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Abstract

The notion of classical well localized trajectories of a single photon in Minkowski’s
spacetime does not make any rigorous sense by the well-known existence of a proof
that single photons cannot be well localized.This leads to principal difficultness when
photodetection probability on relativistic non inertial frame of reference is considered. In
order to resolve this tension we extend canonical Minkowski’s geometry up to relevant
point-free Minkowski’s geometry [Ann. Physics 423 (2020) 168329].The photodetection
probability density on uniformly rotating frame endrowed with point-free Lorentzian
geometry is obtained. The result of S.A.Podosenov et al. [Ann. Physics 413 (2020)
168047] is obtained without any reference to unphysical notion of the classical
trajectories of photon.
The paper again shows the correctness of the remarkable result of Prof. C.Corda

concerning the Mössbauer rotor experiment as new proof of general relativity, which has
been awarded by the Gravity Research Foundation.
In addition, the paper also shows various very elementary mistakes,

misunderstandings and flaws by the self-colled « YARK group », which is a group of
fringe researchers who attempts to promote wrong science, in particular, against the
relativity theory.
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1. Introduction
In paper [1] published recently A. L.Kholmetskii et al.argued that S.A.Podosenov et al.
paper [2] wrong and cannot explain nowel Mössbauer experiment in a rotating system.
However paper [1] contains a lot of principal mistakes: (i) first notice that [1] based on

rejection the Einstein equivalence principle (EEP) (see [3]) and misconception in basic
notion of GRT. By using these misconception A. L.Kholmetskii et al.argued that: "the
problem of the physical interpretation of the observed energy shift between emission



and absorption lines in a rotating system under the framework of general relativity open".
Ofcourse after rejection the EEP under the framework of general relativity one

explains nothing.
(ii) secondary note that paper [1] based on misleading in quantum optics.
In quantum optics we dealing with the probability density w�t,r�,r � �3 such that
w�t,�r�,����dt is the probability of the photon registration near point r , between
instant t and t � dt by a detector with angular size �� � 1sr and located at the point
r � �3.The probability density w�t,r� is not highly localized in free space except
unphysical 1D case known from literature (see [4],5B 1.2).A single photons cannot be
localized by using photodetector. Nevertheless in order to disprove S.A.Podosenov

et al.
paper [2], A. L.Kholmetskii et al. in [1] naively argued that �-quanta is a point particle
and propagate along highly localized classical trajectory. But this is a missconcept.
Remark 1. But more importantly, these authors deliberately mislead readers by

reporting
absolutely false information about the experimental results stated in the classical

papers
[5]-[9].
A. L.Kholmetskii et al. wrote (see [1] p.5): However, "it becomes obvious that

Podosenov et al. [26] did not even realize the fact that Eq. (11) indicates a red shift of
the frequency of the resonant radiation (i.e., �R � �0 ), whereas the equality k � 2/3 in
Eq. (4), obtained in the experiments [9–12] corresponds to the blue shift of the resonant
radiation when �R � �0. We add that the same blue shift of the frequency of the resonant
� -quanta has been obtained in all other Mössbauer rotor experiments [1–6] (see
corresponding ref.[5]-[9] in this paper) in the configuration where the source of resonant
radiation was located on the rotational axis, and the resonant absorber was mounted on
the rotor rim".
Remark 1. Note that in classical Mössbauer rotor experiments [1]–[6] only a red shift
in full accordance with GRT prediction without any doubt were obtained.
Remark 2. (i) Note that nowel Mössbauer experiment in a rotating system is not the
same as fundamental Kündig experiment but only essentially simplified version of

Kündig
experiment [9].
(ii) A. L.Kholmetskii et al. wrote (see [1] p.3):
"In these experiments, we did not repeat the approach by Kündig, who based himself

on a linear Doppler modulation of the energy of the emitted resonant � -quanta, because
some unaccounted-for systematic errors in the evaluation of the coefficient k in Eq. (4)
do inevitably emerge (see, e.g. [10]). Thus, we did not try to repeat directly the
measurement scheme by Kündig, but followed the experimental scheme used in [1–4,6],
where the source of resonant radiation is rigidly fixed on the rotor axis".
(iii) Note that in this simplified version the sign of the energy shift is not measured
(iv) In Kündig experiment the energy shift is measured sucussesefully. The equation

(3)
describes the Kündig’s experimental data. For instance, if Ra � Re, the
energy that a photon must have for being absorbed by the absorber is smaller
than the energy of the photon emitted by the emitter. In this case, for restoring



the resonance condition, the absorber must be moved away from the emitter, thus

compensating by first order Doppler effect the energy mismatch.
1).A. L.Kholmetskii et al. wrote (see [1] p.1): "As is known, the first series of

Mössbauer rotor experiments aiming to verify the relativistic time dilation under
laboratory conditions had been carried out in the early 60s soon after the discovery of
the Mössbauer effect (see, e.g., [1], [2], [3], [4], [5], [6]). The
latter effect leads to the following prediction for the relative energy shift between the line

of a source of resonant radiation (located on the rotational axis) and the line of a
resonant absorber (located at the rotor rim):

Es � Ea
Es

� � 1
2
u2

c2
. �1�

Here, Es is the energy of the resonant radiation for the source, and Ea is the energy of
the resonant radiation for the absorber, with u standing for the tangential velocity of the
absorber, and c for the light velocity in vacuum (see Fig. 1). We would like to point out
that the “minus” sign on the rhs of Eq.(1) corresponds to the blue shift of the energy of

the resonant radiation, where Ea � Es .
2).A. L.Kholmetskii et al. wrote (see [1] p.3): "Putting aside the deviation of Eq. (3)

from Eq. (2), we emphasize that the estimation (3) anyway substantially disagreed with
the classical relativistic prediction given by Eq.(1), and due to this reason, it attracted

considerable attention from the scientific community, indicating the need to carry out
new Mössbauer experiments in a rotating system".
Remark 3.(i) Note that prediction (1) for the case of the Mössbauer rotor experiments
wrong and based on complete rejection of the Einstein equivalence principle.

(ii)The characteristic resonance absorption frequency of the moving absorber at the
rim
should decrease due to time dilation, so the transmission of gamma rays through the
absorber increases, which is subsequently measured by the stationary counter beyond
the absorber. The maximal deviation from time dilation was 10�5 . Such experiments
were performed by Hay et al. [5] , Champeney et al.[6,7] and by Kündig [9].
Remark 4.Note that well known that commonly accepted true classical relativistic

prediction is based on general relativity treatment and in contrary with wrong Eq.(1)
reads (see [4] chapt.12, sect.10)

Es � Ea
Es

� 1
2
u2

c2
. �2�

Where “plus” sign on the rhs of Eq.(2) corresponds to the red shift of the energy of the

resonant radiation, where Ea � Es .
In Kündig paper [9] the Eq.(2) presented in the following form:

Ea � Es
Es

� � 1
2

�2Ra2

c2
� � 1

2
u2

c2
. �3�

Where “minus” sign on the rhs of Eq.(1) corresponds to the red shift of the energy of

the resonant radiation, where Ea � Es, and where Mossbauer source is placed in the
center of a system rotating with the angular velocity �, an absorber is mounted at a
radius Ra, and a counter is at rest beyond the absorber.
Kündig wrote (see [9] p.1) "However, when the experiment is analyzed in a reference



frame K attached to the accelerated absorber, the problem could be treated by the
principle of equivalence and the general theory of relativity. The centrifugal force acting
on the absorber is then interpreted as a gravitational force with the potential

� � � 1
2
Ra
2�2. �4�

Thus, the observer in K will come to the conclusion that his clock is slowed down by
the gravitational potential. The frequency va measured in his frame of reference is given
to a first approximation by

�a � �s�1 � 2�/c2�
1/2 � �s�1 � �/c2�. �5�

The fractional energy shift is

�Ea � Es�/Es � � 1
2c2

Ra
2�2. �6�

Remark 5.We would like to point out that the “minus” sign on the rhs of Eq. (3)
corresponds to the red shift of the energy of the resonant radiation, where Ea � Es in

accordance with true classical relativistic prediction is based on general relativity
treatment [10]-[11].

