
The c2 Gravitational Potential Limit
and its implications for G as well as general relativity

Martin Mayer
ma.mayer.physics@outlook.com

Augsburg, Germany
Rev 1, Jan 2021

Abstract

The relationship between gravitational potential, black holes and squared light speed c2 is examined as
well as the implications of the presented findings for the gravitational constant G and general relativity
theory. It is common knowledge that the velocity limit in our universe is defined by light speed c and as
shown in this work c2 plays a similar role for the gravitational potential since c2/G is linked to the mass
density of black holes, our local Hubble sphere and the overall universe. Furthermore, it is demonstrated
that the rift between cosmology and quantum physics can be reconciled by acknowledging the physical
meaning of the Planck units which proposedly define the characteristics of quantized space-time. This
notion is also supported by the presented logarithmic relationships between the cosmological scale and
the quantum scale. Finally, the presented findings allow uncovering a physical relationship between the
constituents of Dirac’s contested large number hypothesis.

Keywords: light speed; gravity; gravitational constant; gravitational potential; gravitational force; general
relativity; black hole; Schwarzschild; Kerr; Newton; Einstein; Dirac; Hubble; sphere; space-time;
quantization; Planck units; strong force; Euler number; Sommerfeld constant

1 Introduction

The term c2 is mostly known for its appearance in the famous energy mass equivalence E = mc2, which
was discovered by Albert Einstein in 1905. A contemporary of Einstein, Erwin Schrödinger, noticed in 1925
that c2 can also be expressed in the physical units of gravitational potential, i.e. J / kg or equivalently
Nm/ kg, besides the ”raw” units m2/ s2 as pointed out by Alexander Unzicker in (2). Such a coincidence
of units may point towards an important physical relationship, like it was the case with the units of Planck’s
constant h which can be interpreted as J/Hz or as the units of angular momentum, i.e. kgm2/ s. Niels
Bohr scrutinized this congruence in 1913 which then led him to the discovery of quantized electron shells
in atoms. The purpose of this paper is to examine the gravitational potential interpretation of c2 for hidden
physical meanings and their implications for the gravitational constant G as well as general relativity theory.
To achieve this objective some standard equations are repeated first for reference in the upcoming sections.

2 Prerequisites

The force of Newtonian gravity for two masses m1 and m2 is usually presented as

Fgm = G
m1m2

d2
(2.1)

whereby d denotes the distance between their center of mass. Using E1 = m1 c
2 and E2 = m2 c

2 it is also
possible to express Newtonian gravity with respect to energy:

Fge =
G

c4
E1E2

d2
(2.2)
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The associated gravitational potential energy can subsequently be expressed in the following two ways:

Ugm = −Gm1m2

d
with Fgm = −dUgm

d d
(2.3)

Uge = −
G

c4
E1E2

d
with Fge = −

dUge
d d

(2.4)

The gravitational potential is subsequently given by the following two equations, whereby equation 2.5
describes gravitational potential energy per unit mass (i.e. J/1 kg)

Vgm =
Ugm
m2

= −Gm1

d
(2.5)

and equation 2.6 describes gravitational potential energy per unit energy (i.e. J/1 J):

Vge =
Uge
E2

= −G
c4
E1

d
(2.6)

The previous two equations are later on also referred to as ”gravitational potential” for brevity.

Please note that the G/c4 term in equation 2.2, 2.4 and 2.6 is also present in the Einstein constant κ,
which is used in the equations of general relativity theory.

κ = 8π
G

c4
(2.7)

This correlation already demonstrates the relatedness of Newtonian gravity with general relativity theory and
it’s unfortunate that this obvious connection is seemingly not presented in physics literature. The implicit
presence of 4π in the Einstein constant indicates a relationship with spherical geometry as shown hereafter
in section 4. Moreover, it’s noteworthy that c4/G has the physical units of force, i.e. N or J/m. The physical
units of the gravitational constant G itself are Nm2 kg−2, whereby its strikingly difficult to make sense of G’s
”raw” units m3 s−2 kg−1 until regarding equation 3.2 rearranged for G.

This paper also uses some key results of general relativity theory, in particular the mass for a static
Schwarzschild black hole with radius rs

ms =
rs
2

c2

G
(2.8)

and the mass of an extreme Kerr black hole with radius rk which rotates with light speed c at its equatorial
ring:

mk = rk
c2

G
(2.9)

It’s noteworthy that these two types of black hole mass are simply related by a factor of two for an identical
radius. Kerr black holes with other equatorial velocities are not relevant for this paper.

