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   Abstract :  Proof of Fermat’s Last Theorem by using basic of algebra. 

 

  From Fermat’s Last Theorem, 

                  an + bn  ≠  cn    for every positive integer a , b , c  and  n > 2   

   Begin to prove… 

  Assume   a , b , c  can make    an + bn  =  cn   ,  n is positive integer 

  and  gcd(a , b , c) = 1   

                                                     an + bn  =  cn    

                                                            an   =  cn  - bn 

                                                            an   =  (c  - b)(cn-1  + b cn-2  + b2 cn-3 + … + bn-1 ) 

                                                                 an   =  (c  - b)[ (c  - b)K  +  nbn-1 ]    

            K  =  cn-2  + 2b cn-3  + 3b2 cn-4 + … + (n  - 1)bn-2   and    c  - b  ≠ 1   

 Assume   a  is a prime 

                     If  a  is a prime , then  (c  - b)  =  ak   ,  k ≥  1  

     But  a  +  b  >  c  =====>   a  >  c  - b  it is contradiction ,  so  a  isn’t prime. 
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Rewrite again                     bn   =  (c  - a)[ (c  - a)P  +  nan-1 ]    

                 P  =  cn-2  + 2acn-3  + 3a2 cn-4 + … + (n  - 1)bn-2   and   c  - a  ≠ 1   

Assume   b  is a prime 

                     If  b  is a prime , then  (c  - a)  =  bk   ,  k ≥  1  

But  a  +  b  >  c  =====>   b  >  c  - a  it is contradiction ,  so  a  isn’t prime. 

Therefore    a  and  c  aren’t prime but  they are composite numbers. 

Assume  a   =   b 

                                                           2bn      =     cn 

                                                  (√2೙  b)n    =     cn       then  c  is  irrational. 

Therefore   a   ≠   b                

After that , to continue by following below diagram    

 

   Consider from   A   B   C  D                                  

   

 



 Consider at A ,  gcd [n, (c-b) ] = 1 

      I can write as below, 

                                                      (kn + b)n  =  (mk)n +  bn  

Let                       kn + b  =  c   ,   mk  =  a   ,  gcd (m , k) = 1 

Rewrite again,          bn  =   (k n + b – mk)[(kn + b)n-1 +  mk(kn + b)n-2 + … + (mk)n-1] 

Then  bn  can be divided by  (k n + b – mk)   

Ref. Remainder theorem ,          (mk - kn)n   =  0  

                                                             kn-1    =   m   it isn’t true  because gcd (m , k) = 1 

Therefore   an + bn  ≠  cn   at A Step 

No positive integer a , b , c  can make it true  if  n  has no common factors with (c-b) 

 

Consider at B ,  gcd [n, (c-b) ] ≠ 1 

          The equation  an + bn  =  cn  may be true if n  has common factors with (c-b) 

 

Consider at C ,  gcd [n, (c-a) ] = 1      

           I can write as below, 

                                       (pn + a)n  =  an +  (pq)n   

   Let                       pn + a  =  c   ,   pq  =  b   ,  gcd (p , q) = 1 

  Rewrite again,          an  =  (p n + a – pq)[(pn + a)n-1 +  pq (pn + a)n-2 + … + (pq)n-1] 

  Then  an  can be divided by  (p n + a – pq)   

  Ref. Remainder theorem ,          (pq - pn)n   =  0  

                                                            pn-1    =   q     it isn’t true  because gcd (p , q) = 1 

Therefore   an + bn  ≠  cn   at C Step 

No positive integer a , b , c  can make it true  if  n  has no common factors with (c-a) 



 

From Step B and C , if the equation an + bn  =  cn  will be true when… 

     gcd[ n , (c-a) ]  ≠ 1  and  gcd[ n , (c-b) ]  ≠ 1   

 

 

Consider at D ,  gcd [n, (c-a) ] ≠ 1 

         From the previous proof , then equation must be this form, 

                                                  af(c-a)f(c-b)N +  b f(c-a)f(c-b)N =   c f(c-a)f(c-b)N  ____________(1) 

  f(c-a) is factor of  (c-a)  , f(c-b) is factor of  (c-b) and  N is a positive integer 

 Rewrite again,             ( af(c-a)N)f(c-b) +  ( bf(c-a)N)f(c-b) =   ( cf(c-a)N)f(c-b)   

 Let                            af(c-a)N =  A  ,  bf(c-a)N  =  B  ,   cf(c-a)N  =  C 

                                                      Af(c-b) +  Bf(c-b) =   Cf(c-b)   

  From the  proof ,  must  gcd [ f(c-b) , C – A ] ≠  1 

           C – A  =  (c-a)( cf(c-a)N-1  + a cf(c-a)N-2  + a2 cf(c-a)N-3 + … + af(c-a)N-1)  ________________(2) 

 From (2),  I found that  f(c-b) has no any common factors with C – A  

 It contradict the previous proof , So I can say… 

 

an + bn  ≠  cn    a , b , c  are the positive integers ,  n > 2  ,  c  - a  ≠ 1  and  c  - b  ≠ 1   

 

 

 

 



There is another case ,    a  =  c  - 1  or  b  =  c  - 1  

I have to prove it with the different method as below, 

                          Assume         an + bn  =  cn     ,  a ,  b , c  are positive integers  and n > 2 

Let                b  =  c  - 1  ,           an   =   cn-1  + (c - 1) cn-2  + (c - 1)2 cn-3 + … + (c - 1)n-1    

Let                 a  =  c – k  ,   1 < k < c    and  k  is positive integer 

                                                 (c – k)n   =   cn-1  + (c - 1) cn-2  + (c - 1)2 cn-3 + … + (c - 1)n-1    

The equation must be divided by  (c – k) for the both sides,  

k is a root of polynomial at right side.  

Ref. Remainder theorem ,          kn-1  + (k - 1) kn-2  + (k - 1)2 kn-3 + … + (k - 1)n-1   =   0  

But     kn-1  + (k - 1) kn-2  + (k - 1)2 kn-3 + … + (k - 1)n-1    >  0  always for 1 < k < c     

So  k  isn’t an integer , if  k  isn’t an integer then  a  won’t an integer too. 

But  a  must be integer , it is contradiction.  So I can say… 

 

 

an + bn  ≠  cn  for every positive integer  a , b , c  and  n > 2   
 

 

 


