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ABSTRACT
This paper introduces a methodology for predicting the year
of plantation (YOP) from remote sensing data. The applica-
tion has important implications in forestry management and
inventorying. We exploit hyperspectral and LiDAR data in
combination with state-of-the-art machine learning classi-
fiers. In particular, we present a complete processing chain
to extract spectral, textural and morphological features from
both sensory data. Features are then combined and fed a
Gaussian Process Classifier (GPC) trained to predict YOP
in a forest area in North Carolina (US). The GPC algorithm
provides accurate YOP estimates, reports spatially explicit
maps and associated confidence maps, and provides sensible
feature rankings.

Index Terms— Vegetation monitoring, Hyperspectral,
LiDAR, Data fusion, Gaussian process classification

1. INTRODUCTION

‘How old would you be if you didn’t know how old you are?’
— Satchel Paige

The fundamentals of forest inventories based on field
sampling were developed in the early twentieth century.
These conventional inventories rely heavily on field mea-
surements, and its practice has been in place even in recent
national inventories. In contrast to field-based inventories,
airborne laser scanning (ALS) supported inventories attained
outstanding results [1, 2], mainly due to the high precision of
LiDAR sensor and its cost effectiveness. Consequently, in the
last decade, the interest in LiDAR for forest applications has
grown a lot and has become a field of active research.

Several studies have determined a correlation between
dendrometric variables such as the normal diameter or crown
biomass, and the height measurements taken from Aerial
Laser Scanning (ALS) data [2, 3]. This allows not only an
estimation of stand variables at large-scale forest but also a
proxy for the timber stock and wood quality features. Re-
cently, other studies include the fusion of LiDAR and HSI for
forestry applications. HSI has been commonly used (alone)
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for health monitoring and biophysical parameter retrieval [4].
Certainly, the fusion of optical (hyperspectral) data with Li-
DAR can be beneficial for either retrieval of biophysical
parameters and for complex classification problems, as suc-
cessfully reported in previous works [5,6]. Forest inventories
provide data and information at tree and stand level that sup-
port the forest management goals. Stand age, among other
variables, is measured in the inventory to assess the current
status of the forest. Although stand age is often considered
irrelevant in productive forests, the year of plantation (YOP)
might give a quick overview about the present situation of the
forest. Stand age can be also considered a handy information
that suggests when forest practices are required, such as thin-
ning or pruning. In addition, since stand age is a driver of tree
height, this relationship is used to quantify the site index and
determine the rotation cycle.

In this paper, we aim to exploit the capabilities of machine
learning classifiers to determine the year of plantation using
both LiDAR and hyperspectral data. In particular we will fo-
cus on Gaussian Process Classification (GPC) [7]. Gaussian
processes are rooted in Bayesian inference and typically pro-
vide state-of-the-art accuracy results, accompanied with sev-
eral interesting properties: 1) unlike other classifiers such as
support vector machines (SVMs) [8, 9], 2) they can provide
confidence intervals for the predictions, 3) hyperparameters
can be learned by approximate inference, and 4) they yield a
feature ranking by looking at the variable-dependent hyper-
parameters. We have recently reported all these properties in
the context of parameter retrieval in [10], but no attention has
been paid to them in the context of classification problems so
far, in which we will focus in this paper. Note that our tem-
poral resolution for YOP prediction is yearly so classification
is a preferred (and more convenient) setup for the problem.

The remainder of the paper is organized as follows. Sec-
tion §2 details both the data collection and the proposed pro-
cessing chain. Section §3 describes Gaussian Processes for
classification (GPC), its adaptation to multiclass settings, and
the proposed technique to derive feature rankings from the
trained models. Experimental evidence of performance of our
proposal is given in §4. We conclude in §5 with some remarks
and outline future work.

2. DATA COLLECTION AND PROCESSING CHAIN

This section reviews the data collected and the processing
chain proposed for LiDAR and hyperspectral feature extrac-
tion and data fusion.