3 The c2 Limit
The value of c2 expressed as gravitational potential energy per unit mass is given by:

c2 = 8.988× 1016 J / kg (3.1)

Since light speed c is considered to be the maximum possible velocity in our universe and because c2

also has an extraordinarily high value it is sensible to postulate that c2 denotes the magnitude of maximum
gravitational potential energy per unit mass in our universe. Utilizing this assumption by setting equation 2.5
equal to −c2 then gives:

G
m

d
= c2 (3.2)

Finding the maximum value for the gravitational potential energy per unit energy is not that straightforward,
but comparing equation 2.6 with 3.2 reveals that the appropriate value is −c2/c2 = −1. This expression
evaluates to a pure number but the appropriate physical units can be added without violating any rules.

G

c4
mc2

d
= 1

J

J
(3.3)

Surprisingly, the last two equations result in a well known relationship when rearranging either of them for
mass m:

m =
dc2

G
(3.4)

This relation equals the extreme Kerr black hole mass equation 2.9 when interpreting distance d as radius
rk. Due to its spherical symmetry a black hole’s mass can be treated as being compressed into its centre
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for a classical gravitational potential calculation. Doing such a calculation for the distance of a black hole’s
boundary to its centre then leads to the equality of d with rk and equation 2.9 with 3.4. Consequently, these
findings suggest that black holes form when the gravitational potential for a spherical region of space is
between −c2/ 2, like for a Schwarzschild black hole, and −c2. The primary characteristic of regions with
such a strong gravitational potential is that they cannot be destroyed by spinning them up since this would
require a tangential velocity greater than light speed c, as explained in more detail in section 6.

It’s worth emphasizing here that the presented findings mean that the existence of black holes can be
inferred from Newtonian gravity when also acknowledging a limiting velocity c and a limiting gravitational
potential −c2, but there is no necessity for assuming any space curvature. Since an extreme Kerr black hole
poses a limit to the amount of energy for a spherical volume of space, and angular momentum absorption
makes it grow, the gravitational potential of −c2 must represent a general upper limit, i.e.

− Vgm 5 c2 and − Vge 5 1J/J (3.5)

is always given. Presumably, electrically charged black holes cannot violate these constraints either.

4 Our Hubble Sphere
The expansion of our universe creates an invisible and intangible spherical boundary centred around our
location in space at which objects are moving away from us with light speed c and objects outside of this
boundary are receding even faster. The current rate of this expansion is denoted by the Hubble constant H0

which can also be used to calculate the distance to this boundary, whereby the enclosed volume is called
the Hubble sphere whose radius is in turn denoted as Hubble radius rH .

H0
∼= 74.3 km s−1 Mpc−1 (4.1)

rH =
c

H0

∼= 1.25× 1026 m (4.2)

The correct value of H0 is still disputed, but the value used here seems to fit well with the following
calculations.

Calculating the mass density of a Schwarzschild black hole that has the extent of our Hubble sphere gives
the following mass density

ρH =
mH

VH
=
ms(rs = rH)

4πr 3
H/3

=
3H 2

0

8πG
= 1.0× 10−26 kg/m3 (4.3)

whereby mH denotes the Hubble sphere mass and VH denotes the Hubble sphere volume. Surprisingly, that
result matches with the so called ”critical density” which denotes a flat universe according to general relativity
theory. This, in turn, also suggests that a Schwarzschild black hole possesses flat space and consequently
doesn’t have a central singularity - a notion which also matches with the findings of the previous section.
NASA reports that the mass density of our universe is around 1.0× 10−26 kg/m3 (see footnote 1) and thus
our local Hubble sphere is either a Schwarzschild black hole or very close to being one. This makes sense
since black holes set an upper limit for the amount of energy and information that can be contained in a
particular volume of space. Moreover, nothing can leave our Hubble sphere, due to the expansion of space,
which also matches with the accepted presumption that nothing can leave a black hole.

