfies the condition (4.2).

We proceed the argument. By the assumption (i), the family F should contain at
least one nonzero polynomial mapping ψ. We can consider the correponding map-
ping ψ as a polynomial in the variables x1, y1, . . . , xm−1, ym−1 with the coefficients
in C[xm, ym], and we denote by σ ∈ C[xm, ym] one arbitrary nonzero coefficient
arising in this way. Now we can assume that

σ(pjm , qjm) 6= 0, for some jm ∈ J,
since otherwise all the points of the form (pj , qj) would lie on the curve σ = 0, and
this situation is already considered in the special case 2. Therefore, the polynomial

ψm−1 := ψ (x1, y1, . . . , xm−1, ym−1, pjm , qjm) ∈ C[x1, y1, . . . , xm−1, ym−1]

is nonzero. We proceed with the application of the same argument to ψm−1 which
eventually leads us to indexes j1, . . . , jm in J such that

ψ (pj1 , qj1 , . . . , pjm , qjm) 6= 0,

and then the set J ′ = {j1, . . . , jm} satisfies the condition (4.2). �
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5. A set H in Theorem 4.3

In the rest of our paper, we conclude the construction of our counterexamples,
to which end we need to define the corresponding sign pattern S and algebraic set
H as in Theorem 4.3. It turns out that the construction of H is somewhat more
straightforward, and we proceed without the specification of the relevant value of
m, which is assumed to be an arbitrary large integer in this section.

Definition 5.1. Let U be the set of all polynomials f ∈ C2m for which there exist
α, β ∈ C such that the polynomial f(t)− α divides t2 − β, and the quotient

(5.1)
f(t)− α
t2 − β

is either

(1) divisible by (t− u)2(t− v)2, for some u, v ∈ C,
(2) divisible by (t2 − u)(t2 − v), for some u, v ∈ C.

Definition 5.2. We define H as the Euclidean closure of U .

Observation 5.3. The set H is algebraic.

Proof. Let U1 be the image of the mapping C2m−2 → C2m sending a vector

x = (a, b, u, v, w0, . . . , w2m−7)

to the polynomialt2m−6 +

2m−7∑
j=0

wjt
j

 (t2 − b)(t− u)2(t− v)2 + a,

and let U2 be the image of the mapping that sends x tot2m−6 +

2m−7∑
j=0

wjt
j

 (t2 − b)(t2 − u)(t2 − v) + a.

We recall that the image of a polynomial mapping Cn → Cq is always constructible
by a well known theorem of Chevalley, see [31] for a recent account, which means
that the sets U1 and U2 are constructible. Furthermore, the Zariski closure coincides
with the Euclidean closure for all constructible sets over the complex numbers, see
Theorem 2.33 in [50], so the Euclidean closures of the sets U1 and U2 are algebraic.
Since we have U = U1 ∪ U2, it remains to apply a basic fact that the union of
finitely many algebraic sets is algebraic, see Lemma 2 in [13, Chapter 1, §2]. �

The rest of this section is devoted to the condition (i) in Theorem 4.3.

Definition 5.4. For any polynomial f ∈ C[t], we define the even part fev and
odd part fod as the unique polynomials satisfying f(t) = fev

(
t2
)

+ t fod
(
t2
)
.

Example 5.5. If f = t10 + t3 + 2t2 + 3t+ 4, then fev = t5 + 2t+ 4 and fod = t+ 3.

Observation 5.6. The following conditions are equivalent for f ∈ C[t] and b ∈ C:

(1) the polynomial (t2 − b) divides f ,
(2) fev(b) = fod(b) = 0.
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Proof. If fev(b) = p, fod(b) = q, then there are g, h ∈ C[x] and p, q ∈ C such that

fev(x) = (x− b) g(x) + p and fod(x) = (x− b)h(x) + q,

and then
f(t) = (t2 − b)

(
g
(
t2
)

+ t h
(
t2
))

+ qt+ p,

which means that the remainder of f(t) modulo t2 − b is qt+ p. �

We proceed with several lemmas on the sets U and H.

Lemma 5.7. If f ∈ U , then fod(β) = 0, fev(β) = α for the values in Definition 5.1.

Proof. We use Observation 5.6. The first equality fod(β) = 0 follows because the
odd parts of f − α and f coincide, and the second equality fev(β) = α can be
observed because the even part of f − α equals fev − α. �

Remark 5.8. In the following lemma, the condition deg fod = m− 1 means that f
has a nonzero number at the place of the (2m− 1)-th degree coefficient.

Lemma 5.9. Let f ∈ H be a polynomial with deg fod = m− 1. Then f ∈ U .

