
Indexing for Sequence and Collection in Python 3

K. S. Ooi

Foundation in Science

Faculty of Health and Life Sciences

INTI International University

Persiaran Perdana BBN, Putra Nilai,

71800 Nilai, Negeri Sembilan, Malaysia

E-mail: kuansan.ooi@newinti.edu.my

dr.k.s.ooi@gmail.com

Abstract
String slicing technique can be applied to only one kind of Python 3 iterables.

In Python 3, there are two kinds of iterables, the sequence and the collection.

The string slicing technique can only be applied to sequence, and can not be

applied to collection. For example, keys of dictionary are keys that uniquely

identifies their respective values. Any values other than the keys cannot be

used as identifiers. The implementation of Python in this respect is therefore

clean.

Keywords: Python 3, iterables, slicing, sequence, collection

Date: Dec 25, 2020

1. Slicing the Sequence

In a previous article [1], I discuss string slicing, using three indices: start, end, and step. When

it comes to Python iterables, how much of that knowledge can be applied here? Let us use a

list with eleven elements, a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The following table the results of

applying the previous knowledge in string [KSOoi2020] into list.

Table 1: Slicing the list a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and n = len(a) = 11.

Print Slice Result Comment

print(a)
print(a[:])
print(a[::])
print(a[0:])
print(a[0:n])
print(a[:n])
print(a[-n:n])
print(a[-n:])
print(a[0:n:1])

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

All the print statements

output the whole list

print(a[:-1]) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Output the list, but exclude

the last element.

print(a[1:6]) [2, 3, 4, 5, 6] Output a list with 5 elements,

starting from the second

element.

print(a[:6]) [1, 2, 3, 4, 5, 6] Output a list with the first 6

elements.

print(a[-6:]) [6, 7, 8, 9, 10, 11] Output a list with the last 6

elements.

print(a[2:-3]) [3, 4, 5, 6, 7, 8] Output the list, excluding the

first 2 and the last 3.

print(a[-6:-2]) [6, 7, 8, 9] Output the list with the last 6

elements, but excluding the

last 2.

print(a[-6:7]) [6, 7] Use the formula i – n = -6 to

get a positive value. Since n

is 11, we have i = 5. So,

output the 5th and 6th

elements.

print(a[::-1]) [11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] Output the reversed list.

print(a[1:8:2])
print(a[1:-3:2])
print(a[-10:8:2])
print(a[-10:-3:2])

[2, 4, 6, 8]
[2, 4, 6, 8]
[2, 4, 6, 8]
[2, 4, 6, 8]

Output the by selecting 7

elements starting from the 2nd

element, but skip an element

in between. All negative

should be converted to

positive numbers by the

formula i – n = -m, where -m

is the negative number.

print(a[9:1:-2])
print(a[9:-10:-2])
print(a[-2:1:-2])
print(a[-2:-10:-2])

[10, 8, 6, 4]
[10, 8, 6, 4]
[10, 8, 6, 4]
[10, 8, 6, 4]

Output the list reversed,

starting from the 10th

element, till the 3rd element,

and skip one element in

between. Again, you had

better convert the negative

numbers into positive ones.

Of course, do not convert the

negative numbers assigned to

step!

print(a[::-2])
print(a[-1::-2])
print(a[10::-2])
print(a[10:-12:-2])

[11, 9, 7, 5, 3, 1]
[11, 9, 7, 5, 3, 1]
[11, 9, 7, 5, 3, 1]
[11, 9, 7, 5, 3, 1]

Output the list reversed, skip

an element in between. Let

me repeat: you had better

convert the negative numbers

into positive ones. Of course,

do not convert the negative

numbers assigned to step!

So, we can conclude that slicing a string is the same as slicing an iterable.

2. Slicing of Collection?

Let us use a dictionary as an example of collection.

a = {1:"One", 2:"Two", 3:"Three", 4:"Four", 5:"Five", 6:"Six", 7:"Seven", 8:"Eight",
 9:"Nine", 10:"Ten", 11:"Eleven"}

Indexing the key is straightforward. However, if the values of the dictionary are iterables,

slicing as we did with string and iterables is valid. So, Program 1 output all the values of

dictionary a, from “One” to “Eleven”.

Program 1

a = {1:"One",
 2:"Two",
 3:"Three",
 4:"Four",
 5:"Five",
 6:"Six",
 7:"Seven",
 8:"Eight",
 9:"Nine",
 10:"Ten",
 11:"Eleven",
 }

for i in range(1,12):
 print(a[i])

In Program 2, the output is the value of item with the key 4, but since the value is an iterable,

we can print it reversed.

Program 2

a = {1:[0,1],
 2:[0,1,2],
 3:[0,1,2,3],
 4:[0,1,2,3,4],
 5:[0,1,2,3,4,5],
 6:[0,1,2,3,4,5,6],
 7:[0,1,2,3,4,5,6,7],
 8:[0,1,2,3,4,5,6,7,8],
 9:[0,1,2,3,4,5,6,7,8,9],
 10:[0,1,2,3,4,5,6,7,8,9,10],
 11:[0,1,2,3,4,5,6,7,8,9,11],
 }

print(a[4][::-1])

3. Conclusion

In this experimental study of Python, the result points to consistency of implementation.

Sequences, do not have unique identifiers, and therefore we must be able to slice them like

strings, as string is a sequence of characters. This is not true for collection. For example, the

collection dictionary has keys. Keys are unique identifiers, and therefore their values cannot be

sliced like string.

References

 1. K. S. Ooi, Python String Slicing, ePrint: https://vixra.org/abs/2012.0177 (2020)

