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1 Introduction

Differentiating users between each other [FBK20] online has always been a
relevant issue for a certain category of web applications that specializes in delivering
different, personalized content to different users [ZC16], offering the best experience
for every user individually, as well as displaying targeted advertisements and, in
some cases, sharing information about user activity with third-party services for
various reasons, such as improved targeting for advertisements as well as simple
activity analysis [ZC16] used to adjust services offered to a certain customer [RFZ01].
Knowing, whether a particular user actually is who the user’s device claims, is
critical in some cases, such as Online Banking, and has a very high influence on
profits in many fields, such as flight ticket sales, where airlines attempt to adjust
ticket prices based on almost all possible variables available about the user, as well
as the user’s recent search history, in order to offer each user the opportunity to book
a ticket at a price acceptable for that user, allowing all people who want to book
a flight – to book a flight, while managing to bill them differently [ZC16, RFZ01].
Internet retail companies heavily rely on user metadata provided by third-party
services too, since they can use it for an improved website layout for each user, a
simple example are most of the large online retail websites that look different on
different computers, even when no-one is logged in. Apart from online services that
actually bill people, a lot of other services, such as news websites, entertainment
websites and generally most of the very large websites that are capable of offering
different types of content to a user based on their previous activity make extensive
use of information about each user regardless of that user being registered, logged in
or not logged in, which improves the experience for the user and increases possible
monetizing opportunities for those websites [ZC16, RFZ01].

Usually a login-password pair [ZJ12], that has to be typed in by the user, or
cookies, which are automatically generated for the user, are used to authenticate
a certain person on most websites offering personalized content, but in some
cases this approach has flaws, for example, when a user changes devices, uses a
different browser or simply turns off cookies, in other cases it is impossible at all or
introduces significant overhead for the user, specially in common use cases where a
user would not expect to have to log in with personal credentials [ZJ12]. A great
example of attempts to find a proper balance between letting the client use some
services without logging in while relying on cookies and forcing the client to log
in while risking losing the client because of the client’s unwillingness to register
or log in can be seen on some small business websites selling inexpensive items
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Chapter 1. Introduction

and offering simple services, where an item or service can be bought without a
registration process, replacing the login-password pair with cookies, which has a
main disadvantage of non-transferability between different devices and browsers of
the same client [SCM+09]. Small business websites usually have readily available
competition that offers an alternative for the client, which is easy for the client to
switch to, if the client is unhappy with the experience for any reason, which might
include the requirement to log in [SCM+09]. This forces small business websites to
eliminate anything that could potentially make a client unhappy and eventually
force him to switch to a competitor. Large internet service and retail companies have
the advantages of having virtually no competition and therefore no alternatives
for the client, which is why they are more flexible in requiring the client to log in
without risking to lose the client, which allows a proper login-password pair to be
used for the client and therefore offering more information about the client based on
client activities on all client devices [ZJ12, SCM+09].