Since our local Hubble sphere seems to qualify as Schwarzschild black hole it makes sense to apply equation
2.8 to it. Moreover, that equation can also be multiplied by c2 and rearranged so that the result coincides
with the gravitational potential equation 2.6 adapted for the case of a Schwarzschild black hole:

G

c4

(
mHc

2

rH

)
=

1J

2J
(4.4)

Interestingly, Erwin Schrödinger was already proposing a similar relationship for analysis in 1925, although
there was much less knowledge about the observable universe back then (6). The interesting part of the last
equation is the term in brackets which has the physical units of J/m and can be dissected to analyse the
Hubble sphere’s internal energy distribution:

1J

2J

c4

G
=
mHc

2

rH
=
ρHVHc

2

rH
=

4π

3
ρHr

2
Hc

2 =
2

3
× 2πρHr

2
Hc

2 (4.5)

The calculations in this document usually treat masses as point particles, but here it is necessary to consider
the effect of a changing gravitational force inside the Hubble sphere. Therefore the factor 2/3 appears on the

1 http://map.gsfc.nasa.gov/universe/uni matter.html
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right side of equation 4.5 which is characteristic for the gravitational potential of a sphere with uniform energy
density. The remaining part fits with the ideas of Mach, Dicke, Sciama and Schrödinger who speculated that
all masses in the observable universe and their distance to us should be causal for the gravitational constant
G (2), which seems to be the case when the appropriate scaling and conversion factors are considered:

3

2

1J

2J

c4

G
= 2πr2HρHc

2 =

∫ rH

0

4πr2ρHc
2 dr

r
= lim
δr→0

rH∑
ri=0

4πr2i ρHc
2 δr

ri
=

∞∑
i=0

mic
2

ri
(4.6)

It is assumed here that the mass density of our Hubble sphere can be treated as being approximately
homogeneous on large scales. This is why the last equation divides our Hubble sphere into a series of
spherical shells, which ideally should be infinitely thin, whereby mi = 4πr2i ρH δr denotes the mass of one
such spherical shell whose distance to us is given by ri and whose thickness is δr. The resulting sum term
on the right side of equation 4.6 is what typically appears in a gravitational potential equation when several
masses are involved and equation 4.4 can thus also be expressed as follows:

G

c4

(
2

3

∞∑
i=0

mic
2

ri

)
=

1J

2J
(4.7)

The findings which were presented above suggest that gravitational potential, G, c2 and the physical
parameters of our local Hubble sphere are all inter-connected. This leads to the notion that the gravitational
constant G can be regarded as a result of those relationships, in particular of our local Hubble sphere’s
energy density and its associated gravitational potential of −c2/ 2. Consequently, the gravitational constant
G can be defined as an emergent constant in the following ways

G =
c2

2

/(
mH

rH

)
=
c2

2

/(
4πr2H
3

ρH

)
=
c2

2

/(
2

3

∞∑
i=0

mi

ri

)
(4.8)

in case our Hubble sphere really qualifies as a Schwarzschild black hole. On the same grounds the Einstein
constant can also be rewritten with respect to the parameters of our local Hubble sphere:

1/κ =
1

8π

c4

G
=

1

4π

mHc
2

rH
=

1

4π

2

3

∞∑
i=0

mic
2

ri
=

1

3
ρHr

2
Hc

2 (4.9)

The implications of these expressions will be treated later on in the discussion section.

The emergent constant notion for the gravitational constant G implies that equation 2.1 to 2.6 are connected
to cosmological quantities. Equation 2.5 and 2.6, for example, can subsequently be rewritten in a form
without G as follows, whereby E1 = m1c

2, Ei = mic
2 and EH = mHc

2:

Vgm = −Gm1

d
= −3

4

m1c
2

d

∞∑
i=0

ri
mi

= −c
2

2

m1/mH

d/rH
(4.10)

Vge = −
G

c4
E1

d
= −3

4

E1

d

∞∑
i=0

ri
Ei

= −1

2

E1/EH
d/rH

= −1

2

m1/mH

d/rH
(4.11)

These equations reveal that the presence of G conceals a normalization relationship for mass m1 and
distance d with respect to the Hubble mass mH and the Hubble radius rH , respectively. Put another way, the
mass gradients m1/ d and mH/rH are both contributing to the gravitational potential functions Vge and Vgm.
The calculation results obtained from these functions would consequently change inversely proportional with
an alteration in the mass density of our local Hubble sphere, in case such a density change would not also
affect the quantities of length, time, light speed or mass - which might be the case though (see section 6 for
more details).