2. Wrong theoretical descriptions of the Mössbauer
experiment in a rotating system.
Note that wrong prediction is given by Eq.(1) and named by A. L.Kholmetskii et al. the

"classical" relativistic prediction is a classical mistake based on misunderstood what

we really measured using rotating absorber of �-quanta located on the rotor rim.
There exist a lot authors which naively treated Mössbauer experiment in a rotating

system mistakenly using formula (4) for Doppler frequency (energy) shift it follows the
frequency of absorbed radiation �a reads as [12]

�a �
�0 1 � uA2 /c2

1 � uB2 /c2
, �7�

where �0 is the proper frequency of gamma-quanta, uA is the velocity of point A at the
emission moment, and uB is the velocity of point B at the absorption moment, see Fig.0.



Fig.1.Adopted from [12].Diagram for calculation of

the Doppler effect

in a rotating system between

a point-like emitter (located in the point A

at the emittance moment) and point-like

receiver (located in the point B at the

receiving moment).

From Eq.(4) finally one obtains (see [8])

�0 � �ab
�0 � 1 � 1

1 � uB2 /c2
� � uB

2

2c2
�8�

or in the following equivalent form related to Kündig notations

Ea � Es
Es

� �a � �s
�s � �2

2c2
�Ra2 � Re2�. �9�

There exists apparent contradiction between Eq.(9) and Eq.(6) from Kündig paper [9].

Remark 6. (i) Note that a "proof" of the Eq.(8) from T. Yarman et al.[12] wrong since
this "proof" implicitly uses a postulate named in literature "Hypothesis of Locality".
(ii) Remind that the Hypothesis of Locality [13]-[15] is tacitly assumed that:
any accelerated observer measures the same physical results as a standard inertial
observer that has the same position and velocity at the time of measurement.
For practical purposes, the hypothesis of locality replaces the accelerated observer by
an infinite sequence of otherwise identical momentarily comoving inertial observers.
Every inertial observer is endowed with a natural orthonormal tetrad frame in

Minkowski
spacetime. Therefore, the same holds for an accelerated observer by the hypothesis

of
locality.
(iii) A restricted hypothesis of locality is the so-called clock hypothesis, which is a
hypothesis of locality only concerned about the measurement of time. This hypothesis

implies that a standard clock in fact measures �,d� � 1 � �2�t� dt, along its path;

is then the proper time along this accelerated path.
According to most experiments, the hypothesis of locality seems to be true. No
experiment has yet shown the hypothesis of locality to be violated (outside of radiation



effects).
Remark 7. Note that for the radiation effects in rotating frame the Hypothesis of

Locality
obviously wrong since Hypothesis of Locality contradicts with EEP, it follows from
consideration below.
Note that the energy of a particle of mass m at rest in a constant gravitational field is

given by [10]-[11]: E � mc2 1 � �/c2 where � is the newtonian gravitational potential. If

the particle is a nucleus in an exited state, one obtains

E � �mc2 � �E� 1 � �/c2 , �10�

where �E is the energy difference between the two levels of the nuclear transition. Then,
the energy difference between the two levels of the nuclear transition is modified by the

gravitational potential by the multiplier 1 � �/c2 . Thus the angular frequency of the

nuclear transition is given by: ���� � �� 1 � �/c2 ,where ��being the transition

frequency without gravitational field [10]-[11] . According to the weak equivalence
principle, an acceleration field is locally indistinguishable from a gravitational one. Then,
in a reference frame corotating with the rotor, the energy of a photon emitted by the
source without recoil is given by:

Es � �E 1 � �2Rs2/c2 , �11�

since � � �1/2�2Rs2 is the pseudo - gravitational potential due to acceleration.
Analogously, the energy of the photon that can be absorbed by the absorber is given by:

Ea � �E 1 � �2Ra2/c2 . �12�

Therefore

Ea
Es

�
1 � �2Ra2/c2

1 � �2Rs2/c2
. �13�

From Eq.(13) in the approximation of small welocities �Ra � c one obtains

Ea � Es
Es

� 1
2

�2

c2
�Rs2 � Ra2�. �14�

Remark 8. The cause of the violetion of the Hypothesis of Locality for the case of the
radiation effects in rotating frame clear from Eq.(12).

3.Non highly localizability of the probability density
corresponding to one-photon state in 2D space dimension.
Remind that in quantum optics we dealing with the probability density w�t,r�,r � �3

such that w�t,�r�,����dt is the probability of the photon registration near point r,
between instant t and t � dt by a detector with angular size �� � 1sr and located at the
point r � �3.The probability density w�t,r� is not highly localized in free space except
unphysical 1D case known from literature (see [4],5B 1.2). Although below we will use
the concept of the photon position vector r , we will keep in mind that in fact this is the
position of the photon detector. We consider 2D space dimension wave packet with
r � �2, but without los of generality. Let us consider a one-photon state of the form
(see [4],complement 5B)



|1� � �
l
c l|0, . . . ,nl � 1,0, . . . � � �

l
c l|1l �, �15�

where

�
l
|c l |

2 � 1. �16�

It changes in time and the state is given at time t by

|1�t�� � �
l
c l exp��i�l � t�|1l �. �17�

The photodetection signal at time t and fixed point r � �r,��, r � �r� (see Fig.1) is

given by [4]:

w�r, t� � w��r�,�, t� � s Ê
���
�r�|1�t��

2

� s|E����r, t�|2, �18�

where � is angle �r,X� between axis X and vector r (see Fig.1), s is the sensitivity of
detector and where

E����r, t� � �
l
c l�kl��l exp�i�kl�r � �l � t��, �19�

and

kl�r ��kl� � �r� � cos�r,kl� � �l � �r� � cos��,��, �20�

see Fig.1.