The problem of authenticating online users can be divided in two general sub
problems: confirming two different web users being the same person, and confirming
two different web users being not the same person. In the past, IP addresses have
been considered a reliable method of authenticating online users [GHJP00]. IP
addresses are still used quite often to confirm two people being the same person if
the two IP addresses match on smaller websites and online services with smaller
audiences [GHJP00]. IP addresses cannot be used to confirm two users being different
people anymore, because users change their IP addresses more often than devices,
for example, while driving and using a phone browser with mobile communication
connectivity that switches between cell towers, which quite often changes the IP
address [GHJP00]. Since nowadays users change locations, devices and internet
service providers multiple times every day, and some web services are used by a
large enough percentage of the population to make the likelihood of two different
users with the same IP address using the service [TGS+14]. Usage of IP addresses
can’t provide a reliable method of distinguishing users with a high enough precision.
In order to improve user authentication techniques in cases, where cookies or logging
in is not applicable as well as to actually distinguish users from each other without
any authentication, browser, system and hardware fingerprinting is being used more
often [TGS+14]. This technique improves the ability to distinguish between devices
being used, however, the main goal of most online service providers is to distinguish
between end-users instead of their devices, even though it is safe to assume that most
of the time only one person uses a certain device. The easiest and most accessible
method for fingerprinting used by online services is browser fingerprinting [BFGI11].
Browser fingerprinting distinguishes between user devices using information about
the browser and the system, which is usually provided by most browsers to any
website, even when cookies are turned off [BFGI11]. This data is usually unique
enough even for identical devices, since it heavily relies on device usage by the user.
In this paper, browser fingerprinting is being improved with the usage of information
acquired from an eye tracker [KSF+15, Fuh19, FBK20, FTBK16, FKS+15b]. Usually
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the gaze estimation is acquired using the pupil center [FSR+16, FKH+17, FGS+18,
FGK20b, FSK17b, FEH+18] and computing a mapping function between the pupil
center and the screen [FGK20a]. For this multiple techniques have been proposed
where currently the sematic segmentation [FGRK19, FRK19, FCZ+18] is used. While
the eye tracking signal contains a lot of information about the cognitive state [ESF+17,
EFK17, EHF+17, BFG+16] or the tiredness of a person [FSG+16, FSG+17, FSK17a], we
only used the gaze information alone in this pilot work. We used Webgaze [PSL+16a],
which works entirely in the browser and enables to estimate the gaze of a person
and therefore the salient regions [GFSK17, FKSK18, FKB+18, FKS+15a]. Since many
studies have shown that a scanpath [FBH+19, FCK+19] is a unique biometric
feature for every person, each user’s scanpath which consits of eye movement
types [FRE20, FSK+18, FCK18a, FCK18b, FK18, FRE20] is being saved and compared
to other scanpathes. The main problem of the usage of a scanpath is that it creates
a large amount of overhead for the user, including initial calibration and the
requirement to keep the head visible to the web camera, and actual access to the
web camera, therefore it is unlikely to be used with most of the current web services,
however, the detection of a driver’s gaze is being implemented in the automotive
industry, and if the gaze-detection technology will improve further, it might start
being used in mobile devices and computers [Fuh20], similar to fingerprint sensors
being available in many modern smartphones. Such an implementation could offer
the gaze point to a wide array applications, with the initial goal of improving user
experience, but it could also be used for further user authentication.
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2 Fundamentals

In order to have a clear understanding of what is being done in this study, several
concepts and definitions, as well as overall techniques and systems are required
to be introduced first. In this chapter, the necessary definitions, concepts, machine
learning techniques [FKRK20, ?, FK20b, FK20a] and systems are described.

2.1 Decision Trees

In general, a decision tree is a tree-like structure used to make a decision about a
certain object based on the object parameters 2.1. Decision trees are used in many
fields. in this experiment, the relevant type of trees are the decision trees used in
machine learning.

Figure 2.1: An example of a simple decision tree, tasked with making a decision
based on weather [Kul17]

Decision trees in machine learning are usually mathematical models used to make an
assumption about a certain object, which is usually represented by a vector, based on
assumptions about previously processed similar objects. The process of processing
similar objects is called "learning" or "training" of the tree model, and the similar
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Chapter 2. Fundamentals

objects used for training are called the "training dataset". For example, the training
dataset for the decision tree on Figure 2.1 is displayed on Figure 2.2.

Figure 2.2: The training dataset used for the decision tree displayed on Figure 2.1
[Kul17]

In order for a machine learning decision tree mathematical model to be grown,
the training dataset is being analysed in order to make the most optimal decision
tree using the relevant parameters of an object and eventually ignore non-relevant
parameters. There are multiple algorithms capable of building a decision tree.
Most of the algorithms use the "entropy" and "information gain" characteristics,
which are calculated for each parameter in the dataset, based on the actual values
in the dataset, in order to decide, where to use each parameter in a tree, and
whether to use a parameter in the tree at all, in order to avoid overfitting the trees
[Wik20j, Wik20i]. Entropy is the characteristic of a parameter in a decision tree
evaluating the randomness of the information in that parameter for the decision. The
higher the entropy of a certain parameter, the less likely it is going to be used close to
the root of the tree. In some decision tree growing algorithms, entropy is calculated
for each possible set of parameters below the parameter that is being analysed
for entropy. The entropy is used in the calculation of information gain, which is
used to calculate, how much each parameter of the training set would contribute to
the final decision or classification. Usually the Algorithm growing a decision tree
chooses the parameter of the dataset with the highest information gain value to be
used closer to the root, or even as the root. Apart from the described characteristics,
various decision tree growing algorithms use various additional parameters aimed
at reducing the tree size and optimizing the tree. For example, some characteristics
are used to "prune" the tree to avoid overfitting. Pruning describes the process of
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2.2. Support Vector Machine

removing very specific parameter tests close to the leaves, and overfitting is a term
describing decision trees that are unable to classify vague samples that don’t match
close enough with the samples in the training set. Decision trees are usually used to
make a decision (yes,no), classify an object or to determine the value of a continuous
variable based on the object parameters. Decision trees being used to determine the
continuous value of a certain variable are called regression trees, while trees used to
classify certain objects or to make a decision are referred to as calssification trees
[Gup17, Cho20, TC92, FK19, FRM+20].