The gravitational potential of a static Schwarzschild black hole is −c2/ 2 according to equation 4.4. Since our
local Hubble sphere may qualify as Schwarzschild black hole this in turn suggests that the overall universe,
which contains our local Hubble sphere, is a rotating extreme Kerr black hole which has a gravitational
potential of −c2. This notion is gaining some support from the possibility to express Hubble’s constant as an
angular frequency:

H0
∼= 2.41× 10−18 rad/s (4.12)

Frequencies are always linked to some kind of energy and thus it must be possible to calculate the Hubble
sphere’s mass and energy by explicitly using the Hubble constant H0. Using equation 2.8 and 4.2 the Hubble
mass mH can indeed be calculated from H0 as follows

mH = ms(rs = rH) =
rH
2

c2

G
=

~
2

1

H0 l2l
(4.13)
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whereat the so called Planck length ll =
√

~G/c3 = 1.62× 10−35 m appears naturally in the resulting
equation as well as Planck’s constant h. The corresponding Hubble energy EH can be expressed as follows

EH = mHc
2 =

~
2

1

H0 t2l
=
El
4π

tH
tl

=
El
2

rH
ll

(4.14)

whereby tl = ll/c = 5.4× 10−44 s is the Planck time, tH = 2π/H0 = 2.61× 1018 s is the rotation period of H0

when interpreted as angular frequency and El = c~/ll denotes the so called Planck energy.
The natural appearance of the super short Planck length and Planck time in equation 4.13 and 4.14 suggests
that the cosmological scale is linked to the quantum scale via the Planck units - a notion which is explored
further in section 6.

5 The Proton and c2

A remarkable coincidence appears when dividing the gravitational potential of −c2 by the hypothetical
gravitational potential of a proton with mass mp.

ϑ = c2
/(

G
mp

rp

)
= 1.693× 1038 ∼=

√
exp(1)× 1038 (5.1)

Since contemporary physics claims that the strong force is about 1038 times stronger than the gravitational
force the last equation suggests that the strong force is actually the near field behaviour of gravity (note: the
same conclusion was also reached in (1) with a different calculation approach). This result was achieved by
using the proton’s reduced Compton wavelength rp = ~/(mp c) as particle radius but using the experimental
proton radius of 0.842 fm does not affect this result too since both values are related by a factor of 4.0, a
difference which is negligible compared to 1038. Moreover, equation 5.1 implies that the proton’s gravitational
potential energy per unit mass is seemingly −c2 in close vicinity and thus the proton should qualify as
an extreme Kerr black hole that rotates with light speed c at its equatorial ring. This presumption can be
succinctly expressed as follows:

mp =
mk(rk = rp)

ϑ
(5.2)

The appearance of the approximate square root of Euler’s number exp(1) in equation 5.1 indicates that the
value of the proton mass mp is not coincidental. Surprisingly, applying the natural logarithm function ln to ϑ
even results in an integer number (to 3 significant figures):

ln(ϑ) = ln

(
mk(rk = rp)

mp

)
= 88.0 (5.3)

This result is clearly related to the material presented hereafter in section 7, in particular equation 7.2 and
7.19.

6 Quantized Space
Quantum physics revealed that physical quantities are often discrete and therefore it also makes sense to
assume that space is not infinitely divisible. A sensible candidate for the smallest possible length in our
universe is the so called Planck length ll which already appeared in equation 4.13.

ll =

√
G

c2
~
c
= 1.62× 10−35 m (6.1)

Interestingly, a hypothetical extreme Kerr black hole which has a radius of one Planck length ll and rotates
with light speed c at its equatorial ring would have a mass of one Planck mass ml:

ml = mk(rk = ll) =

√
c2

G

~
c
= 2.18× 10−8 kg (6.2)

The Planck mass can also be used to define the Planck energy El = mlc
2. It was already suggested in

(1) that the Planck units define the properties of the proposed quanta of space. This proposal makes sense
since equation 6.1 and 6.2 only contain fundamental quantities, i.e. light speed c, Planck’s constant h, the
gravitational constant G and the gravitational potential limit c2, whereby both equations contain a G/ c2 term
which also suggests a relationship to the Hubble sphere according to equation 4.8. This leads to the notion
that every single quanta of space contains, or mirrors, the characteristic properties of our universe in its own
”micro-verse” (moreover, each space quanta presumably possesses a positive or negative Planck charge). If
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this notion is appropriate then equation 2.9 is not only valid on cosmological scales but also for the quantized
structure of space itself, which leads to the following equalities:

c2

G
=
mk

rk
=
ml

ll
(6.3)

c4

G
=
mkc

2

rk
=
El
ll

(6.4)

Consequently, equation 2.5 and 4.10, which describe gravitational potential energy per unit mass, as well as
equation 2.6 and 4.11, which describe gravitational potential energy per unit energy, can also be expressed
without the gravitational constant G as follows:

Vgm = −Gm1

d
= −c2m1/ml

d/ll
(6.5)

Vge = −
G

c4
E1

d
= −E1/El

d/ll
= −m1/ml

d/ll
(6.6)

The last two equations demonstrate that gravitational potential can also be defined using only the properties
of local space, which elegantly solves the problem how all the masses in our observable universe can
influence local gravitational interactions. Colloquially speaking: as above so below.

