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Abstract. In this paper, we have derived a formula to find combinatorial

sums of the type
n∑

r=0

rk
(
n

r

)
where k ∈ N. The formula is conveniently

expressed as a sum of terms multiplied by certain co-efficients. These
co-efficients satisfy a recurrence relation, which is also derived in the
process of finding the above sum. Upon solving the recurrence, these
numbers turn out to be the Stirling Numbers of the first and second
kind. Here on, it is trivial to prove the mutual inverse property of both
these sequences of numbers due to linear algebra.
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1 Introduction

The inquiry into the matter started with the task to find the sum of
n∑

r=0

r

(
n

r

)
.

Using the binomial expansion -

(1 + x)n =

n∑
r=0

xr
(
n

r

)

=

(
n

0

)
+ x

(
n

1

)
+ x2

(
n

2

)
+ · · ·+ xn−1

(
n

n− 1

)
+ xn

(
n

n

)

Thus, we have on differentiating -

d

dx
(1 + x)n =

d

dx

[(
n

0

)
+ x

(
n

1

)
+ · · ·+ xn

(
n

n

)]
(1)

=⇒ n(1 + x)n−1 =

(
n

1

)
+ 2x

(
n

2

)
+ 3x2

(
n

3

)
+ · · ·+ nxn−1

(
n

n

)
(2)
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On setting x = 1 in equation 2, we get -(
n

1

)
+ 2

(
n

2

)
+ 3

(
n

3

)
+ · · ·+ n

(
n

n

)
= n2n−1

=⇒
n∑

r=0

r

(
n

r

)
= n2n−1 (3)

which is our required answer. As a logical extension, one can ask what is the

sum of
n∑

r=0

r2
(
n

r

)

On multiplying equation (2) with x and then differentiating, we obtain -

nx(1 + x)n−1 = x

(
n

1

)
+ 2x2

(
n

2

)
+ 3x3

(
n

3

)
+ · · ·

+nxn
(
n

n

)
=⇒ d

dx
nx(1 + x)n−1 =

d

dx

[
x

(
n

1

)
+ 2x2

(
n

2

)
+ · · ·+ nxn

(
n

n

)]
=⇒ n(1 + x)n−1 + nx(n− 1)(1 + x)n−2 =

(
n

1

)
+ 22x

(
n

2

)
+ 32x2

(
n

3

)
+ · · ·

+n2xn−1

(
n

n

)
(4)

Setting x = 1 in the above equation, we get -(
n

1

)
+ 22

(
n

2

)
+ 32

(
n

3

)
+ · · ·+ n2

(
n

n

)
= n2n−1 + n(n− 1)2n−2

=⇒
n∑

r=0

r2
(
n

r

)
= n2n−1 + n(n− 1)2n−2 (5)

If we use the notation, Snk =
n∑

r=0

rk
(
n

r

)
, one can notice the pattern in

equations (3) and (5) and conjecture that -

Sn3 = n2n−1 + n(n− 1)2n−2 + n(n− 1)(n− 2)2n−3

However, it turns out that it is not true because, on multiplying (4) with x and
then differentiating -
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n(1 + x)n−1 + 3nx(n− 1)(1 + x)n−2 + nx2(n− 1)(n− 2)(1 + x)n−3

=

(
n

1

)
+ 23x

(
n

2

)
+ 33x2

(
n

3

)
+ · · ·+ n3xn−1

(
n

n

)
(6)

On setting x = 1 in (6), we get -

Sn3 = n2n−1 + 3n(n− 1)2n−2 + n(n− 1)(n− 2)2n−3 (7)

As it can be seen, the n(n−1)2n−2 term is padded with a co-efficient of 3. Hence,
it does not suffice that the conjecture be so straightforward. Since the general
method to find Snk would require differentiating k times, we have to allow for
co-efficients that multiply with the type of terms given above.

Thus, the task of finding the sum Snk would be reduced to finding such co-efficients
to multiply these terms with and there would be no need to differentiate k times
explicitly.

2 A General Approach

If we denote
k−1∏
i=0

(n− i) = (n)k (A.K.A the falling factorial for k ≥ 1), and

Tni = (n)i2
n−i, then -

Snk =

k∑
i=1

aki(n)i2
n−i =

k∑
i=1

akiTni 1 ≤ k ≤ n (8)

The aki’s are general co-efficients which are padded to Tni terms. The subscript
aki has been chosen over ani in hindsight. The reason will be clear in the
subsequent sections.

Note that (n)n = n! and for any k > n (n)k = 0 =⇒ Tnk = 0. We can also
assume (n)0 = 1. Hence it can also be stated -

Snk =

k∑
i=1

aki(n)i2
n−i =

n∑
i=1

akiTni k > n (9)
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The sub-scripts in the formulae (29) and (9) have a subtlety. Once, the value of
n for the problem is fixed, the Tni’s are also fixed. The co-efficients aki however

depend on the value of k in the original sum
n∑

r=0

rk
(
n

r

)
.