We consider now a set of coefficients c l � c l�kl� different from zero for values of kl
distributed over some bounded region Gk0 of k-space of extent �kx,�ky about a value k0
We thus obtain, at time t � 0, a 2D wave packet localized in a volume of x-space with
dimensions of the order of ���kx��1,���ky��1. When the same set of coefficients
c l � c l�kl,�� is substituted into (17), we thus obtain a photodetection signal (18) that
differs from zero only within some bounded region Gx of x-space of extent ���kx��1,
���ky��1.
Remark 9.The volume of this region Gx generally increases without limit as time goes
by, and this in each space dimension. Therefore there is now well localized classical
trajectories of such � -quanta in physical 2D space dimension.
The final result for inertial frame reads [16], (see Appendix A):

wIF�r,�, t� � 	�1�H t � �r�cos

c exp �� t � �r�cos


c , �21�

where 
 � � � �,	1 � � � 	2 and 	1 � � � 	2, (see Appendix C, Fig.2).
It follows from Eq.(21) that under condition cos
 � 1, with a probability P � 1 the

following constraint holds

ct � �r� � 0. �22�

The final result for non inertial frame reads [16], (see Appendix D, Fig.3):

wRF�r,� � �tRF,�, tRF� �

	�1�r�H tRF �
rcos�
 � �tRF�r�

c�r�
exp ���r tRF �

rcos�
 � �tRF�r�
c�r�

,
�23�

where c�r� � c�r,�r� � r, �r � 1 � 1
6
� �r
c �2 .

It follows from Eq.(21) that under condition cos
 � 1,with a probability P � 1 the
following constraint holds



c�r�tRF � r � 0. �24�

Remark 10.Note that the constraints (22) and (24) were obtained without any
references to notion of the classical trajectories of � -quanta [16].
By using proposed approach the fundamental C.Corda’s result [22]-[24] can be
recovered successfully by obvious way without any reference to unphysical notion of
the classical trajectories of � -quanta.
Remark 11.(i) Note that in canonical literature, (see for example [4],[18],[19],[20],[21])

only unphysical specific forms of a one-photon state in one space dimension are
considered. However such specific forms can be considered only as an simplification but
rigorously, neither of these approximation is ever correct.This sometimes leads to
misleading of the people and A. L.Kholmetskii et al. such of them.In contrast to the
approach taken in Refs.[4], [18],[19],[20] we applayd a more realistic 2D picture [16].
(ii) Note that in paper [1] L.Kholmetskii et al. mistakenly argued that: “The constraint

(8a) used in Ref. [26] implies that the resonant � -quanta will propagate along the radial
coordinate r of the rotating system, and hence, a laboratory observer would see the
propagation of such � -quanta along a curved path.”
(iii) This statement from L.Kholmetskii et al. [1] wrong and based on misconception

meaning mentioned above, since such � -quanta is well localized in k space and
therefore is not well localized in x space except unphysical 1D space dimension. Thus a
laboratory observer would see nothing since there is no any curved classical path
mentioned in their paper [1].

4.Proper time along the interval-valued path.Corda’s
desynchronization term.
Let M	 1,3 be point free Minkowskian space-time endroved with the following interval-
valued line element in interval-valued polar coordinates

d�s�2 � c�
�
2 d�t�2 � d�r�2 � �r�2d���2 � d�z�2, �25�

where 
 � � � �,see Appendix D.Note that the interval-valued line element (25)
corresponding to photodetection signal which propagate with a probability � 1 in
accordance with the interval-valued law is given by Eq.(C.9)-Eq.(C.10),see Appendix

C.
The interval-valued transformation to a non inertial frame of reference

��t 
 �, �r
 �, ��
 �, �z
 ��
rotating at the uniform angular rate � with respect to the starting inertial frame (26) is
given by

�t� � �t 
 �, �r� � �r
 �, �� 
 � � ��� � ��t�. �26�

Under transformation (26) the Eq. (26) becomes the interval-valued Langevin metric in
the rotating frame [16] (see Appendix D) becomes the following interval-valued line
element (interval-valued Langevin metric) in rotating frame reads

d�s�2 � 1 �
�r
 �2�2

c�
���t 

2

c�
���t 

2 d�t 
 �2 � 2��r
 �2d�� 
 �d�t 
 � � d�r
 �2 �

��r
 �2d�� 
 �2 � d�z�2.

�27�

For simplicity but without loss of generality, we consider now the following



2-dimensional interval-valued Langevin metric, see Appendix D

d�s�2 � 1 �
�r
 �2�2

c�
���t 

2

c�
���t
2 d�t 
 �2 � 2��r
 �2d�� 
 �d�t 
 � � d�r
 �2 � �r
 �2d�� 
 �2, �28�

By substituting ��� � :� �
�
,�� � �	1�,	2� � � const and �
� � � 


�
,
� � �0,	� �

(see Remark C.3) into Eq.(28) we get

d�s�2 � 1 �
�r
 �2�2

c�
� ���t 

2

c�
� ���t 

2 d�t 
 �2 � d�r
 �2 � 0. �29�

The conservation law

|�g00 �|1/2Eloc � constant �30�

valid for any time-independent interval-valued metric with �g0j � � 0 and for particles with
both zero and non-zero rest mass. It describes how the locally measured energy of any
particle or photon changes (is “red-shifted” or “blue-shifted”) as it climbs out of or falls
into a static gravitational field. For a particle of zero rest mass as photon, the locally
measured energy E loc, and wavelength �loc, are related by Eloc � �/�loc � ��loc, where �
is Planck’s constant. Consequently, the law of energy shift can be rewritten as

|�g00 �|�1/2�loc � constant. �31�

Therefore, from Eq.(31),one gets

���10 � � ���11 �
�1 � 1 � 1

1 � R2�2

c�
� ���t 

2

� 1 � 1

1 � 
2

c2

� � 1
2


2

c2
, �32�

where we use the proper time � rather than the wavelength � and where ���10 � is the
delay of the emitted radiation, ���11 � is the delay of the received radiation, �1 � Rc�
��1 ,R is

the radial coordinate of the absorber (see Fig.2-3) and v � R�,where � is the tangential
velocity of the absorber.In a gravitational field, the rate d��� of the proper time is related
to the rate �dt 
 � of the coordinate time by

d��� � 1 � r
2�2

c�
� ����t 
 �
2

�dt 
 �. �33�

Using now again Eq. (26), we get

c�
�
2 �dt 
 �2 � c�
�

2 �dt�2 � d�r�2 � d�r
 �2, �34�

where the equality

c�
�
2 �dt�2 � d�r�2 �35�

follows from the issue that in the laboratory frame photodetection signal propagate with
a probability � 1, in accordance with the following interval-valued law

�r� � c�
��t�, ��� � �	2,	1 �, �36�

see Appendix C, Eq.(C.9).Hence, Eq.(33) becomes

c�
�
2 d��� � 1 � r
2�2

c�
� ����t 
 �
2

�dr
 �. �37�

Note that the Eq. (15) is well approximated by



c�
�
2 d��� � 1 � 1

2

�r
 �2�2

c�
� �
2

�. . . �dr
 �. �38�

Therefore the second contribution of order 
2/c�
�
2 to the variation of proper time reads

c�
����2 � � 	
0

r1



1 � 1
2

�r
 �2�2

c�
� �
2

�. . . �dr
 � � �r1

 � � � 1

6
�r1


 �2 
2

c�
�
2
. �39�

Note that �r
 � � c�
���1 � is the radial distance between the source and the detector.
Then, one gets the Corda’s desynchronization term

