
Some new results on Dieudonné-type theorems for

k-triangular lattice group-valued set functions
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Abstract

Using the Maeda-Ogasawara-Vulikh representation theorem and sliding hump-type

techniques, we prove some Dieudonné-type theorems for k-triangular set functions, taking

values in lattice groups.

1 Introduction

The non-additive set functions have been the object of several studies and applications in

Mathematics, and are useful, for example, to model various forms of uncertainty. They are

also an important tool in decision support systems (for instance, belief, plausibility, possibility,

see e.g. [1, 6, 8, 9, 10, 11] and the references therein). In [1] it is dealt with the so-called

M-measures, namely increasing set functions, continuous from above and from below and

compatible with respect to finite suprema and infima. In [9], different kinds of non-additive set

functions, among which k-triangular set functions, are investigated. In [5] some kinds of limit

theorems are proved for k-triangular set functions, both when the concepts of (s)-boundedness,

regularity, continuity with respect to a topology and continuity from above at ∅ are given with

respect to a single regulator or order sequence and when they are formulated like in the classical

setting.

In this paper we continue the investigation done in [5] and prove some Dieudonné-type

theorems, in which the concepts of (s)-boundedness and regularity are intended like in the
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classical case, extending some results earlier proved in [3, 4, 7]. We use the tool of the Maeda-

Ogasawara-Vulikh representation theorem of lattice groups as suitable subgroups of continuous

extended real-valued functions. We find a suitable meager set in whose complement it is pos-

sible to apply the versions of limit theorems obtained for real-valued k-triangular set functions

(see also [5, 9]). Observe that, differently than in the finitely additive case, a bounded k-

triangular set function is not necessarily (s)-bounded. So, we consider the tool of the disjoint

variation. Moreover, we show that our approach includes also the finitely additive case.

2 Preliminaries

We begin with recalling the following basic concepts on lattice groups (see also [5] and the

references therein).

A sequence (pn)n of positive elements of R is an (O)-sequence iff it is decreasing and∧
n

pn = 0.

A bounded double sequence (at,l)t,l in R is a (D)-sequence or a regulator iff (at,l)l is an

(O)-sequence for any t ∈ N.

A lattice group R is weakly σ-distributive iff
∧
ϕ∈NN

( ∞∨
t=1

at,ϕ(t)

)
= 0 for any (D)-sequence

(at,l)t,l.

A sequence (xn)n in R is said to be order convergent (or (O)-convergent ) to x iff there

exists an (O)-sequence (σp)p in R such that for every p ∈ N there is a positive integer n0 with

|xn − x| ≤ σp for each n ≥ n0, and in this case we write (O) lim
n
xn = x.

A sequence (xn)n in R is order Cauchy (or (O)-Cauchy ) iff there is an (O)-sequence (τp)p

in R such that for every p ∈ N there is a positive integer n0 with |xn − xq| ≤ σp for each n,

q ≥ n0, and in this case we write (O) lim
n
xn = x.

Observe that, in a Dedekind complete lattice group, every (O)-Cauchy sequence is (O)-

convergent (see also [5]).

We now recall the Maeda-Ogasawara-Vulikh theorem, which gives a representation of lattice

groups as subsets of continuous extended real-valued functions defined on suitable topological

spaces (see also [5, Theorem 1.2.11]). From now on, we denote by the symbols
∨

and
∧

the supremum and infimum in R and by sup and inf the pointwise supremum and infimum,

respectively.

Theorem 2.1 Given a Dedekind complete lattice group R, there exists a compact extremely

disconnected topological space Ω, unique up to homeomorphisms, such that R can be embedded

isomorphically as a subgroup of C∞(Ω) = {f ∈ R̃Ω : f is continuous, and {ω : |f(ω)| = +∞}
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is nowhere dense in Ω}. Moreover, if we denote by â an element of C∞(Ω) which corresponds

to a ∈ R under the above isomorphism, then for any family (aλ)λ∈Λ of elements of R with

R 3 a0 =
∨
λ

aλ (where the supremum is taken with respect to R), we get â0 =
∨
λ

âλ with respect

to C∞(Ω) and â0(ω) = sup
λ
âλ(ω) in the complement of a meager subset of Ω. The same is true

for
∧
λ

aλ.