Let’s say we are evaluating Sn3. The final value of the sum is obtained by setting
x = 1 in polynomial in x of (6) -

n(1 + x)n−1 + 3nx(n− 1)(1 + x)n−2 + nx2(n− 1)(n− 2)(1 + x)n−3

This can be generalised saying that the final series is obtained by setting x = 1 in
a polynomial S(x)

nk . In the previous case, this was S(x)
n3 . By analysing the patterns

in the previous steps, if S(x)
n4 had to be derived, we would multiply S(x)

n3 with x
and differentiate with respect to x. Generally -

S
(x)
n(k+1) =

d

dx

[
xS

(x)
nk

]
=⇒ S

(x)
n(k+1) = S

(x)
nk + x

d

dx
S
(x)
nk (10)

where

S
(x)
nk =

k∑
i=1

aki(n)ix
i−1(1 + x)n−i (11)

It is easy to see that every polynomial S(x)
nk is a polynomial in x of degree n −

1 ∀ k ∈ N. This is because of recurrence relation (10) where the next polynomial
of the sequence is obtained by first multiplying the previous polynomial by x

and then differentiating. The boundary case of S(x)
nn can be considered as well.

The last term in the sum will be -

S(x)
nn = · · ·+ aknn!x

n−1

To find S
(x)
n(n+1), we need to multiply by x and then differentiate. Referring to

equation (11), it can be seen that the last term of sum for S(x)
n(n+1) will again be

n!xn−1. However, it will be multiplied by a different co-efficient, namely a(n+1)n.
Hence, the clipping of the sum to n in (9) can be understood.

In other words, for k > n, the co-efficients akm where m > n may exist, but they
are not required to evalute the original sum.
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In general, the set of co-efficients {a(k+1)1, a(k+1)2 , · · · } can be expressed in
terms of {ak1, ak2, · · · } because of mixing of terms of equal powers and lowering
of the exponent on differentiation in the derivation of the next polynomial of the
sequence. The recurrence among polynomials (10) must naturally translate to a
recurrence among co-efficients. In other words, we must be able to express the
set {a(k+1)1, a(k+1)2 , · · · } in terms of {ak1, ak2, · · · }.

3 Obtaining The Recurrence Relation For aki

Let us assume k ≤ n and evalute all the terms in the sequence {ak1, ak2, · · · , akn}.

The first term of S(x)
nk from (11) will always be n(1+x)n−1. Due to the fact that

a11 = 1 and (10), this term will always get carried on to the next polynomial
sequence, and hence ak1 = 1 ∀ k ∈ N.

The last term is the result of differentiating k times and then multiplying by x.
It is a newly generated term in the sequence and not carried over by previous
polynomials of the sequence. Thus akk = 1 for k ≤ n.

Consider the ith term of S(x)
nk+1 and its co-efficient a(k+1)i . Due to (10) and (11),

the contributing terms to the ith term from S
(x)
nk are -

a(k+1)i(n)ix
i−1(1 + x)n−i = aki(n)ix

i−1(1 + x)n−i

+aki(n)i(1 + x)n−ix
d

dx
xi−1

+ak(i−1)(n)i−1x
i−2x

d

dx
(1 + x)n−(i−1)

=⇒ a(k+1)i(n)ix
i−1(1 + x)n−i = iaki(n)ix

i−1(1 + x)n−i

+ak(i−1)(n)ix
i−1(1 + x)n−i (12)

We can extract the recurrence relation by equating the co-efficients in (12) -

a(k+1)i = iaki + ak(i−1) (13)

The co-efficients aki satisfy the same recurrence as that of the famous Stirling
Numbers of the Second Kind and with the same base cases.

Hence these co-efficients must be the Stirling Numbers of the second kind. In
their more common notation, they satisfy the recurrence -{

k + 1

i

}
= i

{
k

i

}
+

{
k

i− 1

}
(14)
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4 Triangle of Stirling Numbers of The Second Kind

It is well known that
n∑

r=0

(
n

r

)
= 2n. Here the exponent in rk is k = 0.