Proof. The condition f ∈ H means that there exists a sequence (fn) of polynomials
in U such that fn → f as n → ∞. We write (αn) and (βn) to denote the number
sequences that correspond to (fn) in terms of Definition 5.1. We get

(5.2) (fn)od (βn) = 0 and (fn)ev (βn) = αn,

by Lemma 5.7, and we remark that, for all sufficiently large indexes n, we have

(5.3) deg fod = deg (fn)od = m− 1

in view of the assumption in the formulation of the lemma. The equalities (5.3)
can be used to show that the sequence (βn) is bounded, which employs the fact
that the roots of a monic polynomial depend continuously on its coefficients, see
Theorem B in [32] for a precise statement. Therefore, the sequence (βn) admits a
converging subsequence, which allows us to assume without loss of generality that
(βn) has some limit β as n→∞. Passing to the limits in (5.2), we get

(5.4) fod(β) = 0 and fev(β) = α,

where α is the limit of (αn). In view of Observation 5.6, the equalities (5.4) imply
that f(t)− α is divisible by (t2 − β), and, again by taking the limits, we get

(5.5)
fn(t)− αn
t2 − βn

→ f(t)− α
t2 − β

as n→∞. We recall that, directly from our application of Definition 5.1, we know
that every left-hand side polynomial in (5.5) should be either

(1) divisible by (t− u)2(t− v)2, for some u, v ∈ C, or
(2) divisible by (t2 − u)(t2 − v), for some u, v ∈ C.

One easily observes that the conditions (1) and (2) in Lemma 5.7 are preserved
by taking the limit. Therefore, the polynomial on the right-hand side of (5.5) should
satisfy at least one of the conditions (1) or (2). This means that the polynomial f
satisfies the assumptions of Definition 5.1, and hence we have f ∈ U . �

We recall that the assumption (i) in Theorem 4.3 states that the polynomial

(5.6) π(t) =
(
t2 + pt+ q

)m
with real numbers p 6= 0, q > 0

does not belong to H. In view of Lemma 5.9, it suffices to prove π /∈ U .
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Lemma 5.10. We have π /∈ U for the polynomial in (5.6).

Proof. We argue by contradiction and assume the converse, which means that Def-
inition 5.1 applies to π. Therefore, there exist α, β ∈ C such that the polynomial
π − α is divided by t2 − β, and the quotient

(5.7)
π − α
t2 − β

is either

(1) divisible by (t− u)2(t− v)2, for some u, v ∈ C,
(2) divisible by (t2 − u)(t2 − v), for some u, v ∈ C.

Since every pair of distinct roots of π sum to −p 6= 0, and since 0 is not a root of
π by q 6= 0, the polynomial (t2 − β) cannot divide π with any β ∈ C, and hence

(5.8) α 6= 0.

Now the expression

(5.9) (π − α)′ = m(2t+ p)
(
t2 + pt+ q

)m−1
for the derivative of π − α shows that every multiple root ρ of π − α should either
be equal to −p/2 or be a root of t2 + pt+ q = 0. The latter would mean that ρ is
a root of π, which is impossible by the condition (5.8). Therefore, such a ρ should
be equal to −p/2 and be a simple root of the derivative (5.9), which means that
π − α can have at most one multiple root, and this root cannot have multiplicity
greater than two. Therefore, the condition (1) cannot be satisfied.

Now it remains to invalidate the condition (2) to reach the desired contradiction.
It is clear from Definition 5.4 that

π(t) = πev
(
t2
)

+ t πod
(
t2
)

and π(−t) = πev
(
t2
)
− t πod

(
t2
)
,

which implies
2tπod

(
t2
)

= (t2 + pt+ q)m − (t2 − pt+ q)m

and if we take t = x+ iy, with x, y ∈ R, to be a root of πod
(
t2
)

= 0, we get∣∣(x+ iy)2 + p(x+ iy) + q
∣∣ =

∣∣(x+ iy)2 − p(x+ iy) + q
∣∣ ,

where i is the imaginary unit. This simplifies to px(q + x2 + y2) = 0, and since we
have p 6= 0, q > 0, we get x = 0, which means that the equation πod(β) = 0 can
only be satisfied if β is the square of a number in iR. An application of Lemma 5.7
confirms that πod(β) = 0, and hence we get

(5.10) β ∈ R and β 6 0.

The consideration leading to (5.10) still applies if we replace β by any of the numbers
u, v in the condition (2) above in this proof, so

(5.11) the polynomial π − α has at least six roots on iR, counting multiplicities.

