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Abstract. In this paper, we have derived a formula to find combinatorial
sums of the type

∑n
r=0 r

k
(
n
r

)
for k ∈ N. The formula is conveniently

expressed as a linear combination of terms involving the falling factorial.
The co-efficients in this linear expression satisfy a recurrence relation,
which is identical to that of the Stirling numbers of the first and second
kind.
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1 Introduction to Stirling Numbers

The Stirling Numbers [12] arise in combinatorics in describing a set of n distinct
objects by specific groupings. Stirling Numbers of the first kind describe the
number of ways to permute n objects such that it forms k disjoint cycles, denoted
by
[
n
k

]
. On the other hand,

{
n
k

}
describes the number of ways to partition n

objects into k non-intersecting subsets. They are described by the following
recurrence relations - [

n+ 1

k

]
= n

[
n

k

]
+

[
n

k − 1

]
(1){

n+ 1

k

}
= k

{
n

k

}
+

{
n

k − 1

}
(2)

One subtlety to note is that eq (1) is the recurrence for the unsigned Stirling
numbers of the first kind. The signed Stirling numbers of the first kind follow
an alternative recurrence -

s(n, k) = s(n, k − 1)− ns(n, k) (3)

The Stirling Numbers find their applications in Computer Science as has
been exclusively pointed by Donald Knuth [8].

2 Related Works

We summarise here some of the related works in the literature involving power
sums of binomial coefficients and Stirling Numbers. [2] has analysed power
sums involving Stirling Numbers in the complex domain. In [5], sums involving
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product of binomial co-efficients and Harmonic numbers Hn have been analysed
and similar work has been done by [1] pursuing a connection between Stirling
and Harmonic numbers. [6] has pursued results related power sums of binomial
co-efficients with other binomial coefficients.

There’s a connection between these power sums and Wilson’s congruence
which has been demonstrated in [7]. They have analysed power sums of the type
in eq (4) which closely resemble the sums studied in this work —

n∑
r=0

(−1)n−rrk
(
n

r

)
(4)

A similar analysis has also been performed in [11], [3] and is well known
classical result in combinatorics. [4] has analysed sums of the type in eq (5) —

n∑
r=0

(
n

r

)a

(5)

Theorems due to de Bruijn [9] suggest that no closed forms for it exist for
all a ∈ N. However, some of its divisibility properties have been explored in [4].

3 Basis of the Conjecture

Using the binomial expansion —

(1 + x)n =

n∑
r=0

xr
(
n

r

)
(6)

On differentiating —

n(1 + x)n−1 =

(
n

1

)
+ 2x

(
n

2

)
+ 3x2

(
n

3

)
+ . . .+ nxn−1

(
n

n

)
(7)

Setting x = 1 in equation (6), we get —

n∑
r=0

r

(
n

r

)
= n2n−1 (8)

which is our required answer. As a logical extension, one can ask what the sum

of
n∑

r=0

r2
(
n

r

)
is. We first multiply eq (7) with x and differentiate to obtain —

n(1 + x)n−1 + nx(n− 1)(1 + x)n−2 =

(
n

1

)
+ 22x

(
n

2

)
+ . . .+ n2xn−1

(
n

n

)
(9)
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On setting x = 1 in eq (9), we get —

n∑
r=0

r2
(
n

r

)
= n2n−1 + n(n− 1)2n−2 (10)

If we use the notation, Snk =
∑n

r=0 r
k
(
n
r

)
, we also find that —

Sn3 = n2n−1 + 3n(n− 1)2n−2 + n(n− 1)(n− 2)2n−3 (11)

As it can be seen, the n(n− 1)2n−2 term is padded with a co-efficient of 3. If
we denote

∏k−1
i=0 (n− i) = (n)k (A.K.A the falling factorial for k ≥ 1), and

Tni = (n)i2
n−i, then we conjecture that -

Snk =

k∑
i=1

aki(n)i2
n−i =

k∑
i=1

akiTni 1 ≤ k ≤ n (12)

The aki’s are general co-efficients which are padded to Tni terms. Note that
(n)n = n! and for any k > n, we have (n)k = 0 =⇒ Tnk = 0. We can also
assume (n)0 = 1. Hence our conjecture (eq 12) is valid in general with the
summation limit upto n —

Snk =

n∑
i=1

aki(n)i2
n−i =

n∑
i=1

akiTni k ∈ N (13)

Since Snk is obtained by setting x = 1 in a polynomial, we denote this
polynomial as S(x)

nk . Our process of multiplication by x followed by
differentiation can be encapsulated as —

S
(x)
n(k+1) =

d

dx

[
xS

(x)
nk

]
=⇒ S

(x)
n(k+1) = S

(x)
nk + x

d

dx
S
(x)
nk (14)

where

S
(x)
nk =

n∑
i=1

aki(n)ix
i−1(1 + x)n−i (15)