2.1. Data collection

The data used in this work were collected by the airborne
Goddard’s LiDAR, Hyperspectral, and Thermal imager1 (G-
LiHT) [11], during the ESA/NASA Joint FLEX-US (FLuo-
rescence EXplorer experiment in USA) campaign from Octo-
ber 24th to 27th, 2013. G-LiGHT consists of three sensors:
(1) a small footprint profiling and scanning LiDAR, (2) a Hy-
perspec VNIR Concentric Imaging Spectrometer that records
hyperspectral images with 114 bands distributed in the VNIR
and (3) a Gobi-384 sensor for thermal imagery. This study
uses the LiDAR cloud point and the hyperspectral image gen-
erated in the VNIR.

The study area covers 490 ha of forest in Parker Track,
North Carolina (USA) (35◦ 49’ N, 76◦ 39’ W). The forest is
divided in nine logging units which are managed as even-aged
stands of loblolly pine (Pinus taeda) for timber production.
Therefore, trees within the same unit have similar dendrolog-
ical features, such as height and normal diameter. The year
of plantation for this forest stands is 1984, 1986, 1990, 1992,
2001, 2009, 2010, 2011, and 2013. In addition, some areas
were left as conservation sites. In these areas, the forest com-
position is a mixture of loblolly pine and deciduous trees, and
tree measures are heterogeneous.

2.2. Data processing chain

The proposed processing chain in this work is shown in Fig. 1.
The first step involves a dimensionality reduction of the hy-
perspectral data through PCA, and the calculation of the Dig-
ital Surface Model (DSM) from LiDAR point cloud data. Af-
terwards, a multi-level segmentation is performed on top of
both pieces of information. The second part of the chain fo-
cuses on ranking these features from the embedded hyperpa-
rameters in the GPC model.

Fig. 1: Proposed processing chain: HSI is reduced to a number of p
components using PCA, while we extract a DSM from the LiDAR
data. Then a multi-level segmentation is performed with morpholog-
ical filters. These feature extraction yields a set of d features used in
a one-versus-all GPC classifier scheme, that not only provide a full
prediction probability but also feature rankings per class.

Segmentation is the process of grouping pixels into mul-
tiple segments in such a way that the new values are more
meaningful and easier to analyze. We used a bottom-up merg-
ing algorithm [12], based on spatial and spectral homogene-
ity criteria, to produce a two-level segmentation, level 1 (L1)

1http://gliht.gsfc.nasa.gov/

and level 2 (L2). The segmentation was carried out using a
2-meter DSM derived from the LiDAR cloud point. We set
the segmentation parameters in L1 to achieve a delimitation
of single tree crowns, while L2 was produced with a coarser
segmentation in order to clump trees with similar heights.

The two segmentation levels served to extract features
from the hyperspectral image and the LiDAR point cloud.
The hyperspectral image was transformed using a Principal
Component Analysis (PCA) for dimensionality reduction,
projecting the hypespectral image onto p = 10 components.
For the first ten components, the mean and standard deviation
were extracted considering the pixels included in one image
object. Similarly, we derived height percentiles and intensity
values considering those LiDAR returns whose ground pro-
jection was contained within the same object. Finally, we ex-
tracted texture features by computing gray-level coocurrence
matrix (GLCM) statistics using the DSM values enclosed in
an object.

3. GAUSSIAN PROCESS CLASSIFICATION (GPC)

Gaussian processes (GPs) are Bayesian state-of-the-art tools
for discriminative machine learning. GPs were first proposed
in statistics [13], and they are well-known to the geostatistics
community as kriging. GP algorithms have been proposed for
regression, classification and dimensionality reduction [7].

