
map vs filter in Python 3

K. S. Ooi

Foundation in Science

Faculty of Health and Life Sciences

INTI International University

Persiaran Perdana BBN, Putra Nilai,

71800 Nilai, Negeri Sembilan, Malaysia

E-mail: kuansan.ooi@newinti.edu.my

dr.k.s.ooi@gmail.com

Abstract
Higher-order functions are essential tools for functional programmers, but

majority of Python programmers are imperative. When the higher-order

functions are used in imperative development, it usually has negative impact

on readability of the code. With a small investment on understanding these

higher-order functions, we may be able to alleviate some miscommunication

between developers with different backgrounds in Python. In this article, two

higher-order functions are examined: map and filter. Few examples are given

in this article to illustrate their differences.

Keywords: Python 3, higher-order functions, map, filter

Date: Dec 25, 2020

1. Introduction

Functional programmers adore higher-order functions. These are functions that can accept

functions as arguments and return functions as results. Hughes [1] highlights that higher-order

functions (and lazy evaluation) can contribute to modularity of software construction.

Programmers who have been grounded firmly on imperative paradigm would not agree easily

with Hughes; one such individual is Guido van Rossum [2], the creator of Python. Python has

a number of higher-order functions. In this article, I will discuss two of them, map() and filter(),

which are built-in functions of Python 3.

Since map() is a built-in function, you will find documentation of it from Python 3

documentation site [3]:

Figure 1: The map() function [3].

Some of the terms used in the documentation require additional explanation. First, the iterator

that the function returns. This is a map object, an iterator object that represents a stream of data.

This map iterator is neither a sequence nor a collection iterable. However, you can iterate the

map object using a for statement, just like you do with sequence inerables (list, string, tuple,

range, or bytes). In this article, I assume a working knowledge of lambda, the anonymous

function.

The filter() is another built-in, higher-order function. From the Python 3 documentation site

[3]:

Figure 2: The filter() function [3].

The iterator object returned is a filter object. All other terms should be clear to you. Again,

throughout this article, the function will be anonymous function, the lambda.

2. First Problem

I receive five legit Python statements from John, Keith, Lamp, and Carl. I retrieve their

statements from database as str objects and I made a list. I want to compute their statements

and output the resulting values. What to use: map or filter?

The solution is given in Program 1.

Program 1

import math

from_db = ["3*5**2 # John" , "9 - 8*5 # Keith", "math.exp(5*3) # Lamp", "3 + 26 # Carl"]

a = map(eval, from_db)

print(list(a))

In this problem, I need to apply eval() function to each element of from_db. Obviously, map is

the only choice here. You need to transform each individual statement of from_db to a

numerical value; filter() would not do that.

3. Second Problem

I have three tuples, each contains a sequence of integers. The resulting value would be the

multiplication of the first element of first tuple with the resulting exponential of the first

element of the second tuple and the first element of the third tuple. Continue the computation

until the tuples are exhausted.

The solution is in Program 2.

Program 2

from math import pow

f_tp = (3,2,7,-3)
s_tp = (4,6,3,5)
t_tp = (2,2,3,3,3)

a = map(lambda x, y, z: x*pow(x,z), f_tp, s_tp, t_tp)

print(list(a))

You have only one choice here: map. The problem requires you to process three iterables.

Between map and filter, only map is capable of doing that. Furthermore, you need to process

each element of the tuples, until you have exhausted the shortest one.

4. Third Problem

I have a list of people and their ages. In this computation, I want to find out how many people

are qualified to be the first vaccinated. You must be younger than 10 or older than 60 to be

qualified. So, I extract the data and put the ages in a list. How do I find out the number of

people is to be vaccinated first?

The solution is given in Program 3. Of course, I use toy data here.

Program 3

Counting visually, 7 is qualified
age = [45, 7, 80, 23, 56, 60, 10, 78, 101, 88, 92, 38, 3]

a = filter(lambda x: x < 10 or x > 60, age)

print(sum(1 for _ in a))

First, you need to construct a iterator that may have different length from the iterable you put

in as argument. Only filter() is able to do that between the two higher-order function. So, there

you have it.

5. Fourth Problem

I have a list of numbers. These numbers are money my company earn from individuals doing

business with us. Out of these numbers, my company has to pay tax if an individual spent more

than $500. The tax varies: more than $500 but less than $1000, 5% tax; otherwise, 7%. Count

how much tax my company needs to pay for this series of money earn.

The solution is in Program 4. This is only one of the solutions.

Program 4

money_earn = [500, 600.6, 300.3, 460., 790.8, 900.2, 1200, 50, 1300., 800.8, 12, 1000]

taxable
a = filter(lambda x: x > 500, money_earn)

calculate tax for each taxable earning
b = map(lambda x: x*0.05 if x <= 1000 else x*0.07, a)

print out the tax amount
print(sum(b))

In this solution, filter() creates a taxable iterator, and map() creates a iterator that contains the

tax for each taxable money earn. In the end, we sum the taxes need to pay.

However, map alone can do the job. This is shown in Program 5.

Program 5

def the_tax(money):
 if money > 1000:
 return 0.07*money
 elif money > 500:
 return 0.05*money
 else:
 return 0.0

money_earn = [500, 600.6, 300.3, 460., 790.8, 900.2, 1200, 50, 1300., 800.8, 12, 1000]

a = map(the_tax, money_earn)

print(sum(a))

In Program 5, I do not select. I perform tax calculation for each element of money earn. So, the

iterator a has the same dimension as the iterable money_earn. Here, I define the function

the_tax. How able lambda function, you may ask? I can lambda, but you may not like it! See

the following program.

Program 6

money_earn = [500, 600.6, 300.3, 460., 790.8, 900.2, 1200, 50, 1300., 800.8, 12, 1000]

a = map(lambda x: 0.07*x if x > 1000 else 0.05*x if x > 500 else 0, money_earn)

print(sum(a))

However, I am able to make the program a bit readable by providing a pair parenthesis.

Program 7

money_earn = [500, 600.6, 300.3, 460., 790.8, 900.2, 1200, 50, 1300., 800.8, 12, 1000]

a = map(lambda x: (0.07*x if x > 1000 else 0.05*x) if x > 500 else 0, money_earn)

print(sum(a))

6. Concluding Remarks

The difference between map() and filter() is rather obvious. I can summarize it in a 4x4 table.

map filter

Perform computation on each element

of the iterable

Select elements from the iterable that

satisfy the conditions in the function

Able to work on more than one iterable Only can select from one iterable

Table 1: map versus filter in 4x4.

Solving problems using map and filter can be summarized below:

• You must have an iterable to begin with.

• You do not want to use a for statement or a while statement, for reason that these control

statements are not cool.

• You want to pick and select the elements out from the iterable or you want to transform

all the elements of the iterable.

If you want to program, and do not want to look cool, for and while statements are the way

forward. You should go for it.

References

1. John Hughes, Why Functional Programming Matters, from Research Topics in

Functional Programming, edited by D. Turner, Addison-Wesley (1990)

2. Guido van Rossum, The fate of reduce() in Python 3000, In: All Things Pythonic.

Available from: http://www.artima.com/weblogs/viewpost.jsp?thread=98196 (2005)

(accessed Dec 25, 2020)

3. The Python Standard Library, Built-in Functions, at

https://docs.python.org/3/library/functions.html (accessed Dec 26, 2020)