It is easy to see that every polynomial S(x)
nk is a polynomial in x of degree

(n− 1) for k ∈ N. This is because each successive polynomial is obtained by
multiplication by x followed by a differentiation — a step that retains the
degree of a polynomial. The recurrence relation among the polynomials (eq 14.
Consider the ith term of S(x)

nk+1 and its co-efficient a(k+1)i. This term is built
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from terms in S(x)
nk as follows —

a(k+1)i(n)ix
i−1(1 + x)n−i = aki(n)ix

i−1(1 + x)n−i

+aki(n)i(1 + x)n−ix
d

dx
xi−1

+ak(i−1)(n)i−1x
i−2x

d

dx
(1 + x)n−i+1

=⇒ a(k+1)i(n)ix
i−1(1 + x)n−i = iaki(n)ix

i−1(1 + x)n−i

+ak(i−1)(n)ix
i−1(1 + x)n−i (16)

We can extract the recurrence relation by equating the co-efficients in (16) —

a(k+1)i = iaki + ak(i−1) (17)

The co-efficients aki satisfy the same recurrence as that of the eq (2) — Stirling
Numbers of the Second Kind.

4 Triangle of Stirling Numbers of The Second Kind

It is well known that
∑n

r=0

(
n
r

)
= 2n. This represents Sn0. Since (n)0 = 1 and

Tn0 = 2n, we get Sn0 = a00Tn0 and a00 = 1. We also define ak0 = 0 for k > 0
and aki = 0 for i > k. These definitions are consistent with our conjecture (eq
13) and also define the base case of the Stirling Numbers of the Second Kind.
Hence, our derived coefficients aki must be the Stirling Numbers of the Second
Kind. We can display these numbers in a triangular fashion in table (4) [14] —

i 0 1 2 3 4 5 6 7
k
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 1 3 1 0 0 0 0
4 0 1 7 6 1 0 0 0
5 0 1 15 25 10 1 0 0
6 0 1 31 90 65 15 1 0
7 0 1 63 301 350 140 21 1

Table 1. Stirling Numbers of the Second Kind

4.1 Verifying The Formula for Snk

We confirm the validity of the method for two examples - one with k ≤ n and
another with k > n [13]
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Case 1 - n = 5, k = 4

5∑
r=0

r4
(
5

r

)
= 04

(
5

0

)
+ 14

(
5

1

)
+ 24

(
5

2

)
+ 34

(
5

3

)
+ 44

(
5

4

)
+ 54

(
5

5

)
= 0 + (1× 5) + (16× 10) + (81× 10) + (256× 5) + (625× 1)

= 2880

From (13), we have -

S54 =

5∑
i=0

a4iT5i

= a40T50 + a41T51 + a42T52 + a43T53 + a44T54 + a45T55

= 0 + (1× 80) + (7× 160) + (6× 240) + (1× 240) + 0

= 2880

Case 2 - n = 3, k = 6

3∑
r=0

r6
(
3

r

)
= 06

(
3

0

)
+ 16

(
3

1

)
+ 26

(
3

2

)
+ 36

(
3

3

)
= 0 + (1× 3) + (64× 3) + (729× 1)

= 924

From (13), we have -

S36 =

3∑
i=0

a6iT3i

= a60T30 + a61T31 + a62T32 + a63T33

= 0 + (1× 12) + (31× 12) + (90× 6)

= 924

5 An Alternate Approach

We shall derive the inverse relation i.e Tnk in as a linear sum of Snk’s. From this
point on, we shall asume strictly k ≤ n

(1 + x)n =

n∑
r=0

xr
(
n

r

)
Differentiating k times -[

k−1∏
i=0

(n− i)

]
(1 + x)n−k =

n∑
r=k

[
k−1∏
i=0

(r − i)

]
xr−k

(
n

r

)
(18)
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The product on the LHS is just the falling factorial. One can expand the
product on the RHS with generalised coefficients bki —

k−1∏
i=0

(r − i) =
k∑

i=1

bkir
i (19)

Plugging in (19) in (18) and multiplying both sides by xk —

(n)kx
k(1 + x)n−k =

n∑
r=k

k∑
i=1

bkir
ixr
(
n

r

)

=

n∑
r=0

k∑
i=1

bkir
ixr
(
n

r

)
−

k−1∑
r=0

k∑
i=1

bkir
ixr
(
n

r

)

=

k∑
i=1

bki

n∑
r=0

rixr
(
n

r

)
−

k−1∑
r=0

xr
(
n

r

)[ k∑
i=1

bkir
i

]