Although most of the trees nowadays are created by algorithms, in other fields
decision trees are sometimes created manually by humans (Figure 2.3) [Wik20j].

Figure 2.3: A manually made decision tree [Wik20j]

In this study, decision trees are used to determine the user based on the user’s
browser fingerprint and scanpath.

2.2 Support Vector Machine

Similar to decision trees, support vector machines are mathematical models used in
machine learning for classifying an object or determining the value of a continuous
variable. A simple way to describe support vector machines would be to first describe
margin classifiers. A margin classifier tries to find a hyperplane to separate two
classes of samples in a space. In case of the space being 1-dimensional and the
samples having just one parameter, x, a margin classifier would try to find an x that
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Chapter 2. Fundamentals

would effectively serve as a threshold for distinguishing between these two classes.
As an example, a one-dimensional space with two classes of samples distributed
across the line in two groups would have the threshold between those two groups,
as shown on Figure 2.4. The threshold would be a dot in a one-dimensional space,
and a dot is a hyperplane for a one-dimensional space. The threshold is usually
located in the middle of the closest elements of each class [Gun20].

Figure 2.4: A margin classifier [Gun20]

The threshold could be used to classify future samples based on their location relative
to that threshold. In order to compensate for the outliers affecting the classification
as shown on Figure 2.5, a margin classifier could have a safety or soft margin.

Figure 2.5: A margin classifier being affected by an outlier (the red circle close to the
green circles) causes the new black sample to be classified as red despite
being closer to the green group [Gun20]

In order to avoid outliers affecting the threshold, a soft margin is calculated by
cross-validating all training samples to find the optimal location for the new margin
called the support vector, as seen on Figure 2.6, which is calculated to have as little
false detections as possible.

Figure 2.6: The support vector [Gun20]

After the support vector has been calculated, new samples can be classified correctly
based on their location relative to most of the samples in each class, as shown on
Figure 2.7.

Figure 2.7: The new black sample will be classified as green because of the support
vector being calculated to be between the majority of the elements of
each class [Gun20]

The support vector solves the problem of outliers, but does not solve the problem of
two groups being distributed among a space without a clear support vector position,
as shown on Figure 2.8.
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2.2. Support Vector Machine

Figure 2.8: Two groups of samples are distributed in a fashion not allowing for a
hyperplane to divide them in a one-dimensional space [Per]

In order to make the division by a hyperplane of such examples possible, Support
Vector Machines were introduced [CV95]. Support vector machines, in case of two
groups of samples being distributed in a way that would not allow their division
by a support vector in their own dimension, search for a hyperplane in a higher
dimension, by using a kernel function to elevate the samples into a higher dimension,
as shown on Figure 2.9. In a two-dimensional space, a hyperplane is a line, which
is calculated by cross-validating each of the samples with the rest in order find the
optimal position for the hyperplane dividing the two groups [Per, Gun20].

Figure 2.9: The samples from Figure 2.8 have been elevated into a higher dimension,
with a new sample being correctly classified, and a hyperplane dividing
the two groups [Per]

When the samples are lifted to their higher dimension by having their next dimension
calculated based on their current dimension with a kernel function, a hyperplane is
being calculated just like a support vector would. In order to reduce computational
complexity, usually the samples are not actually lifted to their higher dimension,
instead the calculations to find the hyperplane dividing the classes are made based on
the kernel function of their current dimesnsion, and for each new sample that needs
to be classified, the higher-dimensional position of the new sample is calculated
using the kernel function, which is sufficient to find the location of the new sample
relative to the hyperplane dividing the groups [Per, Gun20, Wik20z].
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Chapter 2. Fundamentals

2.3 The Eye

This study is highly concentrated on eye movements, and therefore the eye itself is
important. A human eye could be seen as a module in a human body responsible for
sensing the visual spectre of the electromagnetic field, in other words, it is used to
see light and distinguish different colours of light, and different colours of light are
just different frequencies of the visible spectrum of the electromagnetic field (Figure
2.10).

