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Abstract
We study the Gauss-Bonnet theorem applied to a specific example.
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1 Introduction

Is the Gauss-Bonnet theorem (see [1]) valid for the real projective plane? And more generally, is the
Gauss-Bonnet theorem valid for a 2D manifold embedded in R* as an ambient space?.

Apparently yes but while analysing this question we have found a peculiar example that we
would like to study in this paper.

Of course there is something wrong with our example and we do not know what. If anybody can
tell where is the mistake, please email your answer at the address below.

2 The Space Under Study

Given the following curve v composed of two semicircles of radius R = 1 on the (x,y) plane:

7(0)

Figure 1: The curve v(f) for § =0

We want to get a surface of revolution in R* with axis (x,y, 2z, w) and we want our surface to
be a manifold. In order to do so, we rotate the above curve by an angle 6 around the x axis in the
(z,y, z) space by 360 degs so that we get a closed surfaces ¥. However, since we do not want ¥ to
self-intersect, we displace () on the plane (z,w) for points close to the origin around a tiny circle
of radius e.
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We get a surface in the two parameters x € [—2,2] and 0 € [0, 27]:
S = ecos (§a) sin (6)
C = ecos (5x) cos (0)

g=+/1—(z+1)2u(—2) — /1—(x—1)%2 u(x)

rT=2x
y = jeos(0)
z=C+ gsin(9)
w=7_

Where u(z) is the Heaviside step function. For € = 0 this is the wedge product of two spheres and
for € > 0 is a manifold. This manifold, for ¢ — 0 and z # 0 has Gaussian curvature K — 1 being
R =1 the radius of the two spheres.

This surface is clearly a closed surface. We need to check that it is a manifold end in order to
do so, we need to show that is does not self-intersect. If the surface self intersect in a point P € R*,
there must exist two value of theta, let’s say 6, and 05, for which the curves v(61) and v(65) intersect
in P. However, the two above curves have the same coordinate w only if:

w1 = €cos (%x) sin (01) = ecos (%x) sin (02) = wo (2)
and the two curves lay in the 3D slice w = w; = wy of R*. This clearly happen when:
(92 =TT — (91 (3)

If we plot y(61) and ~(62) in the 3D slices mentioned above, for every 8, we can see that the two
curves never intersect.

Figure 2: Curve ~y(61) vs v(62)

This is because the two curves lay on two planes that intersect on a line close to the point where
the two curves have the flex and therefore they can meet only in that point. If we make the flex of
~v(0) to go around a small circle of radius € in the (z,w) plane and as a function of , the two curves
will never intersect.

Moreover, this surface is orientable and simply connected and therefore it is homomorphic to a
sphere S2. We want to evaluate it’s total curvature for € — 0. In this limit, clearly the Gaussian
curvature K of each point of the surfaces for  # 0 goes to 1, being the radii of the two spheres 1,
and therefore the total curvature is equal of the total curvature of two sphere:

K =4ny (4)

in contradiction to the Gauss-Bonnet theorem.

3 Differentiability of the Surface

The reader may argue that the above surface is not differentiable for x = 0 and therefore it may
contain a discrete (infinite) curvature (see [2]) on X|,—¢ which is a circle of radius e. However, for



x = 0 the curves y(f) has no singular points (i.e it has a proper tangent) and therefore does not
curry discrete curvature. Moreover, this surface may be smoothed for points at £ = 0 and the final
total curvatures would not change much.

On circle X|,—¢ obviously one of the two principal curvatures goes to infinite (being equal to %)
but the other one is on a flex and therefore vanishes constantly for each e¢. This will give a vanishing
Gaussian curvature. For this reason the curvature of ¥ is equal to:

K=R’=1 for 2#0 (5)
K=0 for x=0.
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