z2 �
���2 �
��1 �

� � 1
6


2

c�
�
2
. �40�

5. Conclusion
By using proposed approach based on point-free Lorentzian geometry [16], the
fundamental C.Corda result [22]-[24] recovered successfully by obvious way without
any reference to unphysical notion of the classical trajectories of � -quanta.
In additional note that YARK group papers [30]-[33] wrong and mast be rejected
since in contrast with Kündig [9] YARK group did not measure the sign of the energy
shift between emission and absorption lines but attributed this sign by own ubnormal
meaning based on wrong Eq.(1).
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Appendix. A.Two-dimensional wave packet and
corresponding conditional photodetection probability
density function.
Consider a one-photon state of the form

|1� � �
l
c l���|0, . . . ,nl � 1,0, . . . � � �

l
c l���|1l �, �A. 1�



where

�
l
|c l���|2 � 	�1, �A. 2�

	1 � � � 	2,	 � 	1 � 	2, see Fig.1. Thus normalizability condition reads

	
	1

	1

d��
l
|c l���|2 � 1. �A. 3�

A state (A.1) changes in time and the state is given at time t by

|1�t�� � �
l
c l���exp��i�l � t�|1l �. �A. 4�

The photodetection signal at time t and fixed point r � �r,��, r � �r� (see Fig.2) is

given by [2]:

w�r, t� � w��r�,�, t� � s E
���
�r�|1�t��

2

� s|E����r, t�|2, �A. 5�

where � is angle �r,X� between axis X and vector r (see Fig.1), s is the sensitivity of
detector and where

E����r, t� � �
l
c l�kl,�,���l exp�i�kl�r � �l � t�� �A. 6�

c l�kl,�,�� � ���,��c l�kl� and

kl�r ��kl� � �r� � cos�r,kl� � �l � �r� � cos��,��, �A. 7�

see Fig.2.
Remark A.1.(i) We consider now a set of coefficients c l � c l�kl,�,�� different from

zero
for values of kl distributed over some bounded region Gk0 of k-space of extent

�kx,�ky,�kz

about a value k0 and in addition are different from zero for values of � and values of �
such that 	1 � � � 	2 and 	1 � � � 	2, see Fig.2. Thus

���,�� � 1 if �,� � �	1,	2 � �A. 8�

and

���,�� 
 0 if � � �	1,	2 � or � � �	1,	2 � �A. 9�

(ii) We thus obtain, at time t � 0, a 2D wave packet localized in a volume of x-space
with
dimensions of the order of ���kx��1,���ky��1. When the same set of coefficients
c l � c l�kl,�� is substituted into (A.1), we thus obtain a photodetection signal (A.4) that
differs from zero only within some bounded region Gx of x-space of extent ���kx��1,
���ky��1.
(iii)The volume of this region generally increases without limit as time goes by, and

this in
each space dimension, there are specific form of a one-photon state in 1D
space dimension for which the spreading effect does not occur [3].This kind of wave
packet is not physically realistic, in the sense that it extends infinitely in the plane
perpendicular to n.
(iv) However there are specific forms for which the spreading effect does
not occur dramatically in 2D and 3D space dimension.
An nontrivial example is the 2D wave packet we are about to discuss.



Consider now the case in which the wavevectors kl associated with the non-zero
coefficients c l are all parallel to the same unit vector n (see Fig.2), i.e.

kl �
�l
c n � 2�l

L
n. �A. 10�

where L is an arbitrary quantization length. The function E����r, t� given by Eq.(A.6)
then takes the form

E����r, t� � ���,���
l
c l��l�E l

�1�
�l exp i�l r � n

c � t . �A. 11�

Thus the photodetection probability (A.4) depends on space and time only through the
quantity

�
 � t � r � n/c � t � �r�cos�r,n�
c � t � �r�cos


c , �A. 12�

where 
 � � � �, (see Fig.2). Let us consider the case where all the modes have the
same polarization �. The coefficients c then depend only on the frequency �, and a
wave packet can be formed by considering a distribution peaking at some �0,described
by

c l��l� � g��l � �0�, �A. 13�

where g���,� � �l � �0 is a function centred on 0 and having a typical half-width �� that
is small compared with �0. The function (A.11) will then be proportional to the Fourier
transform �

g��
� of g���,yielding a wave packet with width of the order of 1/��. To carry
out the calculation explicitly, the sum in (A.11) is replaced by an integral, introducing the
one-dimensional mode density deduced from (A.10):

dl
d�l

� L
2�c

. �A. 14�

The final result reads

E����r, t� � �
��0
2�0L

L���,��
2�c 	

��

��

d�lc��l�exp��i�l�
� �

����,��
2�c

��0L
2�0

exp �i�0 t �
�r�cos


c ,

�A. 15�

where

�
g��
� � 1

2�
	
��

��

d�g���exp��i��
�. �A. 16�

The photodetection probability density (A.5) reads

w�r, t� � 	�1���,�� �
g t � �r�cos�r,n�

c

2

. �A. 17�

Spontaneous emission by a single atom in an excited state gives a one-photon wave
packet. For this case one obtains the coefficients

c l��l� � K
�l � �0 � i�/2

. �A. 18�

Note that the emitted light spectrum is described by a Lorentzian line centred at �0,
with width � at half-maximum:



|c l��l�|2 � K

��l � �0�2 � �2/4
. �A. 19�

We now write E����r, t� in the form (A.15). The Fourier transform of

g��� � K
� � i�/2

. �A. 20�

one obtains
�
g��
� � K 2�H��
�exp � �

2
�
 , �A. 21�

where H��
� is the Heaviside step function, equal to 0 for � � 0 and 1 for � 
 0.
The final result reads

w�r,�, t� � 	�1�H t � �r�cos

c exp �� t � �r�cos


c , �A. 22�

where 
 � � � �, (see Fig.2).
Remark A.2.(i) Note that the probability density w�t,r� cannot be considered as the

wave
function of the photon, whose squared modulus, suitably normalized, gives the

probability
density for the presence of the photon, measured by a photodetector (see [3],5.6.).
(ii) It should not be thought that there is a position operator

�r for the photon
corresponding
to measurements by a photodetector. Therefore the probability density w�t,r� cannot

be
considered as the probability density of finding a photon exactly at point r � �2, but

rather
as an average probability density over some small area which cannot be smaller than

�min
2 ,
where �min is the wavelength associated with the maximum frequency to which the
detector is sensitive.
(iii) Thus the quantity w�t,r�dt�� is the probability of detecting a click near point

r ��r,��,
between t and t � dt ,i.e. by a detector with angular size �� � 1,where �min � r�� and
located at the point r � �2.
Remark A.3.Note that normalizing factor in Eq.(A.22) contains a multiplier 	�1with
	 � 	1 � 	2 
 � 2� rad and thus cos
 � 1.Therefore the conditions is given by

Eq.(B.5)
and by Eq.(B.6) [see Apendix B] are satisfied, since

	
t

t� 	
�0,2��\�	2,	1 �

w�r,�,�, t�dtd� � 0, �A. 23�

and

P��t�, �r�, ���, ��
 �� � 	
t

t� 	
	2



	1



w�r,�,�, t�dtd� � 1/2, �A. 24�

where �t� � �t, t��, ��
 � � �	2
 ,	1
 � � 0.5�	2,	1 �.