Now we deal with some basic properties of lattice group-valued set functions (see also [5, 9]).

From now on, R is a Dedekind complete lattice group, Ω is as in Theorem 2.1, G is an infinite

set, Σ is a σ-algebra of subsets of G, m : Σ→ R is a bounded set function, k is a fixed positive

integer, G and H are two sublattices of Σ such that G is closed under countable disjoint unions

and the complement of any subset of H belongs to G.

Definitions 2.2 (a) Given a set function m : Σ → R and a lattice E ⊂ Σ, the semivariation

of m with respect to E is defined by vE(m)(A) :=
∨
{|m(B)| : B ∈ E , B ⊂ A}, A ∈ Σ. We

often denote by v(m) the semivariation of m with respect to Σ.

(b) We say that m is k-triangular on Σ iff m(A)− km(B) ≤ m(A ∪B) ≤ m(A) + km(B)

whenever A,B ∈ Σ, A ∩B = ∅, and 0 = m(∅) ≤ m(A) for each A ∈ Σ.

Now we recall the following property of the semivariation.

Proposition 2.3 ([5, Proposition 1.4.10]) If m : Σ→ R is k-triangular, then so is v(m).

Definitions 2.4 (a) Let E be a sublattice of Σ. A set function m : Σ → R is said to be

(s)-bounded on E iff for every disjoint sequence (Ch)h in E we get (O) lim
h
v(m)(Ch) = 0. We

say that m is (s)-bounded iff it is (s)-bounded on Σ.

(b) The set functions mj : Σ→ R, j ∈ N, are uniformly (s)-bounded on E iff

(O) lim
h

( ∞∨
j=1

v(mj)(Ch)
)

= 0

for each disjoint sequence (Ch)h in E . The mj’s are said to be uniformly (s)-bounded iff they

are uniformly (s)-bounded on E .

(c) A k-triangular set function m : Σ → R is regular iff for each A ∈ Σ and W ∈ H there

exist four sequences (Fn)n, (F ′n)n in H, (Gn)n, (G′n)n in G, with

Fn ⊂ Fn+1 ⊂ A ⊂ Gn+1 ⊂ Gn for all n ∈ N, (1)

W ⊂ F ′n+1 ⊂ G′n ⊂ F ′n for any n ∈ N, (2)
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and
∧
n

[
vΣ(m)(Gn \ Fn)

]
=
∧
n

[
vΣ(m)(G′n \W )

]
= 0.

(d) The k-triangular set functions mj : Σ → R, j ∈ N, are uniformly regular iff for any

A ∈ Σ and W ∈ H there exist sequences (Fn)n, (Gn)n, (F ′n)n, (G′n)n satisfying (1) and (2), and

with ∧
n

[∨
j

vΣ(mj)(Gn \ Fn)
]

= 0.

(e) The set functions mj : Σ → R, j ∈ N, are equibounded iff there is u ∈ R with

|mj(A)| ≤ u for all j ∈ N and A ⊂ Σ.

3 The main results

Before giving our main results on limit theorems and their equivalence, we present some notions

and properties on k-triangular lattice group-valued set functions.

Proposition 3.1 ([5, Proposition 1.4.13]) Let mj : Σ → R be a sequence of equibounded set

functions. Then the mj’s are k-triangular if and only if there is a nowhere dense set N∗ ⊂ Ω

such that the set functions mj(·)(ω) are real-valued and k-triangular for every ω ∈ Ω \N∗.

Observe that in general, differently from the finitely additive case, it is not true that any

bounded k-triangular set function is (s)-bounded. For example, let G = [1, 2], set

m(∅) = 0 and m(A) = supA (3)

for each nonempty subset A of G. It is not difficult to see that m is subadditive, positive and

monotone, and hence m is 1-triangular. However, for any disjoint sequence (An)n of nonempty

subsets of G we get m(An) ≥ 1 for every n ∈ N, and so it is not possible to have lim
n
m(An) = 0.

Thus m is not (s)-bounded.

We consider the disjoint variation of a lattice group-valued set function (see also [9, 12]).

