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Abstract

Euclid proved (Elements, Book III, Propositions 20 and 21) proved

that an angle inscribed in a circle is half as big as the central angle that

subtends the same arc. We present a high-school-level version of Hestenes’

GA-based proof ([1]) of that same theorem. We conclude with comments

on the need for learners of GA to learn classical geometry as well.

“Demonstrate that the inscribed angle φ is is half as large as the

central angle θ .”
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Figure 1: Demonstrate that the inscribed angle φ is is half as large as the central

angle θ.

1 Introduction

Using the Geometric-Algebra (GA) concept of the “reverse” of a multivector,

Hestenes ([1], p. 88) presents an elegant proof of the Constant-Angle Theorem.

Here, we present a proof that is perhaps more accessible to high-school students.

We will use basic concepts from GA, plus three simple trigonometric identities

that may not be familiar to students.

2 Problem Statement

In Fig. 1,“Demonstrate that the inscribed angle φ is is half as large

as the central angle θ.”

3 The Formulas and Identities that We Will Use

3.1 Trigonometric Identities

Five of the identities are familiar ones: for any two angles A and B,

• sin2A+ cos2A = 1;



• sin2A+ cos2A = 1;

• sin (A+B) = sinA cosB + cosA sinB ;

• sin 2A = 2 sinA cosA;

• cos (A+B) = cosA cosB − sinA sinB ;

• cos 2A = cos2A− sin2A = 1− 2 sin2A.

The three less-familiar identities are

• sinA+ sinB = 2 sin

(
A+B

2

)
cos

(
A−B

2

)
;

• cosA− cosB = −2 sin

(
A+B

2

)
sin

(
A−B

2

)
;

• sinA− sinB = 2 cos

(
A+B

2

)
sin

(
A−B

2

)
.

3.2 GA Formulas and Identities

• For any real number γ, eiγ = cos γ + i sin γ;

• In 2D (plane) GA, right-multiplying a vector v by λeiγ rotates v anticlock-

wise by the angle γ, and scales it by the factor λ . (Therefore, the rotation

is clockwise if γ is negative.)

• Two multivectors are equal if, and only if, their respective parts of each

grade are equal to each other. In 2D GA, this postulate means that

the multivectors [a · b + a ∧ b] and [u · v + u ∧ v] are equal if and only if

a · b = u · v and a ∧ b = u ∧ v.

4 Solution

4.1 Formulating the Problem in GA Terms

Fig. 2 is adapted from the proof given in [1] (p. 88).

The inscribed angle φ subtends the same arc as the central angle θ, which

is smaller than 180◦. The vertex of the angle φ is an arbitrary point outside

that arc. Our task will be to show that φ = θ/2, regardless of the position of the

vertex of the angle φ. That is, regardless of the angle α. We’ve expressed the

sides of the angles θ and φ as differences between rotations of the vector r . Thus,

the vector reiθ − rei(θ+α) is a rotation and scaling of the vector r− rei(θ+α):

reiθ − rei(θ+α) = λ
{
r− rei(θ+α)

}
eiφ.

3



Figure 2: Formulation of the problem in GA terms. (Adapted from [1], p. 88.)

The inscribed angle φ subtends the same arc as the central angle θ, which is

smaller than 180◦. The vertex of the angle φ is an arbitrary point outside that

arc. Our task will be to show that φ = θ/2, regardless of the position of the

vertex of the angle φ. That is, regardless of the angle α. We’ve expressed the

sides of the two angles as differences between rotations of the vector r . Thus,

the vector reiθ − rei(θ+α) is a rotation and scaling of the vector r− rei(θ+α).
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Now, we left-multiply both sides by r’s multiplicative inverse r−1 to obtain

eiθ − ei(θ+α) = λ
{

1− ei(θ+α)
}
eiφ.

Next, we expand both sides of that equation by using the identity eiγ = cos γ +
i sin γ:

cos θ − cos (θ + α) + i [sin θ − sin (θ + α)] = λ [cosφ− cosφ cos (θ + α) + sinφ sin (θ + α)]

+ λi [sinφ− sinφ cos (θ + α)− cosφ sin (θ + α)]

Note that for any two

multivectors M and N , if

iM = iN , then M = N .

We are now finished with GA.

The rest is conventional algebra

and trig identities.

By the definition of the equality of multivectors,

cos θ − cos (θ + α) = λ [cosφ− cosφ cos (θ + α) + sinφ sin (θ + α)] , and

sin θ − sin (θ + α) = λ [sinφ− sinφ cos (θ + α)− cosφ sin (θ + α)] .

We are now finished with GA. The rest is conventional algebra and trig

identities.

From the previous equation, we can see that both sides of the following are
equal to λ, and therefore equal to each other:

cos θ − cos (θ + α)

cosφ− cosφ cos (θ + α) + sinφ sin (θ + α)
=

sin θ − sin (θ + α)

sinφ− sinφ cos (θ + α)− cosφ sin (θ + α)
.

When simplifying, don’t expand

sin (θ + α) and cos (θ + α), but

do watch for the terms

sinφ sin2 (θ + α) and

sinφ cos2 (θ + α) —which sum

to sinφ —and the cancellation

of the two

cosφ sin (θ + α) cos (θ + α)

terms.