Appendix. B.Quantum measurement on inertial



relativistic frame of reference.Point-free Minkowski
geometry.
In this appendix we introduce point-free Minkowski geometry [16],[25]-[26], related to

relativistic quantum measurement on inertial relativistic frame of reference.
If we are to suppose that a quantum particle at a definite position x � �x1,x2,x3� � �3

at instant t � �0,T� is to be assigned a state vector |t,x�, and if further we are to suppose
that the possible positions x i, i � 1,2,3 are continuous over the range ���,��� and that
the associated states are complete, then we are lead to requiring that any state |� t � of
the particle at instant t � �0,T� must be expressible as

|� t � � 	
��

�
d3x|t,x��x, t|� t � �B. 1�

with the states |t,x� by �-function normalised, i.e. �x, t|t 
,x 
 � � �3�x � x 
���t � t 
�. However
well known that the notion of preparing a particle in a state |t,x� does not even make any
physical sense.The resolution of this impasse involves recognizing that the
measurement of the position of a particle is, in practice, only ever done to within the
accuracy, �x � ��x1,�x2,�x3� say, of the measuring apparatus.In other words, rather than
measuring the precise position of a particle, what is measured is its position as lying
somewhere in a range x i � 1

2
�x i,x i � 1

2
�x i , i � 1,2,3 Therefore if the particle is in

some state |� t � , we can recognize that the probability P |� t ��t,x,�t,�x� of getting a result x
with an accuracy of �x between instants t � �t and t � �t.will be given by

P |� t ��t,x,�t,�x� � 	
t��t

t��t

dt 
 	
x1� 12 �x1

x1� 12 �x1

	
x2� 12 �x2

x2� 12 �x2

	
x3� 12 �x3

x3� 12 �x3

d3x 
|�x 
, t 
 |��|2. �B. 2�

1.We assume now that at point x � �3 the following estimate is satisfied

P |� t ��t,x,�t,�x� � 1 � c1 exp��c2��x�� � c3 exp��c4�t� � 1, �B. 3�

where c1,c3 � 1,c2,c4 � 1,are positive constants suth that c2��x� � 1,c4�t � 1

and ��x� � 1,�t � 1,��x� � ��x1�2 � ��x2�2 � ��x3�2 .

Remark B.1. Note that only under condition (B.3) the notion of position of a quantum
particle at instant t holds in well approximation relevant to classical sense, i.e. as a
definite point x � �3.
2.We assume now that there exists continuous vector-function x t : �0,T� 
 �3

such that for all t � �0,T� the following estimate is satisfied

P |� t ��t,x t,�t,�x� � 1 � c1 exp��c2��x�� � c3 exp��c4�t� � 1, �B. 4�

where c1,c3 � 1,c2,c4 � 1,are positive constants suth that c2��x� � 1,c4�t � 1

and ��x� � 1,�t � 1.

Remark B.2.Note that only under condition (B.4) the notion of trajectory of a quantum
particle holds in well approximation relevant to classical sense, i.e. as continuous
vector-function x t : �0,T� 
 �3.
3.We assume now that at point x � �3 the following estimates are satisfied

P |� t ��t,x,�t,�x� � 1 � c1 exp��c2��x�� � 1,

P |� t � t,x,
�t
2
, �x
2

� 1/2,
�B. 5�



where c1,c1 are positive constants and ��x� � 1,�t � 1,and

P |� t ���3\�|t,x,�t,�x� � c3 exp��c4��x�� � 0, �B. 6�

where c4 � c2 ,and

P |� t ���3\�|t,x,�t,�x� � 	
t��t

t��t

d� 	
�3\�

d3x 
|�x 
 |�� �|
2
. �B. 7�

where � � �1 � �2 � �3,�i � 0.5 x i � 1
2
�x i,x i � 1

2
�x i , i � 1,2,3.

Remark B.3.Note that under conditions (B.5)-(B.7) the notion of position of a quantum
particle at instant t no longer holds in well approximation relevant to classical sense
and well defined only by using notion of the interval numbers [16].
4.We assume now that there exists continuous vector-function x t : �0,T� 
 �3such

that
for all t � �0,T� the following estimates are satisfied

P |� t ��t,x t,�t,�x t� � 1 � c1 exp��c2��x t�� � 1,

P |� t � t,x t,
�t
2
,
�x t
2

� 1/2,
�B. 8�

where c1,c1 are positive constants and for all t � �0,T�,��x t� � 1,�t � 1,and

P |� t ���3\�|t,x t,�t,�x t� � c3 exp��c4��x t�� � 0, �B. 9�

where c4 � c2 ,and

P |� t ���3\�|t,x t,�t,�x t� � 	
t��t

t��t

dt 
 	
�3\�

d3x 
|�x 
, t 
 |� t 
 �|
2
. �B. 10�

where � � �1,t � �2,t � �3,t,�i,t � x i,t � 1
2
�x i,t,x i,t � 1

2
�x i,t , i � 1,2,3.

Remark B.4.Note that under conditions (B.8)-(B.10) the notion of trajectory of a
quantum particle no longer holds in well approximation relevant to classical sense
and well defined only by using notion of the interval-valued function [27]-[28].
We rewrite now the Eq.(B.5) using notion of the interval number in the
following form

P |� t ���t�, �x�� � 	
t

t

dt 
 	
x1

x1 	
x2

x2 	
x3

x3
d3x 
|�x 
, t 
 |��|2 � 1, �B. 11�

where �t� � �t, t�, �x� � ��x1 �, �x2 �, �x3 �� � I��3� is interval number:

�x i � � �x,x�,x i � x i � 1
2
�x i,x i � x i � 1

2
�x i, �B. 12�

i � 1,2,3,where �t� � �t, t�
Remark B.5.Thus the result of quantum measurement of the position of a particle that

is alwais interval number: �x� is given by Eq.(B.4) of getting a result �x� with the
probability P |� t ���t�, �x�� � 1.
Remark B.6.Let �a� � �a,a�; �b� � �b,b� be real compact intervals. The following rules
hold: (i) �a� � �b� � �a � b,a � b�; (ii) �a� � �b� � �a � b,a � b�;
(iii) �a� � �b� � �min	ab,ab,ab,ab
,max	ab,ab,ab,ab
�;

(iv) �b��1 � 	b�1|b � �b�
 if 0 � �b�, thus �a�/�b� � �a� � �b��1.
If a � a � a, i.e., if �a� consists only of the element a, then we identify the real number

a � � with the degenerate interval �a,a� keeping the canonical notation, i.e., a 
 �a,a�.



It is easy to prove that the set I��� of real compact intervals is closed with respect to
these operations.
Remark B.1. Unfortunately, �I���,�, �� is neither a field nor a ring. The structures

�I���,�� and �I���/	0
, �� are commutative semigroups with the neutral elements 0 and
1, respectively, but they are not groups. A nondegenerate interval �a� has no inverse with
respect to addition or multiplication. Even the distributive law has to be replaced by the
so-called subdistributivity: �a� � ��b� � �c�� � �a� � �b� � �a� � �c�.
Remark B.2. (i) In order to avoid difficultness mentioned above we replace any

interval
number �x� � �x,x� by an continuous function �x� � : �0,1� 
 �x,x� such that the
following conditions are satisfied [16]:

x � inf���0,1��x� �, sup���0,1��x� � � x,

where x � �x� � � x.
(ii) We usually keeping for short the canonical notation �x�, i.e., �x� � �x� �,� � �0,1�.
(iii) Note that the notation �x� � �x,x� mean x � �x� � � x, but not real compact
interval: 	x|x � x � x
.
(iv) We also keeping the notation x� which mean a value of the function �x� � in a given
point � � �0,1�.
Let �a� � �a,a�; �b� � �b,b�. The following rules hold:
(i) �a� � �b� � �a�� � �b�� � �a� � b� �,� � �0,1�, thus �a� � �b� � �b� � �a�;
(ii) �a� � �b� � �a�� � �b�� � �a� � b� �,� � �0,1�, thus �a� � �a� � �0�;
(iii) �a� � �b� � �a�� � �b�� � �a� � b� �,� � �0,1�;
(iv) �a� � ��b� � �c�� � �a� � �b� � �a� � �c�;
(v) �b��1 � �b���1 � �b��1�,� � �0,1� if 0 � �b�, thus �a�/�b� � �a� � �b��1.