3.1. Classification with Gaussian Processes

Notationally, we are given a set of input-output data pairs
{(xi, yi)}Ni=1, where x := [x1, . . . , xd] ∈ Rd and y ∈ {0, 1}.
Standard regression approximates the observations (often re-
ferred to as outputs, targets or labels) {yi}Ni=1 as the sum
of some unknown latent function f(x) of the inputs {xi ∈
Rd}Ni=1 plus Gaussian noise, i.e. yi = f(xi) + ei, where
ei ∼ N (0, σ2

n). GP models proceeds in a Bayesian, non-
parametric way, to fit the observed data. For the case of GP
classification, we need to proceed by placing a GP prior over
the latent function f(x) and then transform it with a logistic
function to obtain a prior on p(y = 1|f(x)) = σ(f(x)) =
(1 + exp(f(x)))−1. This response function σ(·) “squashes”
the real-valued latent function f into a (0, 1)-interval repre-
senting the posterior probability for y [7].

Let us now define f = [f(x1), . . . , f(xN )]ᵀ, the matrix
of training input data X ∈ RN×d, all training output labels in
y = [y1, . . . , yN ]ᵀ, and let us denote the training dataset as
D ∼ X,y. Inference is naturally divided into two steps: first
computing the distribution of the latent variable correspond-
ing to a test example x∗

p(f∗|D,x∗) =
∫
p(f∗|X,x∗, f)p(f |D)df ,

where p(f |D) = p(y|f)p(f |X)/p(y|X) is the posterior over
the latent variables, and subsequently using this distribution
over the latent f to produce a probabilistic prediction

p(y∗ = 1|D,x∗) =
∫
σ(f∗)p(f∗|D,x∗)df∗.

http://gliht.gsfc.nasa.gov/


This integral is however not analytically tractable so one
has to resort numerical methods or approximations to solve
it [7]. One could simply resort to Markov Chain Monte Carlo
(MCMC) methods, but they are computationally too expen-
sive. Alternatively, by assuming a Gaussian approximation
to the posterior given the hyperparameters θ, p(f |X,y,θ) ≈
q(f |X,y,θ)N (µ,Σ), one can use two convenient alterna-
tives to estimate the predictive mean µ and variance Σ: the
Laplace approximation (LA) or the expectation propagation
(EP) [14] method. We used the EP approximation that has
revealed a more accurate approximation [15].

3.2. Inference with the GPC

Note that the GPC yields a full posterior predictive distribu-
tion over y∗: this allows us to obtain not only mean predic-
tions for test data, µf∗, but also the so-called “error-bars”,
σ2
f∗, assessing the uncertainty of the mean prediction. These

are the so-called approximate predictive mean and predic-
tive variance for the latent variable f. The EP approxima-
tion gives a Gaussian approximation to the posterior distribu-
tion, p(f∗|D,x∗) = N (y∗|µf∗, σ

2
f∗), with predictive mean

and variance:

µf∗ = kᵀ
f∗(K̃ff + Σ̃)−1y = kᵀ

f∗α

σ2
f∗ = σ2 + k(x∗,x∗)− kᵀ

f∗(K̃ff + Σ̃)−1kf∗,

where kf∗ = [k(x∗,x1), . . . , k(x∗,xn)]
ᵀ indicates the vector

of covariances between the test point x∗ and the N train-
ing points, and α is the solution weight vector. Approx-
imating the predictive distribution for the binary targets,
q(y∗ = 1|D,x∗), requires averaging the output of all possible
models w.r.t. the Gaussian posterior before, which can be
done analytically [7][sect. 3.6.1]. We followed a one-against-
all (OAA) classification scheme and the maximum vote was
weighted according to the class-wise confidence level. While
we are aware of more sophisticated multiclass schemes, the
OAA scheme allowed us to derive intuitive confidence in-
tervals and identify the most difficult YOPs in the dataset
easily.

3.3. Ranking features with GPC

We selected the anisotropic squared exponential (SE) kernel
function K given by:

K(x,x′) = ν exp

(
−

d∑
k=1

(xk − x′k)2

2σ2
k

)
, (1)

where ν is a scaling factor, and we have one σk per each input
features, k = 1, . . . , d. This is a very flexible covariance
function that typically suffices to tackle most of the problems.
Furthermore, this kernel function is also used for the so-called
automatic relevance determination (ARD) [16], i.e., studying
the influence of each input component to the output. We will
use this to gain some knowledge about the relative relevance
of input features (LiDAR and hyperspectral) included in x.