Figure 2.10: The visible spectrum of light, with the wavelength in nm [Wik20q]

Human eyes are generally capable of sensing electromagnetic waves with wave-
lengths between 380nm and 740nm[Sta06], so the visible range of the spectrum for
humans is only 360nm wide. A 360nm wide area of the electromagnetic spectrum is
a relatively narrow part of the whole spectrum (Figure 2.11).

Figure 2.11: The whole spectrum of electromagnetic waves [Wik20q]

Although the visible part is narrow compared to the whole electromagnetic spectrum,
the ability of human eyes to sense and provide humans with information about
electromagnetic radiation with different wavelengths is vital for not just humans,
but most of the animals and is being constantly used, sometimes providing humans
with critical information (Figure 2.12).

Humans rely on their eyes on a daily basis, from the moment they wake up to
the very last minute they are still awake. Pretty much any interaction a human
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2.3. The Eye

Figure 2.12: Traffic lights provide critical information to humans operating motor
vehicles via the visible part of the electromagnetic spectrum [Wik20b]

participates in involves the functionality of eyes, that’s why most humans have
two eyes at the front of their head, since it’s a perfect location for eyes to collect
information about their environment and have the best possible outlook because of
a high location on the body. The location of human eyes also provides them with
more robustness, since the connecting nerves between eyes and the brain are short
and therefore are less susceptible to mechanical failure. Additionally, the shorter
nerves connecting the eyes to the brain make the delay between the signal being
sent and received unnoticeable.

The part of the eye, that actually senses light, is called the retina and is a layer of
sensors covering 72% of the the rear side of the eye (Figure 2.13).

The sensors are called rods and cones and generally are photosensitive sensors
converting light into signals, which they detect using a chemical reaction that happens
inside the photoreceptor proteins. The chemical reaction causes the cell membrane
to change the membrane potential, which is sensed by the nerves[Wik20u, Wik20v].

Although light is being sensed by the rods and cones, they have a layer of axons
in front of them, which light first has to pass through. The first layer, that light
passes through, is the ganglion layer containing axons from the optic nerve, after
which it reaches the rods and cones. Because the layer connected to the optic nerve
is located above the layer of rods and cones (Figure 2.14), and the optic nerve is
located at the opposite side of the layer with rods and cones, the eye contains a
"blind spot" – an area where the ganglion layer with axons connects to the optic
nerve [Wik20u, Wik20v].

As shown in Figure 2.13, the eye has more components than just the retina. The
outermost layer of the eye is the structural layer supporting the shape of the eye
is called sclera (Figure 2.13). The eye is filled with two different fluids – aqueous
humour and vitreous body. The vitreous body fills 80% of the eyeball between the
retina and the lens, has various viscosity in different areas of the eye and changes
over the lifetime of a human [?]. The space beyond the lens is filled with a different
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Chapter 2. Fundamentals

Figure 2.13: The general structure of a human eye [Wik20o]

fluid – aqueous humour. Aqueous humour consists of 98% water [Wik20c]. The
lens, the iris and the pupil adjust brightness and the image properties (Figure 2.13)
[Wik20o].

The light, properly adjusted, is absorbed by the photoreceptor cells – the cones and
rods in the retina. There are two different cells – rods and cones, rods are much more
sensitive and are capable of sensing even one photon [OS07], however, rod cells offer
very little colour sensitivity. There are 120 million rod cells in the eye [Sch11] and
most of them are located close to the outer edges of the retina, which allows them to
perform great for peripheral and night vision [Wik20u, Wik20w]. The cone cells are
more interesting, since they sense some colours more intensively than others. Cones
are, compared to rods, much faster, but have a lower sensitivity [Wik20g]. There
are three types of cone cells: S, M and L. Their names come from the light they are
sensitive to: short-wavelength light, medium-wavelength light and long-wavelength
light. Cones on their own cannot detect colour, they just sense different wavelengths
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2.3. The Eye