(vi) �a� � �b� if for any � � �0,1� : a� � b�.
It is easy to prove that the set ���� of all continuous function �x� � is closed with
respect to operations (i)-(v).
Definition B.1.(i) Let x � f�x� : � 
 � by any continuous function. Then we define
the interval-valued function f��x�� : ���� 
 ����,which extend f�x� from � up to
���� by the following formula

f��x�� � �f�x��� � ����,� � �0,1�. �B. 13�

It is also denoted by f��x� ��,� � �0,1�.Standard interval-valued functions

sin�x�; cos�x�; tan�x�; arctan�x�; exp�x�; ln�x�; |�x�|; n �x� ,etc. �B. 14�

are well defined by Eq.(B.13) in obvious way.
Let x � f�x� : �n 
 �n by any continuous function of n real variables
x � �x1,x2, . . . ,xn�.
Then we define the interval-valued function f��x�� : �n��� 
 ����,where
�x� � ��x1 �, �x2 �, . . . , �xn ��,which extend f�x� from � up to �n��� by the following
formula

f��x�� � f��x1 �, �x2 �, . . . , �xn �� � �f�x1,�,x2,�, . . . ,xn,��� � ����,� � �0,1�. �B. 15�

It is also denoted by f��x� �� � f��x1,� �, �x2,� �, . . . , �xn,� ��,� � �0,1�.
(ii) Let f�x� : � 
 � by any continuous function and the n-th derivative f �n��x�,
x � ���,��� exists.Then we define the n-th derivative f �n���x�� of the interval-valued



function f��x�� by the following formula

f �n���x�� � f �n��x�� � ����,� � �0,1�. �B. 16�

Definition B.2.(i) Let x � f�x� : � 
 � by any continuous function. Then we define
the integration of interval-valued function f��x�� : ���� 
 ���� by the following
formula

	
�a�

�b�

f��x��d�x� � 	
a�

b�

f�x��dx� ,� � �0,1�. �B. 17�

(ii) Let x � f�x1,x2, . . . ,xn� : �n 
 � by any continuous function.Multiple integration
of the interval-valued function f��x�� : ���� 
 ���� function in n variables

	
�a1 �

�b1 �

	
�a2 �

�b2 �

. . . 	
�an �

�bn �

f��x1 �, �x2 �, . . . , �xn ��d�x1 � �

	
a1,�

b1,�

	
a1,�

b2,�

. . . 	
an,�

bn,�

f�x1,�,x2,�, . . . ,xn,��dx1,�dx2,�. . .dxn,� ,� � �0,1�.

�B. 18�

(iii) Let � � f��� : � 
 � by any continuous function. Then we define the integration
of the interval-valued function �f����� : � 
 ���� by the following formula

	
	

�

�f�����d� � 	
	

�

f����d� ,� � �0,1�. �B. 18�

Remark B.3.Remind that from the second postulate of special relativity, together with
homogeneity of spacetime and isotropy of space, it follows that the spacetime interval
s1,2 between two arbitrary events called e1 � e1�t1,x1,y1,z1� and e2 � e2�t2,x2,y2,z2� is

s1,2 � c2�t1 � t2�2 � �x1 � x2�2 � �y1 � y2�2 � �z1 � z2�2 . �B. 19�

Thus the square of the interval (B.19) or Minkowski’s metric reads

s1,2
2 � c2�t1 � t2�2 � �x1 � x2�2 � �y1 � y2�2 � �z1 � z2�2. �B. 20�

or in differential form

ds2 � c2dt2 � dx2 � dy2 � dz2. �B. 21�

Semi Riemannian manifold endroved with Minkowski’s metric (B.21) is called
Minkowski’s spacetime and denoted by M1,3.

Remark B.4.Note that Minkowski’s spacetime relevant only for classical events
e�t,x,y ,z�,i.e. the events with exactly measured coordinates: t,x,y ,z.From consideration
above it is clear that for physical events corresponding to quantum measurement the
classical model based on Minkowski’s geometry no longer holds.In order to avoid this
difficultness we apply the pont free Minkowski’s geometry [16] related to quantum
measurement on inertial relativistic frame of reference.
The coordinate-independent definition of the square of the interval-valued line element

d�s� in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually
a Lorentzian manifold) is the "square of the length" of an interval-valued infinitesimal
displacement d�q� (in pseudo Riemannian manifolds possibly negative) whose square



root should be used for computing the generalized,i.e. interval-valued curve length:

d�s�2 � d�q� � d�q� � g�d�q�,d�q��, �B. 22�

where g is the interval-valued metric tensor, � denotes inner product, and d�q� an
interval-valued infinitesimal displacement on the (pseudo) Riemannian manifold. By
parameterising interval-valued curve �q���� � �n��� parametrised by a parameter � � �,
we can define the arc length of the curve length of the curve between �q���1� � �n��� ,
and �q���2� � �n��� is the interval-valued integral

�s� � 	
�1

�2

d� d�s�2 � 	
�1

�2

d� g
d�q����
d�

,
d�q����
d�

�

	
�1

�2

d� gij
d�qi ����
d�

,
d�qj ����
d�

.

�B. 23�

The square of arc length d�s�2 with the metric is even more easy to see in
n-dimensional general interval-valued curvilinear coordinates
�q� � ��q1 �, �q2 �, �q3 �, . . . , �qn ��, where it is written as a symmetric rank 2 tensor coinciding
with the metric tensor:

d�s�2 � �gij �d�qi �d�qj � � �g�. �B. 24�

Here the indices i and j take values 1,2,3, . . . ,n and Einstein summation convention is
used. Common examples of (pseudo) Riemannian point-free spaces include

three-dimensional point free space (no inclusion of time coordinates), and indeed
four-dimensional point-free spacetime.

Following are importent examples of how the interval-valued line elements are found
from the interval-valued metric.
1.Interval-valued Cartesian coordinates.

The simplest interval-valued line element is in interval-valued Cartesian coordinates -
in which case the metric is just the usual Kronecker delta

�gij � � ��ij � 
 �ij. �B. 25�

The general interval-valued curvilinear coordinates reduce to interval-valued Cartesian
coordinates: ��q1 �, �q2 �, �q3 �� � ��x�, �y�, �z�� so

d�s�2 � �gij �d�qi �d�qj � � d�x�2 � d�y�2 � d�z�2. �B. 26�

2.Interval-valued cylindrical coordinates.