The set of all such roots, represented as ξ + iγ, with ξ, γ ∈ R, lies on the curve

(5.12)
∣∣q + p(ξ + iγ) + (ξ + iγ)2

∣∣ = r

with r being the m-th arithmetic root of |α|. The formula (5.12) defines a bounded
curve of degree four, so it cannot have more than four points on any straight line,
and hence the polynomial π − α cannot have more than four roots on iR if we do
not count multiplicities. However, during the consideration of the condition (1) we
noticed that this polynomial can have at most one multiple root, and if this happens,
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the corresponding multiplicity equals two, and hence the polynomial π − α cannot
have a total of more than five roots on iR, counting multiplicities. Therefore, we
reach a contradiction to the condition (5.11) and complete the proof. �

We have just proved the validity of the condition (i) in Theorem 4.3.

Corollary 5.11. We have π /∈ H for the polynomial in (5.6).

Proof. Follows from Lemmas 5.9 and 5.10. �

6. A sign pattern S in Theorem 4.3

This section specifies a sign pattern S relevant for Theorem 4.3 up to one auxil-
iary intermediate construction. We are still not ready to specify the corresponding
value of m, but now we need to determine its parity.

Definition 6.1. We set m = 2µ+ 1 for some positive integer µ.

Definition 6.2. If (n1, n2, n3) is the inertia of some polynomial as in Definition 4.1,
then n1 and n2 are called its positive and negative inertia indexes, respectively.

Definition 6.3. A polynomial ϕ ∈ R4µ is called balanced if ϕ(0) > 0, and both
the positive and negative inertia indexes of ϕ are between 2µ− 4 and 2µ+ 2.

Definition 6.4. A polynomial ϕ ∈ C4µ is called almost square-free if ϕ has at most
one multiple root which, if it exists, has multiplicity not greater than three.

Definition 6.5. A 4µ × 4µ sign pattern A is called admissible if the following
conditions are satisfied for all indexes i, j in {1, . . . , 4µ}:

(A1) the (i, j) entry of A is nonzero if j = i+ 1,
(A2) the (i, j) entry of A is zero whenever j > i+ 2,
(A3) any almost square-free balanced polynomial in R4µ belongs to χ(A).

We proceed with a construction of a pattern S relevant to Theorem 4.3. In what
follows, the notation M(i, j) stands for the (i, j) entry of a matrix M .

Definition 6.6. Let A be a 4µ × 4µ admissible sign pattern. We define the sign
pattern S = S(A) of the size (4µ+ 2)× (4µ+ 2) as follows:

(S0) the upper left 4µ× 4µ block of S(A) equals A,
(S1) S has the plus sign at the positions (4µ, 4µ+ 1), (4µ+ 1, 4µ+ 2),
(S2) S has the minus sign at the position (4µ+ 2, 4µ+ 1),
(S3) S(4µ+ 2, 1) = A(1, 2) · A(2, 3) · . . . · A(4µ− 1, 4µ),
(S4) all entries of S not specified in (S0)–(S3) are zero.

We can describe the set of polynomials realized by this new pattern.

Lemma 6.7. Let A be an admissible 4µ×4µ sign pattern, and let S be the pattern as
in Definition 6.6. A polynomial h ∈ R4µ+2 belongs to χ(S) if and only if there exist
positive real numbers a, b and a polynomial g ∈ χ(A) such that h(t) = (t2+b)g(t)−a.

Proof. If we replace the (4µ + 2, 1) entry of S by a zero, then we get a block
triangular sign pattern whose diagonal blocks

A and

(
0 +
− 0

)
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realize the characteristic polynomials g(t) and (t2+b). The summands involving the
(4µ+2, 1) entry of S contribute an arbitrary negative number to the corresponding
characteristic polynomial because the cofactor of this entry is the lower triangular
matrix with the entries (1, 2), . . . , (4µ+ 1, 4µ+ 2) on the diagonal, and the sign of
this contribution is determined by the condition (S3) in Definition 6.6. �

Now we reduce Conjecture 1.1 to the existence of sparse admissible patterns.

Lemma 6.8. If there exists a 4µ× 4µ admissible sign pattern A with less than 8µ
nonzero entries, then Conjecture 1.1 is false.

Proof. We apply Theorem 4.3 to the pattern S = S(A) introduced in Definition 6.6
and algebraic set H constructed in Definition 5.2. The condition (i) in Theorem 4.3
is already confirmed in Corollary 5.11, so the remaining conditions are (o) and (ii).
In the rest of the proof we check their validity, which would imply that S is almost
sap by Theorem 4.3, and, since the number of nonzero entries of S equals four plus
the number of nonzero entries of A, that is, the latter number is less than 8µ+ 4,
an application of Observation 2.6 would complete the argument.

