

1

Formatted Output: The Forgotten C Facility

K. S. Ooi

Foundation in Science

Faculty of Health and Life Sciences

INTI International University

Persiaran Perdana BBN, Putra Nilai,

71800 Nilai, Negeri Sembilan, Malaysia

E-mail: kuansan.ooi@newinti.edu.my

dr.k.s.ooi@gmail.com

Abstract
Even though input and output facilities are critical in programming, we usually

do not spend too much time on them in programming courses. When we teach

a programming course to beginners, there are other more pressing topics we

must cover, and therefore we do not allocate too much time on input/output

facilities, other than using them to perform simple tasks of taking input from

keyboard and output the result on the screen. In this article, we focus on

formatted output facilities of C. The signatures of format in formatted output

of C using printf can still be found in Python.

Keywords: C, C++, formatted output, printf, format, Python

Date: Dec 26, 2020

1. Formatted Output in C: printf

Many programmers who come into contact with C/C++ have used formatted output function,

printf, countless times. This function appears in the Hello World program [1], which has cult

following [2], but yet very few have the slightest idea how to structure outputs, numerical or

string result, in a specific format. Obviously: Hello World program has cult following but not

printf.

The printf function takes a format string as its first argument. One of the objects of this string

is conversion specifications (cs). A cs is specified by % as the start character and conversion

character (cc) as the end character. In between these two characters, you will see negative sign,

period, and numbers. We will start by showing the formatted output in C using a string “Global

Warming is Real!”. To make thing more illuminating, we pad white spaces with ~ characters,

and hence our string has become “Global~Warming~is~Real!”.

2

The first program to print this out is given as follows:

Program 1
#include <stdio.h>
#include <stdlib.h>

int main(void){
 char* gw = "Global~Warming~is~Real!";
 printf("Output:%s\n",gw);
 return EXIT_SUCCESS;
}

However, when we output a string on the screen, it is rather difficult to see the left and right

adjustments, if any. To rectify this, I first print the output to an output string, pad any white

space with ^ characters. This is shown in the following Program 2. The program will print

^^Global~Warming~is~Real!^^ on the screen. This is an extra work we undertake to see the

whitespaces, by distinguishing the internal ones (~) with the external ones (^). Once you master

formatted output, you do not have to do that. A printf statement will do.

Program 2
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int main(void){
 char* st = " Global~Warming~is~Real! ";
 char output[50];
 sprintf(output,"%s",st);
 int i = 0;
 while(output[i]){
 if (isspace(output[i])) output[i] = '^';
 i++;
 }
 printf("%s\n",output);
 return EXIT_SUCCESS;
}

The length of the string "Global~Warming~is~Real!" is 23. We summarize the results in the

following table.

3

Table 1: Conversion specifications on "Global~Warming~is~Real!".

cc Output Comment

%s Global~Warming~is~Real! The gw string, without

padding of any sort.
%15s Global~Warming~is~Real! Still printing the original

gw message. The number

15 in this example

specifies the minimum

width. Since the length of

gw, which is 23, exceeds

15, and so the original gw

is printed.
%35s ^^^^^^^^^^^^Global~Warming~is~Real! In this case, you direct

the output to at least print

35 characters. Since gw

has 23 characters, 12

whitespaces are padded

on the left.
%+35s ^^^^^^^^^^^^Global~Warming~is~Real! This is same as the

previous case. By putting

a positive in front of 35,

we specifically want the

right adjustment, and so

12 whitespaces are

padded on the left.
%-35s Global~Warming~is~Real!^^^^^^^^^^^^ The negative sign means

you want a left

adjustment, and so the

whitespaces, 12 of them,

are padded on the right.

%.15s Global~Warming~ With a period, you

specify that you want to

print the first 15

characters of gw. In the

literature, the number

following the period is

called precision.
%20.15s ^^^^^Global~Warming~ The width is specified by

the number in front of

the period. In this

specification, it basically

says the width of the

output is 20, but output

the first 15 characters of

4

gw. Since there is no

negative sign, it is

assumed right

adjustment.
%-20.15s Global~Warming~^^^^^ Similar to the previous

case. With the negative

sign, we have a left

adjustment.