The proposed ”mirroring” becomes even more apparent when expressing the Planck length and Planck
mass in terms of Hubble sphere parameters (please note that the following two equations are only exact in
case our Hubble sphere really qualifies as a Schwarzschild black hole):

ll =

√
1

2

~
c

rH
mH

(6.7)

ml =

√
2
~
c

mH

rH
(6.8)

These two relations suggest that a change in our Hubble sphere’s density can result in a different Planck
length and Planck mass, but a definitive conclusion on that matter is difficult since light speed c and Planck’s
constant h may also be affected by such a density change.

The term c4/G, which has the physical unit of force, has even more sensible physical meanings than
previously discussed. This becomes obvious when dissecting that term into an acceleration part and a
mass part:

c4

G
= a×m =

c2

rk
mk =

c2

ll
ml (6.9)

The last equation has physical meaning for the macro as well as the micro scale of space.

• On the macro scale: objects can be disintegrated by spinning them up to the point where they
can overcome their gravitational self attraction when flying apart. For everyday objects this is not
a surprising feature but this process is theoretically also possible with large objects. For example, if
a planet could be spun up enough it could disperse itself in space permanently when finally breaking
apart. The same process could theoretically be tried with a Schwarzschild black hole which would
gradually turn into an extreme Kerr black hole until its equatorial ring velocity reaches light speed c and
its centripetal acceleration becomes c2/ rk, but since light speed c cannot be exceeded it is therefore
not possible to destroy an extreme Kerr black hole through spinning it up. Thus for a spherical object
with an arbitrary radius rk the maximum possible centripetal acceleration is given by c2/ rk and the
upper limit for that object’s mass is mk.

• On the micro scale: The acceleration term c2/ ll = 5.56× 1051 m/s2, which is also known as
the Planck acceleration al, presumably denotes the maximum possible rotational & translational
acceleration in our universe. The case is clear for rotation: there is a limit for centripetal acceleration
which results from the circular motion equation v2/ r and the meaning of c as well as ll as limit for
their respective domain. For comprehending maximum translational acceleration it is necessary to
realize that the minimal amount of time needed to travel the fundamental distance ll is tl = ll/ c.
Consequently, the maximum possible translational acceleration is also given by:

al =
δv

δt
=
c− 0m/s

ll/c
=
c2

ll
(6.10)

Thus every time G/c4 appears in an equation its usage either conceals a normalization with respect to some
macro limits of space-time, i.e. c2/ rk andmk, or alternatively a normalization with respect to the acceleration
limit al and the presumed mass of a quanta of space, i.e. the Planck mass ml.
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7 Logarithmic Relations
Hartmut Müller brought up the idea that the mass ratios of fundamental particles are given by exponential
relationships of Euler’s number exp(1), whereby the relation’s exponent is always close to an integer number
or an integer number plus one half. For example, proton mass mp and electron mass me are related as
follows,

ln

(
mp

me

)
= 7.5 or me × exp(7)×

√
exp(1) ∼= mp (7.1)

whereby all logarithm results which are presented in this section are rounded to one decimal place.
Müller thinks that exponential Euler number relationships which follow the stated exponent scheme avoid
destructive gravitational resonance, because exp(1) is an irrational as well as transcendental number, and
this adherence then in turn stabilizes fundamental particles and even planetary orbits (7). Müller also showed
that such Euler number relationships exist with respect to the Planck mass ml:

ln

(
ml

mp

)
= 44.0 or mp × exp(44) ∼= ml (7.2)

ln

(
ml

me

)
= 51.5 or me × exp(51)×

√
exp(1) ∼= ml (7.3)

Due to the properties of logarithms the last three equations are related numerically, i.e. 51.5− 44.0 = 7.5.
This has been a small selection of Müller’s findings. In addition to the presented examples it can be shown
that the Hubble sphere also has similar exponential relationships to the proton, electron and Planck mass:

ln

(
mH

ml

)
= 139.5 or ml × exp(139)×

√
exp(1) u mH (7.4)

ln

(
mH

mp

)
= 183.5 or mp × exp(183)×

√
exp(1) u mH (7.5)

ln

(
mH

me

)
= 191.0 or me × exp(191) u mH (7.6)

These results have intervals which match with earlier results, i.e. 191.0− 183.5 = 7.5, 183.5− 139.5 = 44.0
and 191.0− 139.5 = 51.5.