In order to confirm the condition (o), we need to check that, if f is a monic
polynomial of degree 4µ+ 2 with real coefficients and with all roots on the line iR,
then f ∈ χ(S). In fact, any such polynomial represents as

(6.1) f(t) = ϕ(t2)

for some polynomial ϕ of degree 2µ+1 with nonnegative real coefficients. For large
positive α, the roots of the polynomial ϕ+ α2µ+1 have the form1

(6.2) α εj uj(α) with j ∈ {1, . . . , 2µ+ 1},
where {ε1, . . . , ε2µ+1} is the family of all roots of −1 of the degree 2µ + 1, and
every uj(α) is a function that approaches 1 as α → ∞. One of the roots in (6.2)
should be real because the degree of ϕ is odd, and, in fact, this should be the root
corresponding to an index k with εk = −1. Since the roots of the polynomial

(6.3) g(t) =
f(t) + α2µ+1

t2 + αuk(α)

come as the square roots of all but the k-th number in (6.2), the polynomial g has
the positive and negative inertia indexes equal to each other. Similarly, since the
numbers in (6.2) have nonzero imaginary parts unless j = k, the polynomial g has
no roots on the line iR, which implies, finally, that the inertia of g equals (2µ, 2µ, 0),
and hence g is balanced in terms of Definition 6.3. Similarly, the fact that the roots
in (6.2) are simple implies that the polynomial g has no multiple roots, and hence g
is almost square-free in the notation of Definition 6.4. Therefore, we get g ∈ χ(A)
by the condition (A3) in Definition 6.5, and hence f belongs to χ(S) by Lemma 6.7.

We proceed with the condition (ii) in Theorem 4.3. We take

(6.4) f ∈ P4µ+2 ∪N4µ+2

and we note that, as long as a increases from 0 to +∞, the inertia of the polynomial
f + a changes from either (4µ+ 2, 0, 0) or (0, 4µ+ 2, 0) at a = 0 to one of

(2µ+ 2, 2µ, 0), (2µ, 2µ+ 2, 0)

1Again, we use the continuity of the roots of a monic polynomial with variable coefficients [32].
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at every sufficiently large value of a. Also, the condition (6.4) implies

(6.5) f(0) > 0,

and hence f + a cannot have zero roots for nonnegative a. Therefore, the inertia
of f + a can change, as long as a moves from 0 to +∞, only at those values of a
which make f + a have purely imaginary roots. Therefore, if we take D as the set
of all positive a for which there exists a positive number b such that the polynomial
(t2 + b) divides f(t) +a, we get that D is finite and non-empty, and the polynomial

g(t) =
f(t) + α

t2 + β

corresponding to α = maxD satisfies the condition that

(6.6) both the positive and negative inertia indexes of g are at most 2µ+ 2.

The situation splits into the two cases.

Case 1. If f ∈ H, then there is nothing to prove in the current condition (ii).
Case 2. If f /∈ H, then f /∈ U by Definition 5.2, and hence the conditions (1)

and (2) in Definition 5.1 are not satisfied by g. The failure of (1) shows that g
is almost square-free in the notation of Definition 6.4. Also, the condition (6.6)
together with the negation of the condition (2) in Definition 5.1 show that both the
positive and negative inertia indexes of g are at least 2µ − 4, and, together with
the inequality (6.5), which implies g(0) > 0, this shows that the polynomial g is
balanced in terms of Definition 6.3. This implies g ∈ χ(A) from the item (A3) in
Definition 6.5, and hence we get the desired condition f ∈ χ(S) from Lemma 6.7.

The cases 1 and 2 complete the proof of the condition (ii) in Theorem 4.3, which
confirms the assertion of the current lemma. �

7. A sparse admissible pattern

Our next goal is to construct a pattern which has less than 8µ nonzero entries and
satisfies the assumptions of Definition 6.5. We begin with two simple observations.

Observation 7.1. Let S be an n × n sign pattern with even n. Then, for any
polynomial f , we have f(t) ∈ χ(S) if and only if f(−t) ∈ χ(−S).

Proof. Follows from the definitions of the characteristic polynomial and χ(S). �

Observation 7.2. For any integer k, there exists a sign pattern Ck such that

(C1) the (i, j) entry of Ck is nonzero if j = i+ 1,
(C2) the (i, j) entry of Ck is zero if j > i+ 2,
(C3) Ck has exactly 2k − 1 nonzero entries,
(C4) χ (Ck) contains all degree-k monic polynomials with all coefficients positive.