2. Crossing Over to Python 3

All is not lost. The knowledge from Table 1 crosses over to Python 3. Program 3 shows this

fact. The square brackets are included in the printing to highlight the whitespaces.

Program 3

Program Output
gw = "Global Warming is Real!"
print("[%s]" % gw)
print("[%15s]" % gw)
print("[%35s]" % gw)
print("[%+35s]" % gw)
print("[%-35s]" % gw)
print("[%.15s]" % gw)
print("[%20.15s]" % gw)
print("[%-20.15s]" % gw)

[Global Warming is Real!]
[Global Warming is Real!]
[Global Warming is Real!]
[Global Warming is Real!]
[Global Warming is Real!]
[Global Warming]
[Global Warming]
[Global Warming]

Formatted output of integers is trivial, so we skip this. The standard C library stipulated that

the default precision of floating and double is 6. The first two experiments in Table 2 below

bear this fact out. If the cc is g or G (the general format), printf will decide the output, %f or

%g/%G; the shorter version will be printed. The shorter version can be defined: the general

format will use %g/%G if the exponent is less than -4, or the exponent is greater than or equal

to the precision; otherwise, use %f. Again, all this is not lost. Python formatted print matches

that of the C’s.

5

Table 2: Formatted output of floating point and double precision numbers. Again, the square

brackets are included in the last three printings to highlight the whitespaces.

printf statement Output Comment

printf("%f\n",4.283937584); 4.283938 The default precision is

assumed, which is 6.
printf("%e\n",7.938475657E-20); 7.938476e-020 The default precision of

6 is assumed.
printf("%g\n",23450900.67); 2.34509e+007 %e is used.
printf("%g\n",2.6895e-3); 0.0026895 %f is used

printf("%G\n",2.6895e-5); 2.6895E-005 %E is used.
printf("[%9.5f]\n", 1.23456789); [1.23457] Width is 9, precision is

5, and right-adjusted.
printf("[%-9.5f]\n", 0.123456789); [0.12346] Width is 9, precision is

5, and left-adjusted.
printf("[%-9.5e]\n", 0.123456789); [1.23457e-001] The precision 5 takes

priority. Even though

the width 9 is specified,

this is deemed as

minimum width.
printf("[%-15.5E]\n", 0.123456789); [1.23457E-001] Precision 5, width 15,

and left-adjusted.

The Python 3 formatted output is given in Program 4.

Program 4

Program Output
print("%f" % 4.283937584)
print("%e" % 7.938475657E-20)
print("%g" % 23450900.67)
print("%g" % 2.6895e-3)
print("%G" % 2.6895e-5)
print("[%9.5f]" % 1.23456789);
print("[%-9.5f]" % 0.123456789);
print("[%-9.5e]" % 0.123456789);
print("[%-15.5E]" % 0.123456789);

4.283938
7.938476e-20
2.34509e+07
0.0026895
2.6895E-05
[1.23457]
[0.12346]
[1.23457e-01]
[1.23457E-01]

6

3. Concluding Remarks

The output function of C, printf, has an impressive flexibility, which fulfils most of the output

formatting needs. Python 3 preserves this C capabilities. In the end, C programmers who are

proficient in this aspect of C will find that all is not lost when they move to Python, which is

the major language for machine learning, artificial intelligence and data science. Python coders,

on the other hand, should master this facility, so that when they move across C, they can readily

use this knowledge to format the outputs.

7

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall:

Englewood Cliffs, NJ, 1978. Second edition, 1988.

2. ACM "Hello World" project at http://www2.latech.edu/~acm/HelloWorld.shtml (1996

- 2007)

Abbreviations

cs – conversion specification

cc – conversion character