=

k∑
i=1

bki

n∑
r=0

rixr
(
n

r

)
−

k−1∑
r=0

xr
(
n

r

)[k−1∏
i=0

(r − i)

]
(20)

Plugging in x = 1 in (20) —

(n)k2
n−k =

k∑
i=1

bki

[
n∑

r=0

ri
(
n

r

)]
−

k−1∑
r=0

(
n

r

)[k−1∏
i=0

(r − i)

]

=⇒ Tnk =

k∑
i=1

bkiSni −
k−1∑
r=0

(
n

r

)[k−1∏
i=0

(r − i)

]
(21)

In the summation indexed by r on the RHS of (21), r can only take values from
{0, 1, · · · , k − 1}. The product vanishes for every value of r as i indexes from 0
to k − 1. Hence the second summation term is identically zero. Ultimately we
obtain the inverse relation to eq (13) as —

Tnk =

k∑
i=1

bkiSni (22)

6 Obtaining The Recurrence Relation For bki

From the definition of bki, it can be seen that the co-efficient of the lowest power
is bk1 =

∏k−1
i=1 (−1)ii = (−1)k−1(k− 1)!. Moreover, the co-efficient of the highest

power is bkk = 1.
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We have established the base cases and can continue to establish the recurrence
relation. From (19), we have -

k∏
i=0

(r − i) =
k+1∑
i=1

b(k+1)ir
i

=⇒
k+1∑
i=1

b(k+1)ir
i = (r − k)

[
k−1∏
i=0

(r − i)

]

= (r − k)

[
k∑

i=1

bkir
i

]

=

k∑
i=1

bkir
i+1 −

k∑
i=1

kbkir
i

We equate the coefficients in the relation —

k+1∑
i=1

b(k+1)ir
i =

k−1∑
i=2

bk(i−1)r
i −

k∑
i=1

kbkir
i (23)

A recurrence from (23) could be extracted as follows —

b(k+1)i = bk(i−1) − kbki (24)

The coefficients bki satisfy the same recurrence as that of the Signed Stirling
Numbers of the First Kind (eq 3).

7 Triangle of Signed Stirling Numbers of the First Kind

i 0 1 2 3 4 5 6 7
k
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 -1 1 0 0 0 0 0
3 0 2 -3 1 0 0 0 0
4 0 -6 11 -6 1 0 0 0
5 0 24 -50 35 -10 1 0 0
6 0 -120 274 -225 85 -15 1 0
7 0 720 -1764 1624 -735 175 -21 1

Table 2. Signed Stirling Numbers of the First Kind

As argued previously, we set b00 = 1 to satisfy our conjecture (eq 13) and
bk0 = 0 for k > 0 and bki = 0 for i > k. Since they satisfy the same base case as
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the Signed Stirling Numbers of the First Kind, the coefficients bki must be the
Signed Stirling Numbers of the First Kind. We can again display these
numbers in a triangular fashion in table (7) [13].

7.1 Verifying The Formula For Tnk

It has already been stated that k ≤ n. Hence, we shall verify the formula (22)
for the two cases below [14]

Case 1 - n = 5, k = 3

T53 = 240

S51 = 80

S52 = 240

S53 = 800

From eq (22), we have —

b31S51 + b32S52 + b33S53 = (2× 80)− (3× 240) + (1× 800)

= 240

Case 2 - n = 6, k = 4

T64 = 1440

S61 = 192

S62 = 672

S63 = 2592

S64 = 10752

From eq (22), we have —

b41S61 + b42S62 + b43S63 + b44S64 = (−6× 192) + (11× 672)− (6× 2592) + (1× 10752)

= 1440

8 Proving The Inverse Nature of The Sequences

We shall concern ourselves only with a square sub-section of the table of
Stirling numbers (i.e 1 ≤ k ≤ n). By using (25) in our conjecture (eq 12), we
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get —

Tnk =

k∑
i=1

bkiSni

=

k∑
i=1

bki

(
i∑

l=1

ailTnl

)

=

k∑
i=1

i∑
l=1

bkiailTnl

The inner sum runs from l = 1 to i. We note that i ≤ k due to the outer sum
and it does not make a difference to change the upper limit of the inner sum to
k. Since the same represented is the same, we must have —

k∑
i=1

k∑
l=1

bkiailTnl =

k∑
l=1

δklTnl

= Tnk

With the Einstein summation convention [10], we can say bkiaij = δkj . The
square matrices represented by a square-section of the two tables (4 and 7) are
inverse to each other. Hence, we have also established the inverse relationship
between the Signed Stirling Numbers of the First Kind and Stirling Numbers
of the Second Kind.

9 Conclusion

We have developed a novel way to evaluate a power sum of binomial
co-efficients with the derivation of a new series of co-efficients and proven them
equivalent to the Stirling Numbers of the First and Second Kind.
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