Proof. One can define Ck as a signing of the standard companion matrix pattern
in a way similar to [19, 20]. Namely, one can take the plus signs at the positions

(1, 2), (2, 3), . . . , (k − 1, k)

and the minus signs at the entries (j, 1) with all j ∈ {1, . . . , k}. This gives a total
of 2k − 1 nonzero entries, and all the other entries are set to be zero. �

We proceed with another important building block of our admissible pattern.
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Assumption 7.3. The 6× 6 sign pattern

W =


− + 0 0 0 0
− 0 + 0 0 0
0 0 + − 0 0
0 0 + 0 + 0
+ 0 0 0 0 +
0 0 0 0 − 0


possesses the following property. There exists a positive integer s such that, for
any set U containing at least s distinct polynomials of the form

t2 + pt+ q with real numbers p > 0, q > 0,

and for any set V containing at least s distinct polynomials of the form

t2 + pt+ q with real numbers p 6= 0, q > 0,

there exist distinct u1, u2 ∈ U and v ∈ V such that u1u2v ∈ χ(W).

Our proof of Assumption 7.3 requires some further computational effort, so we
decided to give it separately in Section 8. Now we are ready to confirm that this
assumption is sufficient to disprove Conjecture 1.1.

Theorem 7.4. Assumption 7.3 implies the invalidity of Conjecture 1.1.

Proof. In view of Lemma 6.8, it suffices to construct a 4µ × 4µ admissible sign
pattern A with less than 8µ nonzero entries. To this end, we take W and s as in
Assumption 7.3, we also take C4s as in Observation 7.2, and we define

(7.1) A =


W E6×6 O6×4s O6×4s
O6×6 −W E6×4s O6×4s
O4s×6 O4s×6 C4s E4s×4s
O4s×6 O4s×6 O4s×4s −C4s


to be the sign pattern of the size 4µ× 4µ with 4µ = 4(2s+ 3). Here, the notation
Ea×b stands for the a×b matrix which has the plus sign the (a, 1) position and zeros
everywhere else, and Oa×b is the a× b zero matrix. The conditions (A1) and (A2)
in Definition 6.5 follow directly from our notation, and it is also clear that A has
exactly 8µ− 1 nonzero entries.

Therefore, it remains to confirm the condition (A3) in Definition 6.5. To this
end, we take a monic polynomial f of degree 4µ which is balanced in the notation of
Definition 6.3 and almost square-free in terms of Definition 6.4. Since f is balanced,
we can represent it as

f = π · ν · ϕ1 · ϕ2 · ϕ3 · ϕ4,

where π, ν are polynomials in R2µ−4 with the inertias (2µ− 4, 0, 0), (0, 2µ− 4, 0),
respectively, and

(7.2) ϕj = t2 + pjt+ qj with pj , qj ∈ R and qj > 0,

for j ∈ {1, 2, 3, 4}. Since, according to Definition 6.3, the polynomial f can have
neither the positive inertia index nor the negative inertia index greater than 2µ+2,
we get that

(7.3) there are j1, j2 ∈ {1, 2, 3, 4} such that pj1 > 0 and pj2 6 0.
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Furthermore, we use the representations of π and ν as the products of polynomials
irreducible over R, and we find sets Pos and Neg each consisting of µ− 2 = 2s+ 1
polynomials of the form

t2 + pt+ q with q > 0

and p > 0 in the case of Pos, and with p < 0 in the case of Neg, such that ν
is the product of all polynomials in Pos, and π is the product of all polynomials
in Neg. Since the polynomial f was almost square-free, the elements of Pos and
Neg cannot repeat, so they are sets indeed in the sense that all their elements are
pairwise different. Also, we take an arbitrary splitting of these sets

Pos = Pos1 ∪Pos2 and Neg = Neg1 ∪Neg2

into the disjoint unions of the corresponding sets of cardinalities at least s each,
which is possible because, as said above, we have |Pos | = |Neg | = 2s+ 1.

Now we are going to represent f as an element in χ(A). Since A has the corre-
sponding block triangular form (7.1), we get

(7.4) χ(A) = χ(W) · χ(−W) · χ(C4s) · χ(−C4s),

and hence we need to represent f as the product of the four polynomials that belong
to the four corresponding sets in (7.4). The situation splits into three cases, which
depend on the signs of the numbers pj in (7.2).