4. EXPERIMENTAL RESULTS

We show here the obtained results in the YOP estimation from
remote sensing data. We first describe the model develop-
ment, and then analyze the results both in terms of accuracy
and interpretability.

4.1. Model development and results

The training and testing values were obtained by selecting ob-
jects in the segmentation L2. A total of 200 segments were
chosen for training and 1500 for testing. The classification
models were applied considering three experiments: (1) only
LiDAR features, (2) only HSI features, and (3) combining Li-
DAR and HSI features. A numerical comparison is shown in
Table 1. It becomes clear that the best results are obtained
when combining both pieces of information, and that LiDAR
features are more discriminative than HSI features. Figure 2
shows a simple analysis of the results over an image chip:
the classification map and associated confidence map for the
different classes give evidence of accurate YOP prediction.

HSI LiDAR LiDAR+HSI

Cohen’s κ statistic 0.43 0.54 0.61
Overall accuracy, OA[%] 49.48 59.22 65.16

Table 1: Results of the classification with different input features.

4.2. Feature ranking

The gamma values γk ∝ 1/σ2
k obtained from the GPC mod-

els are given in Fig. 3. High γk values indicate high relevance
of the particular feature in the classification model. When
only LiDAR features were considered, ‘Elevation maximum
in L2’ and two texture features help distinguishing mature for-
est stands against the rest of YOP classes. In younger ages,
the height is not so determining to discriminate among early
plantations, so height features lose relevance. Most of the fea-
tures obtained from the segmentation level L1 appear to be ir-
relevant. This suggests that a single-tree crown segmentation
might be unnecessary, in contrast to a coarser segmentation –
in L2– in which features characterize clumps of trees that are
representative of the forest age.

When the model requires a higher amount of variables for
distinguishing a class, we can presume that the model was
not able to detect the class satisfactorily. In such case, the
gamma values are low and close between them. This is gen-
erally the case for young stands, and for most of the classes
in the experiment where only HSI features were considered.
The low gammas indicate that HSI features do not perform
well solely, while LiDAR features may be considered alone
particularly for classifying mature forest. In the experiment
LiDAR+HSI, LiDAR features seem to be most relevant, but
HSI features complement in certain classes. For example, a
mature forest such as class 1986 requires two features only;
‘Elevation median’ and ‘Mean PCA3’. Other classes might
need more features (e.g. younger ages), but the relevant fea-
tures remain among HSI and LiDAR.



Fig. 2: Spatial analysis of the results: (a) the LiDAR height profile for a given transect A-B (top) and the predictive variance (posterior
probability) of the GPC for the classes conservation, 1986, and 2011. (b) for a specific area; RGB false color composite, along with the GPC
classification map, and RGB composite using the probability (confidence interval) images of conservation (R), 1986 (G), and 2011 (B).

Fig. 3: Gamma values for the 68 features. The experiments consid-
ers 1. LiDAR, 2. HSI, and 3. LiDAR + HSI features. The legend
depicts the range for gamma in each experiment.

5. CONCLUSIONS

This paper introduced a methodology for predicting the YOP
from hyperspectral and LiDAR data. After an exhaustive fea-
ture extraction (involving spectral, textural and morphologi-
cal features) we used advanced GPC for classification. We
illustrated the results in a forest area in North Carolina (US).
The GPC algorithm showed improved results when combin-
ing hyperspectral and LiDAR data. Beyond accuracy, we
payed special attention to the feature ranking after analyzing
the associated lengthscales in the kernel. Height and texture
features appeared to be relevant features specially for predict-
ing the YOP in mature forests. Future work will consider ex-
tending the formulation of GPC to cope with spatial-spectral
relations directly in the kernel.
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