Surprisingly, similar exponential relationships exist for the proton and electron with respect to the Sommerfeld
constant α ∼= 1/137.036, whereby these relationships also exhibit integer or integer plus one half exponents:

logα

(
me

mp

)
= logα

(
rp
re

)
= 1.5 or mp × α×

√
α ∼= me (7.7)

Here rp and re denote the reduced Compton wavelength for the proton and electron, i.e. rp = ~/(mp c) and
re = ~/(me c). Interestingly, these wavelengths exhibit logarithmic relationships of α with hydrogen’s radius
ao, aka the Bohr radius, as well as the Hubble radius rH :

logα

(
re
a0

)
= 1.0 or a0 × α = re (7.8)

logα

(
rp
a0

)
= 2.5 or a0 × α2 ×

√
α ∼= rp (7.9)

logα

(
re
rH

)
= 18.0 or rH × α18 u re (7.10)

logα

(
rp
rH

)
= 19.5 or rH × α19 ×

√
α u rp (7.11)

Further noteworthy logα relationships exist with respect to the Planck mass ml and Planck length ll:

logα

(
me

ml

)
= logα

(
ll
re

)
= 10.5 or ml × α10 ×

√
α u me (7.12)

logα

(
mp

ml

)
= logα

(
ll
rp

)
= 8.9 or ml × α9 u mp (7.13)

These results are also related numerically, i.e. 2.5− 1.0 = 19.5− 18.0 = 10.5− 9 = 1.5. Another logarithmic
relationship which should not be missing in this line-up is the exact

√
α relationship of the fundamental

charge e with the Planck charge ql =
√
2ε0hc = 1.88× 10−18 C:

logα

(
e

ql

)
= 0.5 or ql ×

√
α = e (7.14)
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Comparing the presented logα relations with the ln relations, e.g. equation 7.1 with 7.7, begs the question
if Euler’s number is related mathematically to the Sommerfeld constant. Their direct logarithmic relation
is logα(exp(1)) = 7.5/1.5 = 1/5 = 0.2 with a deviation of around 1.6%. Further interesting relations are
log10(exp(1)/

√
α) = 1.5, log√2(exp(1)/

√
α) = 10.0 and ln(

√
2/
√
α) = 2.8 ∼= 2

√
2, whereby these three

relations all have a deviation around 0.2%. Although not mathematically exact those relationships might still
have physical relevance.

The proton has even more noteworthy exponential relationships which is indicative of its extraordinary role in
our universe. Besides its exponential relations with exp(1) and α it also exhibits an exponential relationship
with

√
2 which again follows the previously mentioned exponent scheme.

log√2

(
ml

mp

)
= log√2

(
rp
ll

)
= 127.0 or mp ×

√
2
127 ∼= ml (7.15)

log√2

(
mH

mp

)
= 529.5 or mp ×

√
2
529
×
√√

2 ∼= mH (7.16)

log√2

(
rH
rp

)
= 277.5 or rp ×

√
2
277
×
√√

2 ∼= rH (7.17)

The fact that the results of all the logarithms which were presented in this section are close to an integer
number, or an integer number plus one half, cannot be the result of chance and is certainly indicative of an
underlying physical mechanism that presumably is related to gravitational anti-resonance.

Moreover, there are further noteworthy logarithmic relations which involve the square root of two:

ln

(
529.5

127.0

)
= ln

(
183.5

44.0

)
= 1.428 ∼=

√
2 (7.18)

ml ×
√
2
127 ∼= mk(rk = rp) = mp × ϑ ∼= 2

√
2× 1011 kg (7.19)

Similar relations even show up in the time domain whereby tl = ll/ c, tH = 2π/H0 and tp = 2π/ωp =
rp/(2πc).

ln

(
tH
tl

)
= 142.0 u

√
2× 102 (7.20)

ln

(
tH
tl

)
u
√
2× ln

(
tH
tp

)
(7.21)

8 Large Number Coincidences
The previous sections proposed that the very large and the very small are interconnected. Weyl and Dirac
were among the first physicists who noted numerical coincidences in certain fundamental ratios that curiously
also evaluated to extremely large numbers, which led them to the presumption that these coincidences
cannot be the result of chance. Dirac, for example, provided the following coincidence

e2

4πε0Gmpme
= 2.269× 1039 (8.1)

rH
4rp

= 1.48× 1041 (8.2)

whereby both results are in the vicinity of 1040. Here mp denotes the proton’s mass, rp denotes the proton’s
reduced Compton wavelength, me denotes the electron’s mass, e denotes the fundamental electric charge
and ε0 denotes the electric field constant. The last two equations can be brought into much closer alignment
when replacing e with the Planck charge ql and doubling the equation which involves rH .