Cross-multiplying, simplifying, and then rearranging, we find that

sinφ [sin θ sin (θ + α) + cos θ cos (θ + α) + cos (θ + α)− cos θ − 1]

= cos [sin (θ + α) + sin θ sin (θ + α)− cos θ sin (θ + α)− sin θ] .

Next, we expand the terms in blue, using the identities sin (A+B) =

sinA cosB + cosA sinB and cos (A+B) = cosA cosB − sinA sinB, then sim-

plify. The result is

sinφ [cos (θ + cosα− cos θ)] = cosφ [sin (θ + α)− sin θ − sinα] . (4.1)

At this point, we might try to solve for sinφ by squaring both sides, then using

cos2 φ = 1− sin2 φ to obtain a quadratic in sinφ. We would hope that α would

somehow be eliminated in the process. However, that route becomes extremely

tedious (I tried it!), so we will instead see what we might accomplish by using

the identities

1. sinA+ sinB = 2 sin

(
A+B

2

)
cos

(
A−B

2

)
;

2. cosA− cosB = −2 sin

(
A+B

2

)
sin

(
A−B

2

)
; and

3. sinA− sinB = 2 cos

(
A+B

2

)
sin

(
A−B

2

)
.
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Let’s begin with the right-hand side of Eq. (4.1). Using the first of the above

identities, − sin θ − sinα becomes

− [sin θ + sinα] = −2 sin

(
θ + α

2

)
cos

(
θ − α

2

)
.

Now, we see what we might do with the term sin (θ + α) on the right-hand side.

We’ll write it as

sin (θ + α) = sin

[
2

(
θ + α

2

)]
= 2 sin

(
θ + α

2

)
cos

(
θ + α

2

)
.

Thus, the right-hand side becomes

cosφ

[
2 sin

(
θ + α

2

)
cos

(
θ + α

2

)
− 2 sin

(
θ + α

2

)
cos

(
θ − α

2

)]
. (4.2)

Next, we’ll work on the left-hand side of Eq. (4.1). To use the second of

the above identities, we’ll write the difference cosα− cos θ as − (cos θ − cos θ),

which becomes

− (cos θ − cosα) = 2 sin

(
θ + α

2

)
sin

(
θ − α

2

)
.

Now, we see how we might eliminate the factor sin

(
θ + α

2

)
: we’ll write

cos (θ + α) as cos

[
2

(
θ + α

2

)]
, which is

cos2
(
θ + α

2

)
− sin2

(
θ + α

2

)
= 1− 2 sin2

(
θ + α

2

)
.

Making these substitutions, the left-hand side of Eq. (4.1)becomes

cosφ

[
1− 2 sin2

(
θ + α

2

)
+ 2 sin

(
θ + α

2

)
sin

(
θ − α

2

)
− 1

]
, or

cosφ

[
−2 sin2

(
θ + α

2

)
+ 2 sin

(
θ + α

2

)
sin

(
θ − α

2

)]
. (4.3)

Returning to Eq. (4.1), and using the expressions in Eqs. (4.2) and (4.3),

we see that

sinφ

cosφ
=

2 sin

(
θ + α

2

)
cos

(
θ + α

2

)
− 2 sin

(
θ + α

2

)
cos

(
θ − α

2

)
−2 sin2

(
θ + α

2

)
+ 2 sin

(
θ + α

2

)
sin

(
θ − α

2

) , or

tanφ =

cos

(
θ + α

2

)
− cos

(
θ − α

2

)
sin

(
θ − α

2

)
− sin

(
θ + α

2

) . (4.4)
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To proceed further, we’ll simplify the numerator of Eq. 4.4 by using the

identity cosA− cosB = −2 sin

(
A+B

2

)
sin

(
A−B

2

)
:

cos

(
θ + α

2

)
− cos

(
θ − α

2

)
= −2 sin

θ

2
sin

α

2
.

We simplify the denominator of Eq. 4.4 by using the identity sinA− sinB =

2 cos

(
A+B

2

)
sin

(
A−B

2

)
:

sin

(
θ − α

2

)
− sin

(
θ + α

2

)
= 2 cos

θ

2
sin
−α
2

= −2 cos
θ

2
sin

α

2
.

Hence, Eq. 4.4 becomes

tanφ =
−2 sin

θ

2
sin

α

2

−2 cos
θ

2
sin

α

2

=
sin

θ

2

cos
θ

2

= tan
θ

2
. (4.5)

Because θ < 180◦, the finding that tanφ = tan
θ

2
means that φ = θ/2. In

addition, because this relationship is true for an arbitrary point on the circle

outside the subtended arc, said relationship holds for all such points because of

the Law of Universal Generalization ([2]). �

5 Discussion

I hope the present document has been a useful example of how to use GA.

That having been said, those who are familiar with Euclid’s proof of this same

theorem (Elements, Book III. Propositions 20 and 21) recognized immediately

that our GA-based proof was going to be considerably more complicated. Thus

the observations of Professor Miroslav Josipović are on-target):

[T]raditional geometry is our heritage and we must preserve it.

Traditional geometry is an expression of pure human genius and

its study has a very favorable effect on brain development (in the

light of modern knowledge about neuroplasticity). On the other

hand, geometric algebra, regardless of its power, is not a substitute

for everything, and especially it is not a “magic wand” or some

“royal path” into geometry. Geometric algebra simply introduces

clarity into the question of vector multiplication, with far-reaching

consequences. However, caution is required: (in my opinion) you

can’t be good at GA if you skip Euclid.
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