Definitions 3.2 (a) Let us add to R an extra element +∞, obeying to the usual rules. For

any set function m : Σ→ R, define the disjoint variation m : Σ→ R ∪ {+∞} of m by

m(A) :=
∨
I

(∑
i∈I

|m(Di)|
)
, (4)

where the involved supremum is taken with respect to all disjoint finite families {Di : i ∈ I}
with Di ⊂ A for each i ∈ I.

(b) A set function m is said to be of bounded disjoint variation on Σ (shortly, BDV ) iff

m(G) ∈ R, where m is as in (4).
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Some examples and properties of BDV set functions can be found, for instance, in [5, 9]. We

now recall the following

Proposition 3.3 ([5, Proposition 1.4.18]) Let m : Σ → R be a BDV set function, and R ⊂
C∞(Ω). Then there is a meager set N∗ ⊂ Ω such that the set function mω := m(·)(ω) is

real-valued, BDV and (s)-bounded on Σ for every ω ∈ Ω \N∗. Moreover, m is (s)-bounded on

Σ.

Our setting includes also the finitely additive case. Indeed we have the following

Proposition 3.4 ([5, Proposition 1.4.18]) Every bounded finitely additive measure m : Σ→ R

is BDV .

From now on, we assume that the involved set functions are BDV , without saying it

explicitly.

We recall the next Brooks-Jewett-type theorem, which extends [3, Theorem 3.1] to the

context of k-triangular set functions.

Theorem 3.5 ([5, Theorem 3.2.1]) Let mj : Σ → R, j ∈ N, be a sequence of k-triangular

equibounded set functions. Suppose that there is a set function m0 : G → R such that the

sequence (mj)j (O)-converges to m0 on G with respect to a single (O)-sequence.

Then there is a meager subset N ⊂ Ω such that for every ω ∈ Ω \ N the real-valued set

functions mj(·)(ω), j ∈ N, are uniformly (s)-bounded on G for ω belonging to the complement

of a meager subset of Ω. Moreover, the mj’s are uniformly (s)-bounded on G.

Before proving our versions of the Dieudonné theorem, we recall the following results, whose

proof is analogous to those of [2, Proposition 2.6] and [3, Theorem 4.4], and that of [5, Theorem

3.2.6], respectively.

Theorem 3.6 Let mj : Σ→ R, j ∈ N, be a sequence of equibounded, regular and k-triangular

set functions, (O)-convergent to m0 on G with respect to a single (O)-sequence, and let A ∈ Σ,

W ∈ H, (Fn)n, (F ′n)n in H, (Gn)n, (G′n)n in G satisfy (1) and (2).

Then,
∧
n

[∨
j

v(mj)(Gn \ Fn)
]

=
∧
n

[∨
j

v(mj)(G
′
n \W )

]
= 0.

Theorem 3.7 Let (mj)j be a sequence of regular and k-triangular set functions, (O)-conver-

gent to m0 on G with respect to a single (O)-sequence. Then the following assertions hold.

3.7.1) The set functions mj, j ∈ N, are uniformly regular on Σ.

3.7.2) The sequence (mj(A))j is (O)-Cauchy in R for each A ∈ Σ.
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3.7.3) If m0(A) := (O) lim
j
mj(A), A ∈ Σ, then m0 is regular on Σ.

Now we prove uniform (s)-boundedness of the mj’s on H, extending [4, Theorem 3.1].

Theorem 3.8 Let mj : Σ → R, j ∈ N, be as in Theorem 3.7. Then the set functions mj,

j ∈ N, are uniformly (s)-bounded on H.

Proof: Fix a disjoint sequence (Hn)n in H, and put Wn :=
n⋃
h=1

Hh, n ∈ N.

At the first step, in correspondence with W1, by monotonicity of vG and uniform regularity

on G (which follows from Theorem 3.7) we find two sequences (G∗l1)l1 in G, (F ∗l1)l1 inH satisfying

(2), that is with W1 ⊂ F ∗l1+1 ⊂ G∗l1 ⊂ F ∗l1 for any l1 ∈ N, and with the property that

∧
l1

[∨
j

vG(mj)(F
∗
l1
\W1)

]
=
∧
l1

[∨
j

vG(mj)(G
∗
l1
\W1)

]
= 0. (5)

Let D1 := {F ∗l1 , G
∗
l1

: l1 ∈ N}.
At the second step, we use again uniform regularity, “countably many times”, that is taking

in (2), instead of W , the sets W l1
2 := W2 ∪ F ∗l1 , as l1 varies in N, where the F ∗l1 ’s, l1 ∈ N, are

the same as in (5).