q2l
4πε0Gmpme

=
e2

4πε0αGmpme
= 3.1× 1041 (8.3)

1

2

rH
rp

= 3.0× 1041 (8.4)

These two results are remarkably close, although the correct value for the Hubble radius rH is still somewhat
in dispute. Furthermore, using the reduced Compton wavelength of the proton and electron it’s possible to
reformulate equation 8.3 into something surprisingly simple:

q2l
4πε0Gmpme

=
rpre
l2l

(8.5)
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Relating equation 8.4 with 8.5 then leads to a geometric relationship which demonstrates that the properties
of the most fundamental objects in our universe are related to each other in an orderly fashion:

rp
ll
∼=
√

1

2

rH
re

(8.6)

It’s worth emphasizing that this remarkable connection can only be obtained when utilizing the Planck units.
Moreover, it is also possible to express the last equation in terms of frequencies using equation 4.2 and the
angular frequency relationship ω = c/r :

ωl
ωp
∼=
√

1

2

ωe
H0

(8.7)

This relation features the Hubble constant H0 again, which can also be expressed as an angular frequency.

9 Discussion
The previous sections uncovered several noteworthy physical relationships which seemingly contradict
general relativity theory. These conflicts mainly revolve around the following three issues:

1. What is the meaning of the Einstein constant?

2. Is space curvature physically real and do gravitational singularities exist?

3. How can dark energy and dark matter be incorporated into the presented ideas?

Regarding issue 1: it can be argued that general relativity theory should have got rid of the gravitational
constant G since its usage leads to the situation that general relativity theory predicts black holes but
unknowingly already uses the physical reality of black holes in disguise of a G/ c4 term, which is contained
in the Einstein constant κ (equation 2.7), and this circumstance makes general relativity theory somewhat
circular conceptually. Einstein also would have liked general relativity theory to be more in line with Ernst
Mach’s thinking, i.e. that local gravity is related to the relative relationships with all the masses in our
universe. Replacing the Einstein constant κ with Hubble sphere parameters (see equation 4.9) would have
been a step in that direction, but back then there was much less knowledge about cosmology. Einstein also
was not able to unify general relativity theory with quantum physics. It was proposed in this paper that the
Planck units are the key to this unification, as the Planck units define the properties of the quanta of space,
which essentially also are micro black holes that implicitly ”encode” the gravitational constant. This notion
ultimately leads to a thermodynamic understanding of quantum gravity, whereby thermodynamic gravity is
not dealing with the states of atoms or molecules but instead it operates on basis of the proposed quanta of
space (1).

Regarding issue 2: space curvature is a consequence of the modelling approach chosen by general relativity
theory and its physical reality is not proven unequivocally, which also implies that gravitational singularities
may not be physically real. Few people know that Albert Einstein was initially conceiving a gravitational theory
with a variable speed of light which doesn’t require curved space (2). This approach doesn’t necessarily
violate special relativity theory either, as Alexander Unzicker notes in his book ”Einstein’s lost key”. Light
speed c would still be a general upper limit in the absence of a gravitational field and (non-accelerating)
observers in an approximately homogeneous gravitational field would all measure the same speed of light.
These observers would not even be aware of the reduced speed of light because time is also slowed down
correspondingly in their gravitational field. However, in a varying gravitational field the subsequent change
in the speed of light results in a bent trajectory. Back in the day Einstein was even able to derive an optical
refraction index for light whose trajectory is bent by a central mass m which was only off from the correct
result by a factor of two. Therefore it’s rather incomprehensible why Einstein did not pursue this idea again
later. Dicke, however, was able to derive the correct refraction index nl in 1957 with a different calculation
approach (5), seemingly without knowing Einstein’s prior work on that topic (see Unzicker’s book for details).

nl = 1 +
G

c2
2m

d
= 1 +

G

c4
2mc2

d
result in range [1, 2] for static spheres (9.1)