Thus keeping in line with (29), we get -

Sn0 = a00Tn0 (15)

Since (n)0 = 1 and Tn0 = 2n, from (15), it can be seen that -

a00 = 1 (16)

For k > 0, the Tn0 = 2n term in the expression for Snk is missing. Hence -

ak0 = 0 (17)

Since for i > k, the Tni terms do not contribute to the sum as the upper limit
of the summation in (29) is k. Thus we can safely define -

aki = 0 i > k (18)

Thus we can combine (29) and (9) because of (16), (17) and (18) to generalise -

Snk =

n∑
i=1

akiTni k ∈ N (19)

We can display these numbers in a triangular fashion (for 0 ≤ k ≤ 10) by
building the recurrence -

5 Verifying The Formula for Snk

We can confirm the validity of the method for two examples - one with k ≤ n
and another with k > n.
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i 0 1 2 3 4 5 6 7
k
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 1 3 1 0 0 0 0
4 0 1 7 6 1 0 0 0
5 0 1 15 25 10 1 0 0
6 0 1 31 90 65 15 1 0
7 0 1 63 301 350 140 21 1

Table 1. Stirling Numbers of the Second Kind

5.1 Case 1 - n = 5, k = 4

5∑
r=0

r4
(
5

r

)
= 04

(
5

0

)
+ 14

(
5

1

)
+ 24

(
5

2

)
+ 34

(
5

3

)
+ 44

(
5

4

)
+ 54

(
5

5

)
= 0 + (1× 5) + (16× 10) + (81× 10) + (256× 5) + (625× 1)

= 2880

From (19), we have -

S54 =

5∑
i=0

a4iT5i

= a40T50 + a41T51 + a42T52 + a43T53 + a44T54 + a45T55

= 0 + (1× 80) + (7× 160) + (6× 240) + (1× 240) + 0

= 2880

Hence it matches!

5.2 Case 2 - n = 3, k = 6

3∑
r=0

r6
(
3

r

)
= 06

(
3

0

)
+ 16

(
3

1

)
+ 26

(
3

2

)
+ 36

(
3

3

)
= 0 + (1× 3) + (64× 3) + (729× 1)

= 924



8 Anwesh Bhattacharya et. al.

From (19), we have -

S36 =

3∑
i=0

a6iT3i

= a60T30 + a61T31 + a62T32 + a63T33

= 0 + (1× 12) + (31× 12) + (90× 6)

= 924

It matches too!

6 Another approach

We shall derive the inverse relation i.e Tnk in as a linear sum of Snk’s. From this
point on, we shall asume strictly k ≤ n

(1 + x)n =

n∑
r=0

xr
(
n

r

)

Differentiating k times -[
k−1∏
i=0

(n− i)

]
(1 + x)n−k =

n∑
r=k

[
k−1∏
i=0

(r − i)

]
xr−k

(
n

r

)
(20)

The product on the LHS is just the falling factorial. One can expand the product
on the RHS as (bki’s are general co-efficients) -

k−1∏
i=0

(r − i) =
k∑

i=1

bkir
i (21)

Plugging in (21) in (20) and multiplying both sides by xk -

(n)kx
k(1 + x)n−k =

n∑
r=k

k∑
i=1

bkir
ixr
(
n

r

)

=

n∑
r=0

k∑
i=1

bkir
ixr
(
n

r

)
−

k−1∑
r=0

k∑
i=1

bkir
ixr
(
n

r

)

=

k∑
i=1

bki

n∑
r=0

rixr
(
n

r

)
−

k−1∑
r=0

xr
(
n

r

)[ k∑
i=1

bkir
i

]

=

k∑
i=1

bki

n∑
r=0

rixr
(
n

r

)
−

k−1∑
r=0

xr
(
n

r

)[k−1∏
i=0

(r − i)

]
(22)
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Plugging in x = 1 in (22) and using our defined notations -

(n)k2
n−k =

k∑
i=1

bki

[
n∑

r=0

ri
(
n

r

)]
−

k−1∑
r=0

(
n

r

)[k−1∏
i=0

(r − i)

]

=⇒ Tnk =

k∑
i=1

bkiSni −
k−1∑
r=0

(
n

r

)[k−1∏
i=0

(r − i)

]
(23)

In the summation indexed by r on the RHS of (23), r can only take values from
{0, 1, · · · , k − 1}. The product vanishes for every value of r as i indexes from 0
to k − 1. Hence the last summation is identically zero. Ultimately -

Tnk =

k∑
i=1

bkiSni (24)

The subscripts of the terms here follow the same pattern as that of (29) but due
to different reasons. The b terms are indexed by k first because bki represents

the coefficient of ri in
k−1∏
i=0

(r − i) and the maximum power in this product is rk,

and hence the indexing.

One can also observe that (24) is simply the inverse relationship of Snk =
k∑

i=1

akiTni.

We can expect to derive, in a similar fashion, a recurrence relation for {b(k+1)1, b(k+1)2,
· · · } in terms of {bk1, bk2, · · · }.

7 Obtaining The Recurrence Relation For bki

From the definition of bki, it can be seen that the co-efficient of the lowest power

is bk1 =
k−1∏
i=1

(−1)ii = (−1)k−1(k− 1)!. Also, the co-efficient of the highest power

is bkk = 1.