So, for any l1 ∈ N, in correspondence with W l1
2 , we determine two sequences (Gl1

l2
)l2 in G,

(F l1
l2

)l2 in H (l1 is fixed, l2 variable), with W2 ⊂ W l1
2 ⊂ F l1

l2+1 ⊂ Gl1
l2
⊂ F l1

l2
for any l2 ∈ N, and

∧
l2

[∨
j

vG(mj)(F
l1
l2
\W l1

2 )

]
=
∧
l2

[∨
j

vG(mj)(G
l1
l2
\W l1

2 )

]
= 0.

Set D2 := {F l1
l2
, Gl1

l2
: l1, l2 ∈ N}.

By induction, taking into account the (n− 1)-th step, we start with the sets W l1,l2,...,ln−1
n :=

Wn ∪ F ∗l1 ∪ F
l1
l2
∪ . . . ∪ F l1,l2,...,ln−1

ln
, where l1, . . . , ln ∈ N. For every (fixed) l1, . . . , ln−1 ∈ N, and

we find two sequences (G
l1,...,ln−1

ln
)ln in G, (F

l1,...,ln−1

ln
)ln in H, as ln varies in N, with

Wn ⊂ W l1,l2,...,ln−1
n ⊂ F

l1,l2,...,ln−1

ln+1 ⊂ G
l1,l2,...,ln−1

ln
⊂ F

l1,l2,...,ln−1

ln
for all ln ∈ N,

∧
ln

[
∨j vG(mj)(F

l1,...,ln−1

ln
\W l1,...,ln−1

n )
]

(6)

=
∧
ln

[
∨j vG(mj)(G

l1,...,ln−1

ln
\W l1,...,ln−1

n )
]

= 0.

For every n ∈ N, set Dn := {F l1,...,ln−1

ln
, G

l1,...,ln−1

ln
: l1, . . . , ln ∈ N}. Let D be the algebra

generated by the Wn’s and the Dn’s: note that D is countable. So there exists a meager set
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N∗ ⊂ Ω with the property that all the expressions in (5), (6) are equal to 0 even if we replace

the lattice infima and suprema with the corresponding pointwise infima and suprema. Let N

be a meager subset of Ω such that the real-valued set functions mj(·)(ω), j ∈ N, are uniformly

(s)-bounded on G for ω belonging to the complement of N (such a set exists, thanks to Theorem

3.5), and set N∗∗ := N ∪N∗. Fix arbitrarily ε > 0 and ω ∈ Ω \N∗∗. Now, taking into account

Theorem 2.1, (5), (6) and monotonicity of v (since D is countable and we consider elements of

G), we prove by induction that for any n ∈ N there are Gn, Tn ∈ G ∩ Dn, Fn ∈ H ∩ Dn with

Wn ⊂ Gn ⊂ Fn ⊂ Tn, and

v(mj(·)(ω))(Fn \Wn) ≤ ε

22
+ . . .+

ε

2n+1

=
ε

4

1− 1
2n

1− 1
2

=
ε

2

(
1− 1

2n

)
(7)

for all j ∈ N. By Theorem 2.1 and (5) there exists a triple (G1, F1, T1) with

G1, T1 ∈ G ∩ D1, F1 ∈ H ∩D1,W1 ⊂ G1 ⊂ F1 ⊂ T1,

v(mj(·)(ω))(F1 \W1) ≤ v(mj(·)(ω))(T1 \W1) ≤ v(mj)(T1 \W1)(ω) ≤ ε

22

whenever j ∈ N. Moreover, if we suppose by induction the existence of a triple (Gn, Fn, Tn),

with

Gn, Tn ∈ G ∩ Dn, Fn ∈ H ∩Dn,Wn ⊂ Gn ⊂ Fn ⊂ Tn,

v(mj(·)(ω))(Fn \Wn) ≤ v(mj(·)(ω))(Tn \Wn) ≤ v(mj)(Tn \Wn)(ω) ≤ ε

2

(
1− 1

2n

)
for all j ∈ N, by Theorem 2.1 and (6) there is a triple (Gn+1, Fn+1, Tn+1) with