Since the optical refraction index is defined as n = c/v and nl = 1 the speed of light decreases to vl = c/nl
in the vicinity of a uniform spherical mass, whereby the predicted slowdown is still small close to our sun
(less than 0.4%). Moreover, it’s obvious that the last equation is related to the gravitational potential analysis
that is presented in this paper since the occurring mathematical terms are very similar (see equation 2.6,
for example). In case equation 9.1 doesn’t apply to rotating black holes the theoretical maximum value of nl
evaluates to 2 in close vicinity to a static Schwarzschild black hole using equation 2.8. If equation 9.1 is also
valid for rotating black holes then the theoretical maximum value of nl would be 3.
Dicke was remarkably far sighted as he even speculated that the 1+ part of equation 9.1 may be related to
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the gravitational potential of our universe itself since the second term was identified by him as a gravitational
potential whose value is also much smaller than 1 for any realistic application. Like it was the case in section
three the number 1 may actually represent the gravitational potential limit 1J/J, which, in accordance with
Dicke’s presumption, gives equation 9.1 the meaning of a sum of gravitational potential magnitudes.
In addition to these findings a scientific paper from 1960 demonstrates that the mathematical framework of
general relativity is not necessary to describe undeniable gravitational effects like gravitational lensing (4).
The notion of time in general and special relativity theory is also problematic since no satisfying justification
is given why time should be treated like a spatial dimension. Considering all these arguments it seems
reasonable that the physical relationships which are presented in this work do not require the mathematics
associated with space curvature.

Regarding issue 3: it has been shown that the gravitational potential energy per unit mass of our local
Hubble sphere is −c2/ 2 whereas the general gravitational potential limit is −c2. The latter potential
value is presumably related to a rotating universe in which our non-rotating but expanding local Hubble
sphere is embedded in. In case this notion is appropriate the potential difference is due to our overall
universe’s rotational energy, which in turn should account for the major portion of the so called dark energy.
The remaining dark energy portion could be related to the expansion of our Hubble sphere and/or to its
translational kinetic energy in case it moves relative to the enclosing overall universe. Dark matter, on the
other hand, might have a quite unspectacular explanation as Randell Mills suggests that dark matter is just
made from interstellar clouds of a rather unreactive form of hydrogen which he calls hydrino (8).

Critics may argue that this paper represents the same equations in different ways, but this is unavoidable
because there is an interconnected and repeating underlying physical core mechanism that can be viewed
from different perspectives and at different scales, but which still leads to similar physical expressions. The
starkest example of this interconnectedness is the uncovered relationship between the strong force and
gravity (see section 5).

10 Conclusions
The main findings of this paper are:
• The gravitational potential energy per unit mass of our overall universe is −c2 and this value also

constitutes the general gravitational potential limit. This limit can also be expressed as gravitational
potential energy per unit energy with a value of −1 J/J.

• Newtonian gravity already predicts rotating black holes when also considering the velocity limit of
light speed c as well as a gravitational potential per unit mass between −c2/ 2 and −c2, whereby a
gravitational potential of exactly −c2/ 2 corresponds to a static black hole.

• The Newtonian gravity equation is not limited to calculations involving mass since it can be adapted
to energy using m = E/c2.

• Our local Hubble sphere might be a Schwarzschild black hole, or it is at least close to being one. Its
gravitational potential per unit mass is subsequently close to −c2/ 2.

• The gravitational constant G is related to all the masses in our observable universe as suspected by
Dicke, Mach, Sciama and Schrödinger.

• The gravitational constant G can be regarded as an emergent constant that follows from from our
Hubble sphere’s energy density and it’s gravitational potential per unit mass of −c2/ 2.

• Gravitational effects on cosmological scales can be explained without space curvature. This suggests
that space is perfectly flat, like Cartesian space, and that gravitational singularities don’t exist.

• Space-time is quantized and mirrors cosmological properties on the quantum scale and vice versa.
• The properties of the quanta of space are given by the Planck units.
• The sizes and the masses of the fundamental objects in our universe are not coincidental. Underlying

patterns exist, in particular various logarithmic relationships and a fractional relation were presented.
• The strong force is the disguised near field behaviour of gravity.
• Physical units are an important tool in physics and should not be omitted in calculations for brevity.
• Don’t get lost in math and remember that physical theories are abstractions of the physical reality.

This statement is especially true for all theories which emphasize mathematical fields and frames.

—————————————————————————————————————————————————————
c© 2021 Martin Mayer
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10

http://creativecommons.org/licenses/by/4.0


Acknowledgments
The development of this paper has been greatly aided by Andrey Ivashov’s ”SMath Studio”.
http://smath.com

References
[1] Mayer, Martin. (2020). Compton Particles and Quantum Forces in a holo-fractal universe.

http://vixra.org/abs/1906.0490

[2] Unzicker and Preuss. (2015). A Machian Version of Einsteins Variable Speed of Light Theory.
http://arxiv.org/abs/1503.06763

[3] Unzicker, Alexander. (2008). A Look at the Abandoned Contributions to Cosmology of Dirac, Sciama
and Dicke.
https://arxiv.org/abs/0708.3518
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