Case 1. If p1 > 0, p2 > 0, p3 > 0, then, in view of the condition (7.3), we can
assume without loss of generality that p4 6 0. We use Assumption 7.3 and find dis-
tinct π1, π2 ∈ Pos1 and π3 ∈ Pos2 such that π1π2π3 ∈ χ(W). Using Assumption 7.3
again, but at this time taking into account Observation 7.1, we find distinct

ν1, ν2 ∈ Neg and π4 ∈ Pos \{π1, π2, π3}

such that ν1ν2π4 ∈ χ(−W). It remains to note that the products of all elements of

{ϕ1, ϕ2, ϕ3} ∪ Pos \{π1, π2, π3, π4} and {ϕ4} ∪Neg \{ν1, ν2}

belong to χ(C4s) and χ(−C4s), respectively.
Case 2. If p1 6 0, p2 6 0, p3 6 0, then the proof is similar to the previous

case. In fact, we can assume without loss of generality that p4 > 0, and we can
find pairwise distinct polynomials π1, π2 ∈ Pos and ν1, ν2, ν3, ν4 ∈ Neg such that
π1π2ν1 ∈ χ(W) and ν2ν3ν4 ∈ χ(−W), and the products over the sets

{ϕ4} ∪ Pos \{π1, π2} and {ϕ1, ϕ2, ϕ3} ∪Neg \{ν1, ν2, ν3, ν4}

belong to χ(C4s) and χ(−C4s), respectively.
Case 3. If p1 > 0, p2 > 0 and p3 6 0, p4 6 0, then, again, we complete the

proof in a similar fashion. Using Assumption 7.3, we find distinct π1, π2 ∈ Pos1
and π3 ∈ Pos2 such that π1π2π3 ∈ χ(W), and also we find distinct ν1, ν2 ∈ Neg1

and ν3 ∈ Neg2 such that ν1ν2ν3 ∈ χ(−W), and then the products over the sets

{ϕ1, ϕ2} ∪ Pos \{π1, π2, π3} and {ϕ3, ϕ4} ∪Neg \{ν1, ν2, ν3}

belong to χ(C4s) and χ(−C4s), respectively.

Up to a possible relabeling of the indexes j in (7.2), the cases 1–3 cover all
possibilities, and hence the proof is complete. �
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8. A proof of Assumption 7.3

Now we are going to prove Assumption 7.3 and finalize the paper. To this
end, we need to study the set of polynomials realizable by the sign pattern W in
Assumption 7.3. As we see later, the polynomials that are problematic from this
point of view belong to the zero set of the following mapping.

Definition 8.1. We define the polynomial mapping ∆ from C6 to C by the formula

(8.1) ∆(ψ) = c31c6 − c31c2c4 + c21c
2
2c3 + c21c3c4 − 2c1c2c

2
3 + c33

if ψ = t6 + c1t
5 + c2t

4 + c3t
3 + c4t

2 + c5t+ c6 is an arbitrary polynomial.

Lemma 8.2. Let ψ ∈ C6 be a polynomial such that ∆(ψ) 6= 0. Then

ψ(t) + xt is not divisible by t4 + yt2 + z

for any x, y, z ∈ C.

Proof. If we write

ψ = t6 + c1t
5 + c2t

4 + c3t
3 + c4t

2 + c5t+ c6,

then the remainder of ψ(t) + xt modulo t4 + yt2 + z equals

(c3 − c1y) t3 + (y2 − z + c4 − c2y) t2 + (c5 + x− c1z) t+ (c6 + yz − c2z),
so this remainder is zero if and only if

(8.2)


c3 − c1y = 0,

y2 − z + c4 − c2y = 0,

c5 + x− c1z = 0,

c6 + yz − c2z = 0.

At this point, it is easy to eliminate x, y, z from the equations (8.2). In fact, the
third of these equations allows one to express x as a function of the other variables,
and x does not appear in any other equation. So we can remove this third equation,
and we can further express y and z from the first and second equations in (8.2),
respectively. Then we compare the expressions for y and z with the remaining
fourth equation, and we get ∆(ψ) = 0 as an outcome of the elimination. �

In the rest of this section, we use the notation ∆ to denote the mapping in (8.1),
and we write W to denote the sign pattern in Assumption 7.3.

Lemma 8.3. We have h ∈ χ(W) if and only if

h(t)− at = (t2 + b)(t2 + p1t+ q1)(t2 − p2 + q2)

for some positive a, b, p1, p2, q1, q2 in R.

Proof. The proof is similar to Lemma 6.7. If we replace the (5, 1) entry of W by a
zero, then we get a block triangular sign pattern whose diagonal blocks are(

− +
− 0

)
,

(
+ −
+ 0

)
,

(
0 +
− 0

)
,

and these blocks realize the corresponding characteristic polynomials

(t2 + p1t+ q1), (t2 − p2 + q2), (t2 + b).