For the conversion between interval-valued cylindrical and interval-valued Cartesian
coordinates, it is convenient to assume that the reference plane of the former is the
Cartesian �x��y�-plane (with equation �z� � 0), and the cylindrical axis is the interval-
valued Cartesian �z�-axis. Then the interval-valued �z�-coordinate is the same in both
systems, and the correspondence between interval-valued cylindrical ����, ���, �z�� and
interval-valued Cartesian ��x�, �y�, �z�� are the same as for interval-valued polar
coordinates, namely

�x� � ��� � cos���, �y� � ��� � sin���, ��� � �x�2 � �y�2 ,

�z� � �z�,
�B. 27�

where



��� �

�0� if �x� � 0 and �y� � 0

arcsin
�y�
���

if �x� 
 0

arctan
�y�
�x�

if �x� � 0

�arcsin �y�
���

� ��� if �x� � 0

�B. 28�

The line element is: .

d�s�2 � d�r�2 � �r�2d���2 � d�z�2. �B. 29�

3.Point free Minkowskian spacetime.

The interval-valued Minkowski metric is:

��gij �� �

�1� �0� �0� �0�

�0� ��1� �0� �0�

�0� �0� ��1� �0�

�0� �0� �0� ��1�

�B. 30�

where one sign or the other is chosen, both conventions are used. This applies only for
flat point free spacetime. The interval-valued coordinates are given by the

interval-valued 4-position:

�x� � ��t�, �x�, �y�, �z��, �B. 31�

so the interval-valued line element is: .

d�s�2 � c2d�t�2 � d�x�2 � d�y�2 � d�z�2. �B. 32�

Thus in interval-valued polar coordinates interval-valued line element (B.32) reads

d�s�2 � c2d�t�2 � d�r�2 � �r�2d���2 � d�z�2. �B. 33�

The transformation to a non inertial frame of reference ��t 
 �, �r
 �, ��
 �, �z
 �� rotating at
the uniform angular rate � with respect to the starting inertial frame (B.33) is given by

�t� � �t 
 �, �r� � �r
 �, �� 
 � � ��� � ��t�. �B. 34�

Thus, interval-valued line element given by the Eq.(B.33) by the transformation (B.34)
becomes the following interval-valued line element (interval-valued Langevin metric) in
rotating frame reads

d�s�2 � 1 � �r�2�2

c2
c2d�t�2 � 2��r�2d�� 
 �d�t� � d�r�2 � �r�2d�� 
 �2 � d�z�2. �B. 35�

Appendix.C.The interval-valued trajectories
corresponding to 2-dimensional wave packet.
I.The interval-valued trajectories corresponding to 2-dimensional wave packet which

propagates in inertial frame of references.
Assuming that 	2 � � � 	1,	2 � � � 	1 (see Fig.1), �t� � �t, t��, t � t�
 � t�,
�r� � �r, r��, r � r�
 � r�, ��� � �	2,	1 �, ��� � �	2,	1 �, see Remark B.2, from Eq.(A.22) and



Eq.(B.11)-Eq.(B.12) we obtain

PIF��t�, �r�, ���, ���� � 	
t

t�



	
	2

	1
wIF�r�,��,��, t��dt�d�� �C. 1�

Thus PIF��t�, �r�, ���, ���� is the interval-valued probability of detecting a "click" in inertial
frame of references at interval-valued instant �t� � �t, t�� at an "point"

��r�, ���� � ���� � ���	2,	1 �� �C. 2�

with interval-valued coordinates �r� � �r, r�� and ��� � �	2,	1 �.Here the probability
density wIF�r,�,�, t� is given in accordance with Eq.(A.19) reads

wIF�r,�,�, t� � 	�1�H t � rcos
c exp �� t � rcos
c , �C. 3�

where 
 � � � �, 	 � 	1 � 	2 is angular size of the detector (see Fig.2).

Fig.2.Quantum measurements on inertial frame of

reference.

	1 � � � 	2

	 is angular size of detector: 	 � 	1 � 	2

�
� � � 

�
,
� � �0,	� � 2� rad

Remark C.1.Note that normalizing factor in Eq.(C.3) necessarily contains a
multiplier 	�1,since 
 � 2� rad and thus cos
 � 1.Therefore the conditions is given
by Eq.(B.5) and (B.6) are satisfied, since

PIF��t�, �r�, ���, ��
 �� � 	
t

t�



	
	2



	1



wIF�r�,��,��, t��dt�d�� � 1/2, �C. 4�

where �	2
 ,	1
 � � 0.5�	2,	1 � and

	
t

t�



	
�0,2��\�	2,	1 �

wIF�r�,��,��, t��dt�d�� � 0. �C. 5�

Substituting Eq.(C.3) into Eq.(C.1) we get

�PIF��t�, �r�, ���, ����� �

	
t

t��



	
	2

	1
	�1�H t� �

r� cos��� � ���
c

exp �� t� �
r� cos��� � ���

c dt�d�� ,

�C. 6�



where � � �0,1�. Note that the condition is given by Eq.(B.11) now reads

�PIF��t�, �r�, ���, ����� � 1. �C. 7�

From Eq.(C.6) and Eq.(C.7) and by the definition of the Heaviside step function

H����,where �� � t� �
r� cos��� � ���

c , we get

�t� � �r�cos���� � ����
c � �t� � �r�cos��
��

c 
 0, �C. 8�

where 
 � � � �, (see Fig.2).Thus on inertial relativistic frame of reference endroved with
interval-valued polar coordinates (B.27) photodetection signal propagate with a
probability � 1, in accordance with the following interval-valued law

�r� � c�
��t�, ��� � �	2,	1 � �C. 9�

where

c�
� � c
cos��
��

, �C. 10�

and where �
� � �0,	1 � 	2 �, (see Fig.2).
II.The interval-valued trajectories corresponding to 2-dimensional wave packet which
propagates in rotating non inertial frame of references.
Remark C.2. Note that the probability density wIF�r,�,�, t� in inertial frame given by
Eq.(C.3) that is scalar quantity and therefore corresponding probability density
wRF�r,�,�, t� in rotating non inertial frame endrowed with canonical Langevin metric
reads

wRF�r,�,�, t� � 	�1�H t � rcos�
 � �t�
c exp �� t � rcos�
 � �t�

c , �C. 11�

where 
 � � � �, (see Fig.3).
Remark C.3.Note that in the rotating frame the angular size of the detector is not

exactly

the same as in the frame at rest and equal [29]: 	� � 	/ 1 � �2r2

c2
� 	.

Assuming that 	2 � � � 	1,	2 � � � 	1 (see Fig.3), �t� � �t, t��, t � t�
 � t�,
�r� � �r, r��, r � r�
 � r�, ��� � �	2,	1 �, ��� � �	2,	1 �, see Remark B.2, from Eq.(A.6) and

Eq.(B.11)-Eq.(B.12) we obtain

PRF��t�, �r�, ���, �� � �t�� � 	
t

t�



	
	2
�

	1
�

wRF�r�,��,�� � �t, t��dt�d��, �C. 12�

where 	1� � 	/ 1 � �2r2

c2
� 	1,	2� � 	/ 1 � �2r2

c2
� 	2.