We have established the base cases and can continue to establish the recurrence
relation. From (21), we have -
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k∏
i=0

(r − i) =
k+1∑
i=1

b(k+1)ir
i

=⇒
k+1∑
i=1

b(k+1)ir
i = (r − k)

[
k−1∏
i=0

(r − i)

]

= (r − k)

[
k∑

i=1

bkir
i

]

=

k∑
i=1

bkir
i+1 −

k∑
i=1

kbkir
i

k+1∑
i=1

b(k+1)ir
i =

k−1∑
i=2

bk(i−1)r
i −

k∑
i=1

kbkir
i (25)

The summation limits only differ in the boundary cases which have already been
derived. Hence, from (25), we can state a recurrence relation -

b(k+1)i = bk(i−1) − kbki (26)

Again, we discover that bki satisfy the same recurrence as that of Signed Stirling
Numbers of the First Kind and with the same base cases. As follows from the
previous argument, these must be the Signed Stirling Numbers of the First Kind.
They are called signed as some of these numbers are negative.[

k + 1

i

]
=

[
k

i− 1

]
− k
[
k

i

]
(27)

8 Triangle of Signed Stirling Numbers of the First Kind

Setting the index k = 0 in (24) and letting i run from 0, we get -

Tn0 = b00Sn0 (28)

Since Tn0 = Sn0 = 2n, we can set b00 = 1

Also, by the recurrence relation (26), we can see that bk1 = (−1)k(k− 1)! iff the
recurrence satisfied by i = 1 is b(k+1)1 = −kbk1. Thus, bk0 = has to be satisfied.
In the later sections, this can also shown to be true by linear algebra.

We can again display these numbers in a triangular fashion -
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i 0 1 2 3 4 5 6 7
k
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 -1 1 0 0 0 0 0
3 0 2 -3 1 0 0 0 0
4 0 -6 11 -6 1 0 0 0
5 0 24 -50 35 -10 1 0 0
6 0 -120 274 -225 85 -15 1 0
7 0 720 -1764 1624 -735 175 -21 1

Table 2. Signed Stirling Numbers of the First Kind

9 Verifying The Formula For Tnk

It has already been stated that k ≤ n. Hence, we shall verify the formula (24)
for two cases :

9.1 Case 1 - n = 5, k = 3

T53 = 240

S51 = 80

S52 = 240

S53 = 800

b31S51 + b32S52 + b33S53 = (2× 80)− (3× 240) + (1× 800)

= 240

Thus it mactches as expected.

9.2 Case 2 - n = 6, k = 4

T64 = 1440

S61 = 192

S62 = 672

S63 = 2592

S64 = 10752

b41S61 + b42S62 + b43S63 + b44S64 = (−6× 192) + (11× 672)− (6× 2592) + (1× 10752)

= 1440

This too matches as expected!
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10 Proving The Inverse Nature of The Two Sequences

We shall concern ourselves only with a square sub-section of the table of Stirling
numbers (i.e 1 ≤ k ≤ n)

Observe the formula for Tnk = (n)k2
n−k = n×(n−1)×· · ·×(n−k+1)2n−k. This

can be looked at as a polynomial in n of degree k. The set {Tn1, Tn2, · · · , Tnn}
essentially contains polynomials in n of degree 1, 2, · · · upto n. Hence, it can act
as a basis for the vector space denoted by span

(
{n, n2, n3, · · · , nn}

)

Similarly, the set {Sn1, Sn2, · · · , Snn} is also a set of polynomials in n and (29)
basically represents a linear transformation in the co-ordinatization of the {Tnk}
basis state.

By using (29) and (24), we get -

Tnk =

k∑
i=1

bkiSni

=

k∑
i=1

bki

(
i∑

l=1

ailTnl

)

=

k∑
i=1

i∑
l=1

bkiailTnl

The inner sum runs from l = 1 to i. We note that i ≤ k due to the outer sum
and it does not make a difference to change the upper limit of the inner sum to
k. Since {Tnk} represents a basis state, we must have -

k∑
i=1

k∑
l=1

bkiailTnl =

k∑
l=1

δklTnl

= Tnk

With the Einstein summation convention, we can say bkiaij = δkj and that the
square matrices represented by a square-section of the two tables of the Stirling
Numbers are inverse with respect to each other.
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11 Verifying The Inverse Property

Let us verify our result with a 6× 6 sub-matrix of the two tables.

B =


1 0 0 0 0 0
−1 1 0 0 0 0
2 −3 1 0 0 0
−6 11 −6 1 0 0
24 −50 35 −10 1 0
−120 274 −225 85 −15 1

 A =


1 0 0 0 0 0
1 1 0 0 0 0
1 3 1 0 0 0
1 7 6 1 0 0
1 15 25 10 1 0
1 31 90 65 15 1



Carrying out the matrix multiplication B × A results in the identity matrix I6.
We could have included the 00th index term in the matrices and it is trivial to
confirm that the result would have remained the same.
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