Gn+1, Tn+1 ∈ G ∩ Dn+1, Fn+1 ∈ H ∩Dn+1,Wn+1 ∪ Fn ⊂ Gn+1 ⊂ Fn+1 ⊂ Tn+1,

v(mj(·)(ω))(Fn+1 \ (Wn+1 ∪ Fn)) ≤ v(mj(·)(ω))(Tn+1 \ (Wn+1 ∪ Fn))

≤ v(mj)(Tn+1 \ (Wn+1 ∪ Fn))(ω) ≤ ε

k 2n+2

for any j ∈ N. Now observe that, by Proposition 3.1, the set functions mj(·)(ω) are k-

triangular, and hence, by Proposition 2.3, the set functions v(mj)(·)(ω) are k-triangular too.

From this, taking into account monotonicity of the semivariation, it follows that

v(mj(·)(ω))(Fn+1 \Wn+1) ≤ k v(mj(·)(ω))(Fn+1 \ (Wn+1 ∪ Fn)) +

+ v(mj(·)(ω))(Fn \Wn+1) ≤ k
ε

k 2n+2
+ v(mj(·)(ω))(Fn \Wn)

≤ ε

2

(
1− 1

2n

)
+

ε

2n+2
=
ε

2

(
1− 1

2n+1

)
for all j ∈ N.

7



We now turn to the given disjoint sequence (Hn)n. From (7), for every j, n ∈ N, taking into

account k-triangularity of the semivariation, we get:

0 ≤ v(mj(·)(ω))(Hn+1) ≤ k v(mj(·)(ω))(Gn+1 \ Fn) +

+ v(mj(·)(ω))(Fn \Wn) ≤ k v(mj(·)(ω))(Gn+1 \ Fn) +
ε

2
.

Note that the sets Gn+1 \ Fn, n ∈ N, belong to G and are pairwise disjoint. Since ω ∈ Ω \N∗∗
and N∗∗ ⊃ N , then it follows that for n large enough (depending on ω ∈ Ω \N∗∗) it is

v(mj(·)(ω))(Gn+1 \ Fn) ≤ ε

2 k

for all j ∈ N, and so

v(mj(·)(ω))(Hn) ≤ ε (8)

for each j ∈ N. Hence

inf
s

[sup
n≥s
{sup

j
(v(mj(·)(ω))(Hn))}] = 0 (9)

for every ω ∈ Ω \ N∗∗. Since countable unions of meager sets are still meager sets, for any

n ∈ N it is

sup
j

(v(mj(·)(ω))(Hn)) = {
∨
j

(v(mj)(Hn))}(ω) (10)

for all ω ∈ Ω\ N̂ , where N̂ is a suitable meager set. Without loss of generality, we can suppose

N̂ ⊃ N∗∗. From (9) and (10) it follows that, up to complements of meager sets,∧
s

[
∨
n≥s

{(
∨
j

(v(mj)(Hn)))}](ω) = 0. (11)

By a density argument, from (11) we obtain∧
s

[
∨
n≥s

(
∨
j

v(mj)(Hn))] = 0. (12)

By the arbitrariness of the chosen sequence (Hn)n, we get the uniform (s)-boundedness of the

mj’s on H. This ends the proof. 2

Arguing as in [4, Theorem 3.2], it is possible to see that the mj’s are uniformly (s)-bounded

on the whole of Σ.

Theorem 3.9 Under the same hypotheses and notations as in Theorem 3.8, suppose also that

R is weakly σ-distributive. Then the set functions mj, j ∈ N, are uniformly (s)-bounded on Σ.
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As a consequence of Theorems 3.5 and 3.9, we get the following Dieudonné-type theorem,

which extends [4, Corollary 3.3] to the non-additive setting.

Theorem 3.10 Let mj : Σ→ R, j ∈ N, be a sequence of equibounded, regular and k-triangular

set functions, (O)-convergent to m0 on G with respect to a single (O)-sequence, and R be as in

Theorem 3.9. Then the mj’s are uniformly regular and uniformly (s)-bounded on Σ. Moreover,

if m0(A) := (O) lim
j
mj(A), A ∈ Σ, then m0 is well-defined, (s)-bounded and regular on Σ.
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