A relationship between exponential growing and a basic asymptotic function

by
Jaime Vladimir Torres-Heredia Julca ${ }^{1}$

December 2020

1.- Abstract

In this paper we study a simple exponential growing problem which leads to a basic asymptotic function. It shows a hidden property of asymptotic functions.

2.- Introduction

Nowadays basic asymptotic functions are largely studied at high-school levels, in order to present the notion of limit of a function.

Some centuries ago, a relationship between exponential functions and a rectangular hyperbola, which has an asymptote, has been found indirectly through the inverse function of an exponential function. It lead to the definition of the natural logarithm function :

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t
$$

This relationship is the result of researches that began during the XVIIth century thanks to the mathematician Grégoire de Saint-Vincent. He was working on the quadrature of the hyperbola $y=\frac{1}{x}$. He was applying Fermat's method and he noticed that « when the bases form a geometric progression, the rectangles have equal areas ; thus the area is proportional to the logarithm of the horizontal distance . », as E. Maor wrote in [1]. There is also interesting information in HairerWanner [2].

In this article, we will neither work with areas nor with logarithms. Instead, we will find a direct relationship between exponential growing and a basic asymptotic function.

3.- Simple problems leading to exponential functions

In simple problems of that kind, there is growing at a certain rate per unit of time. For exemple, we begin with an amout A_{0}, and, say, this amount grows at the rate of 2% per month. So the amount we get in time is :

$$
A(t)=A_{0} \cdot\left(\frac{102}{100}\right)^{t}
$$

where t is the number of months.

[^0]In that kind of problem, after every fixed period of time, the amount grows at a fixed rate.
Let's call p that fixed period of time.

4.- What happens if the period of time p drecreases as the rate remains unchanged ?

One simple problem of this kind could be the following one :
We begin with an amount A_{0} and, after a month, it doubles, and after 15 days it doubles again, and after 7,5 days it doubles again, and so on...

So we get the following graph :

5.- Finding a function which describes that kind of growing

In order to solve this problem, we will write a parametric equation, where n is the number of decreasing periods of time and t is the number of months.

For $\mathrm{n}=0$ we have :

$$
\begin{aligned}
& \mathrm{t}=0 \\
& \mathrm{~A}=\mathrm{A}_{0}
\end{aligned}
$$

And for $n \geq 1, n \in \mathbb{N}$:

$$
\begin{aligned}
& t=1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\ldots+\left(\frac{1}{2}\right)^{n-1} \\
& A=A_{0} \cdot 2^{n}
\end{aligned}
$$

We can check that :
If $n=0$ we have $t=0$ and $A=A_{0}$
If $n=1$ we have $t=1$ and $A=A_{0} \cdot 2$
If $\mathrm{n}=2$ we have $\mathrm{t}=1,5$ and $\mathrm{A}=\mathrm{A}_{0} \cdot 2^{2}$
If $n=3$ we have $t=1,75$ and $A=A_{0} \cdot 2^{3}$
And so on...
We can rewrite the parametric equation :

$$
\text { For } n \geq 1, n \in \mathbb{N} \text { : }
$$

$$
\begin{aligned}
& t=\left(\frac{1}{2}\right)^{0}+\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\ldots+\left(\frac{1}{2}\right)^{n-1} \\
& A=A_{0} \cdot 2^{n}
\end{aligned}
$$

Or :

$$
\begin{aligned}
& t=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k} \\
& A=A_{0} \cdot 2^{n}
\end{aligned}
$$

And we remark that t is given by a geometric series whose common ratio is $\frac{1}{2}$. So we can use the formula for the sum of the first n terms as we find it in [3]:

$$
\begin{aligned}
& t=\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\left(\frac{1}{2}\right)} \\
& A=A_{0} \cdot 2^{n}
\end{aligned}
$$

So we get :
$t=2-\frac{2}{2^{n}}$
$A=A_{0} \cdot 2^{n}$

And now, if we look for a relation between the variables t and A , we must eliminate the variable n :

$$
\begin{aligned}
& 2-t=\frac{2}{2^{n}} \\
& A=A_{0} \cdot 2^{n} \\
& \frac{2-t}{2}=\frac{1}{2^{n}} \\
& A=A_{0} \cdot 2^{n} \\
& \frac{2}{2-t}=2^{n} \\
& A=A_{0} \cdot 2^{n}
\end{aligned}
$$

So finally we get :

$$
A=\frac{2 \cdot A_{0}}{2-t}
$$

which means that A is given by a basic asymptotic function depending on the variable t ...
Here is the graph of the function :

6.- Conclusions

So we got directly a relationship between exponential growing and an hyperbola. This fact will contribue to increase our knowledge about exponential functions and asymptotic functions.

References

[1] E. Maor, e THE HISTORY OF A NUMBER, Princeton University Press, 2015, p. 66
[2] G. Wanner and E. Hairer, L'analyse au fil de l'histoire, Springer, 2001
[3] https://en.wikipedia.org/wiki/Geometric_series

[^0]: 1 Independent researcher