Thus PRF��t�, �r�, ���, ���� is the interval-valued probability of detecting a "click" in non
inertial frame of references at interval-valued instant �t� � �t, t�� at an "point"

��r�, ���� � ���� � ���	2�,	1� �� �C. 13�

Substituting Eq.(C.11) into Eq.(C.12) we get

�PRF��t�, �r�, ���, �� � �t��� �

	
t

t��



	
	2
�

	1
�

	�1�H t� �
r� cos��� � �� � �t�

c

exp �� t� �
r� cos��� � �� � �t�

c dt�d�� ,

�C. 14�



where � � �0,1�. Note that the condition is given by Eq.(B.11) now reads

�PRF��t�, �r�, ���, �� � �t��� � 1. �C. 15�

From Eq.(C.14) and Eq.(C.15) and by the definition of the Heaviside step function

H����,where �� � t� �
r� cos��� � ���

c ,we get

�t� � �r�cos���� � � ��� � � �t�
c � �t� � �r�cos��
� � � �t�

c 
 0, �C. 16�

where �� � �/ 1 � �2r2

c2
� �,�� � �/ 1 � �2r2

c2
� � and 
� � �� � ��, (see Fig.3).Thus on

non inertial relativistic frame of reference endroved with interval-valued polar coordinates
(B.27) photodetection signal propagate with a probability � 1, in accordance with the
following interval-valued law

�r� � c�
���t��t� �C. 17�

and

��� � � �	2,	1 �/ 1 � �2r2

c2
� �	2�,	1� �, �C. 18�

where

c�
� � � c
cos��
� � �t��

�C. 19�

and

�
� � � 

�
,
� � �0,	� � � 0, �	1 � 	2�/ 1 � �2r2

c2
�

�0,	� � �0,	1 � 	2 � � 2�rad.
�C. 20�

Appendix.D.Quantum measurement on non inertial
relativistic frame of reference.Point free Lorentzian
geometry corresponding to Mössbauer rotor experiment.
Let M	 1,3 be point free Minkowskian space-time endroved with the following interval-
valued line element in interval-valued polar coordinates

d�s�2 � c�
�
2 d�t�2 � d�r�2 � �r�2d���2 � d�z�2, �D. 1�

where 
 � � � �, (see Fig.1).
Remark D.1.Note that the interval-valued line element (D.1) corresponding to
photodetection signal which propagate with a probability � 1 in accordance with the
interval-valued law is given by Eq.(C.9)-Eq.(C.10).
The transformation to a non inertial frame of reference ��t 
 �, �r
 �, ��
 �, �z
 �� rotating at
the uniform angular rate � with respect to the starting inertial frame (D.1) is given by

�t� � �t 
 �, �r� � �r
 �, �� 
 � � ��� � ��t�. �D. 2�

Remark D.2.Note that below we abbraviate � instead � 
 but this should not introduce
the
misleading.
Thus, interval-valued line element given by the Eq.(D.1) by the transformation (D.2)

becomes the following interval-valued line element (interval-valued Langevin metric) in
rotating frame reads



d�s�2 � 1 � �r�2�2

c�
���t
2

c�
���t
2 d�t�2 � 2��r�2d���d�t� � d�r�2 � �r�2d���2 � d�z�2. �D. 3�

For simplicity but without loss of generality, we consider now 2-dimensional
interval-valued Langevin metric (D.5) (see Fig.3) :

Fig.3. Mössbauer rotor experiment.

Quantum measurements on non inertial

frame of reference.

� 
 � � � �t;	1 � � � 	2

	
 � 	1 � 	2, �	
 � � �0,	1 � 	2 �

d�s�2 � 1 � �r�2�2

c�
���t
2

c�
���t
2 d�t�2 � 2��r�2d���d�t� � d�r�2 � �r�2d���2, �D. 4�

By substituting ��� � :� �
�
,�� � �	1�,	2� � � const and �
� � � 


�
,
� � �0,	� �

(see Remark C.3) into Eq.(D.4) we get

d�s�2 � 1 � �r�2�2

c�
� ���t
2

c�
� ���t
2 d�t�2 � d�r�2 � 0. �D. 5�

From Eq.(D.5) we obtain

d�r�

1 � �r�2�2

c�
� ���t
2

� �c�
� ���t�d�t�. �D. 6�

Note that �t � 2� rad and therefore from Eq.(D.6) and Eq.(C.10) we obtain

d�r�

1 � �r�2�2

c�
� �
2

� �c�
��d�t�. �D. 7�

We rewrite now Eq.(D.7) in the following equivalent form

dr�

1 �
r�
2�2

c�
� �
2

� �c�
� ���dt� �. �D. 8�



By integrating from Eq.(D.7) we get

	
r

r

dr�

1 �
r�
2�2

c�
�
2

� �c�
�� 	
t

t

dt�

 . �D. 9�

From Eq.(D.9) we get

c�
�
� arcsin

��r�
c�
� �

� �c�
� ����t2 � � �t1 ��. �D. 10�

From Eq.(D.10) we obtain

c�
� �
�

��r�
c�
� �

� 1
6

��r�
c�
� �

3

� �c�
� ����t2 � � �t1 ��. �D. 11�

From Eq.(D.11) and Eq.(C.10) we get

�r� 1 � 1
6

��r�
c�
� �

3

� c��t2 � � �t1 ��
cos��
��

. �D. 12�

From Eq.(D.11) we get

�r�
c 1 � 1

6

��r�
c�
� �

3

cos��
� �� � �t2 � � �t1 �. �D. 13�

From Eq.(D.13) finally we get in appropriate approximation

r
c 1 � 1

6
�r
c

2
� �t2 � t1�. �D. 14�

since cos��
� �� � 1.
Remark D.3.Note that Eq.(D.14) is obtained without any references to notion of the
classical trajectories.
Remark D.4.Note that Eq.(D.14) coincides with Eq.(16) from [2].
We rewrite now Eq.(D.14) in the following form

tIF � tRF 1 � 1
6

�r
c

2 �1
� tRF 1 � 1

6
�r
c

2
, �D. 15�

where: (i) tIF is propagation time of the photodetection signal measured by observer
on
inertial frame of reference and (ii) tRF is propagation time of the photodetection signal
measured by observer on non inertial (rotating) frame of reference.
From Eq.(A.19) using the transformation is given by Eq.(D.2) we obtain

wRF�r,� � �tIF,�, tIF� �

	�1�H tIF �
rcos�
 � �tIF�

c exp �� tIF �
rcos�
 � �tIF�

c ,
�D. 16�

since the quantity w�r,�,�, t� is a scalar.
By substituting Eq.(D.15) into Eq.(D.16) we obtain

wRF�r,� � �tRF,�, tRF� �

	�1�r�H tRF�r �
rcos�
 � �tRF�r�

c exp �� tRF�r �
rcos�
 � �tRF�r�

c ,
�D. 17�

where



�r � 1 � 1
6

�r
c

2
. �D. 18�

From Eq.(D.17) finally we obtain

wRF�r,� � �tRF,�, tRF� �

	�1�r�H tRF �
rcos�
 � �tRF�r�

c�r exp ���r tRF �
rcos�
 � �tRF�r�

c�r �

	�1�r�H tRF �
rcos�
 � �tRF�r�

c�r�
exp ���r tRF �

rcos�
 � �tRF�r�
c�r�

,

�D. 19�

where c�r� � c�r,�r� � r.