Finally, the summand involving the (5, 1) entry of W contributes the at summand
to the characteristic polynomial of a matrix with the pattern W. �
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Observation 8.4. If h ∈ R6 is a polynomial with h(0) > 0, then, for any suffi-
ciently large positive a, the polynomial h(t)− at has inertia (4, 2, 0).

Proof. Due to the continuity of the roots of a monic polynomial as functions of its
coefficients, it suffices to consider the polynomial t6 + h(0) instead of h. �

Lemma 8.5. Let U , V be sets as in Assumption 7.3. The condition u1u2v ∈ χ(W)
can be false for u1, u2 ∈ U and v ∈ V only if ∆(u1u2v) = 0.

Proof. We take h = u1u2v. Using the definitions of U , V in Assumption 7.3, we
note that the inertia of h is either (2, 4, 0) or (0, 6, 0), and also we have h(0) > 0.

We proceed with the argument similar to a consideration in Lemma 6.8. Namely,
as long as we increase the value of a from 0 to +∞, the inertia of the polynomial
h(t) − at changes from either (2, 4, 0) or (0, 6, 0) at a = 0 to the inertia (4, 2, 0)
taken at every sufficiently large value of a by Observation 8.4. Therefore, we can
take α as the supremum of the set of all positive a for which the positive inertia
index of h(t)−at is less than 4. Then, since the condition h(0) > 0 guarantees that
the polynomial h(t)−at has no zero roots for nonnegative a, the inertia of h(t)−at
can change, as long as a moves from 0 to +∞, only at those values of a which make
h(t)− at have purely imaginary roots. Therefore, there exists some positive b such
that the polynomial (t2 + b) divides h(t)− αt, and their quotient

g(t) =
h(t)− αt
t2 + b

has both the positive and negative inertia indexes not greater than 2. If g has roots
on iR, then we get ∆(h) = 0 by Lemma 8.2, so it remains to consider the case that
the inertia of g is (2, 2, 0), which implies h ∈ χ(W) by Lemma 8.3. �

In order to complete the proof of the main result, we need several computational
claims below. As we can see, Claims 8.6 and 8.7 are still straightforward and do
not require any hard computation, but the proof of Claim 8.8 is somewhat more
demanding. We hope that our comments on Claim 8.8 can allow one to check it
easily on a computer and show the way how to perform this computation quite
quickly even if we do not want to rely on the work of a computer.

Claim 8.6. For all u, v in the set U as in Assumption 7.3, the polynomial mapping
C2 → C defined as π → ∆(uvπ) is not identically zero.

Proof. According to Assumption 7.3, we can write

(8.3) u = t2 + pt+ q, v = t2 + p′t+ q′, π = t2 + xt+ y

with positive real numbers p, p′, q, q′. We note that c21c
2
2c3 is the only summand

in the expression (8.1) with a nonzero contribution to the coefficient of x2y3 in
π → ∆(uvπ). This coefficient equals p+ p′ > 0, which implies ∆(uvπ) 6= 0. �

Claim 8.7. If u, v are distinct elements of the set U as in Assumption 7.3, then
the polynomial mappings C2 → C defined as

(8.4) π → ∆(u2π) and π → ∆(v2π)

are not linearly dependent.
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Proof. We keep using the notation (8.3), and we conclude, similarly to Claim 8.6,
that the coefficients of x2y3, x3y2, x4y in ∆(u2π) equal

2p, 8p2, 10p3 + 2pq,

respectively. Since p 6= 0 and p′ 6= 0, the functions (8.4) can have linearly dependent
pairs of the coefficients corresponding to (x2y3, x3y2) only if p = p′, but then the
coefficient of x4y invalidates the linear dependence because u 6= v. �

Claim 8.8. Let u ∈ U , where U is the set in Assumption 7.3. Let π = t2 + xt+ y
with unknown x, y. Then ∆(u2π) is irreducible as an element of C[x, y].

Proof. Still using the notation (8.3), we note that the property ∆(ψ) = 0 does not
invalidate if we multiply every root of ψ by the same nonzero number. Therefore,
we can assume without loss of generailty that q = 1. An inspection similar to
Claims 8.6 and 8.7 shows that the total degree of ∆(u2π) is five, and the degree
with respect to y is three. Moreover, the monomial 2px2y3 is the only one containing
the third power of y with a nonzero coefficient. Therefore, if the polynomial ∆(u2π)
is reducible, one of the irreducible components should have the form either x = s
or yxk+ϕk = 0, where s ∈ C, k ∈ {0, 1, 2}, and ϕk ∈ C[x] is a polynomial of degree
at most k + 1. This shows that one of the substitutions

(8.5) x = s, y = s1 x+ s2 + s3 x
−1 + s4 x

−2 with s, s1, s2, s3, s4 ∈ C
converts ∆(u2π) into the identically zero rational function. But, in fact, we can
reach a contradiction from the condition that this rational function is zero. This
contradiction is immediate in the former possibility in (8.5), because the above
mentioned coefficient of y3 implies s = 0, but, nevertheless, the polynomial ∆(u2π)
is not divisible by x. The latter substitution (8.5) leads to a system with 5 variables
s1, s2, s3, s4, p and 10 equations corresponding to the degree coefficients of x in the
resulting rational function. From an inspection of the result of the computation,
we immediately get s4 = 0 from the (−4)-th degree coefficient. Also, the 0-th and
1-st degree coefficients allow one to express s1 and s2 as rational functions of s3, p,
and the situation reduces to a system of five non-trivial equations with variables
s3, p whose inconsistency can be checked with basic methods. �

We proceed with the main results.

Lemma 8.9. Assumption 7.3 is true.

Proof. Let U, V be sets as in Assumption 7.3. In view of Lemma 8.5, it is sufficient
to find u1, u2 ∈ U and v ∈ V such that ∆(u1u2v) 6= 0. We write U to denote the
set of all pairs (p, q) such that t2 + pt+ q ∈ U , and also use the letter V to denote
the corresponding set of pairs arising from V . We take

δ(p1, q1, p2, q2, p3, q3) = ∆
(
(t2 + p1t+ q1)(t2 + p2t+ q2)(t2 + p3t+ q3)

)
,

so now we need to find pairs µ1, µ2 ∈ U and ν ∈ V such that

(8.6) δ(µ1, µ2, ν) 6= 0.

Now we take two arbitrary distinct pairs µ′ = (p′, q′) and µ′′ = (p′′, q′′) in U , and
we consider the polynomial

(8.7) δ(µ′, µ′′, z),

which, in view of Claim 8.6, is not the zero function of a generic pair z. Also, we can
assume without loss of generality that all the points in V belong to the zero locus
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of (8.7), because otherwise we can find a point ν ∈ V such that δ(µ′, µ′′, ν) 6= 0,
which corresponds to the formula (8.6) and completes the proof. Therefore, we
have

(8.8) V ⊂ ΓV with some plane curve ΓV of degree at most d,

where d is the total degree of δ.
Now we proceed with a similar result on the set V. We take an arbitrary pair

ν0 ∈ V, and we note that, in view of Claim 8.8, the condition

δ(x, y, ν0) = 0

is not void as a function of generic pairs x, y. Therefore, if every µ0 ∈ U makes

(8.9) δ(x, µ0, ν0) = 0

a void equation relative to x, then all the points in U should belong to some plane
curve of degree at most d automatically. If this is not the case, which means that
the equation (8.9) is not void, then, again assuming the invalidity of the desired
result, we have this equation satisfied by every point in U \ {µ0}. Therefore, we
can assume without loss of generality that

(8.10) U ⊂ ΓU with some plane curve ΓU of degree at most d.

Also, we can assume without loss of generality that the curves ΓU and ΓV in (8.8)
and (8.10) are irreducible because any of these curves has at most d irreducible
components, and, since d is a fixed constant, one of the irreducible components
of ΓU should contain an arbitrarily large number of points of U , and a similar
conclusion holds for ΓV and V. Now we can assume without loss of generality that

(8.11) δ (ΓU × ΓU × ΓV ) = 0,

because, if this is not the case, then, in view Lemma 3.7, there exist ν ∈ V and
distinct µ1, µ2 ∈ U satisfying the condition (8.6), which is sufficient to complete
the proof. The condition (8.11) implies that the curve ΓV is a common irreducible
component of the curves

(8.12) δ(µ1, µ1, z) = 0 and δ(µ2, µ2, z) = 0,

for all distinct µ1 and µ2 in U . Both curves (8.12) are irreducible by Claim 8.8, and
the corresponding equations are not equivalent as shown in Claim 8.7. Therefore,
the conditions (8.12) show that the set V lies in the intersection of two irreducible
curves whose degrees are at most d, and hence the set V contains at most d2 points.
In particular, the set V cannot be arbitrarily large, which means that our previous
considerations based on the invalidity of Assumption 7.3 lead to a contradiction. �

Therefore, we finalized the proof of Lemma 8.9 and confirmed Assumption 7.3.
In view of Theorem 7.4, this completes our refutation of Conjecture 1.1.
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