Figure 2.14: Different layers of the 0.5mm thick retina [Wik20v]

with a different intensity, with a certain wavelength causing the highest sensing
intensity for cones. The S-cones have their peak sensitivity at 420nm-440nm, the
M-cones have their peak sensitivity at 534nm-545nm, the L-cones have their peak
sensitivity at 564nm-580nm [Wik20f]. As shown on Figure 2.15, each type of cones
senses a certain wavelength with the highest intensity, while the intensity of sensing
colours of other wavelengths in close proximity to the peak wavelength is lower.
The cell only receives a signal intensity, so for example, if the top signal intensity of
an M-cell is at 540nm, at which it receives the highest intensity signal, for example,
at 95%, if a different colour is sensed and passed through to the optical nerve, with
sensing a signal intensity of an unknown clolour at around 90%, the cone cell is
not capable of sensing the exact wavelength. It only senses a signal representing,
as an example, either 520nm or 550nm. In order to determine the exact colour or
wavelength, the signal from a different cone-cell is required, for example, an L-cell,
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Chapter 2. Fundamentals

which could have, for example, a much lower intensity at 80%, while the M-cell
would have an intensity of 90%. Based on the difference, the brain determines that
the wavelength is 520nm. This process doesn’t take place in the photoreceptor cells,
in the retina, in the eye or in the optical nerve. This process takes place in the brain,
where only the intensity levels are taken by the optical nerve [Wik20u, Wik20f].

Figure 2.15: Sensitivity intensity of different cones to different wavelengths [Wik20u].

The eye, being a consistent organ shaped like a sphere, with an optic nerve and
blood vessels connected in the proximity of the blind spot, is flexible and capable of
rotating to a certain extent inside the orbit in order to make the pupil face a desired
scene even if it’s not directly in front of the human [Wik20o, Wik20t].

The eyes are located inside their orbits – the cavities in the bone where eyes are
expected to be, with a layer of fat (Figure 2.16) [Wik20o].

There are six muscles actuating eye rotation around each of the three axes in
opposite directions. The medial rectus rotates the eye around the vertical axis
inwards and the lateral rectus rotates the eye around the vertical axis outwards
[Wik20r, Wik20d, Wik20l]. The superior rectus rotates the eye upwards and the
inferior rectus rotates the eye downwards [Wik20d, Wik20l]. The superior oblique
rotates the eye around the horizontal axis inwards, and the inferior oblique rotates
the eye around the horizontal axis outwards [Wik20d, Wik20l]. These muscles allow
for the eye to be effectively rotated towards any object in front of a human (Figure
2.17).

20



2.3. The Eye

Figure 2.16: Location of the eye inside it’s orbits, with muscles and a layer of fat as
well as the optical nerve being visible [Wik20o]

Figure 2.17: Eye muscles allow the eye to be rotated in any direction [Wik20o]

In order to achieve high signal accuracy and acuity in the focused area of the eye,
a special area of the eye is filled exclusively with cone cells. This area - the fovea,
offers the highest accuracy (Figure 2.13) despite taking only 1% of the retina. In the
fovea, each cone feeds to at least one axon connected to the optical nerve and the
Fovea itself accounts for 50% of the optical nerve. Since the Fovea doesn’t have any
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rods, it’s not very suitable for operation in low light conditions. It’s usually used for
reading, driving and other tasks requiring high image quality [Wik20n].

Overall, the majority of humans have two eyes. The two eyes are located at a high
point on a human, on the face, above the nose but under the forehead, in their special
sockets in the bone – orbits. Eyes have a close to spherical form, with 6 muscles
attached to them, allowing the eyes to be rotated around all of the three axes, with
each muscle being responsible for rotation in one direction around each of the axes.
Eyes have all their interfaces with the rest of the body – the optical nerve carrying the
signals from the photoreceptor cells, as well as the blood vessels, connect and enter
the eye at one point – the blind spot, which permits higher flexibility for eye rotation.
The eye itself consists of multiple optical components adjusting the light brightness
and focus, acting as a lens. The light signal is being detected by photoreceptor cells –
rods, offering great low-light performance and cones, offering high precision, located
on the Retina, which covers the rear side of the eye. Since the nerves are wired above
the photoreceptive cells, the connection point of the optical nerve to the eye has the
layer of cones and rods pierced by the optical nerve, which is why the connection
point is called the blind spot. Unlike the blind spot, the fovea is an area on the retina
offering the highest accuracy and image quality, which is why the focused image
is usually projected on the fovea. The signal from the retina gets transferred to the
brain through the optical nerve. Eyes are vital to humans and are being used almost
constantly during human activity.

2.4 Eye Movements

In order to have a clear understanding of the subject of this study, it is important
to have an exhaustive understanding of eye movement origins, mechanics and
communications. Eye movements, similar to most fast movements in the body of
a human, are actuated by muscles (Figure 2.18). The six muscles consist of three
pairs of antagonist muscles rotating the eye around all available axes to a human.
As an example, when a human attempts to rotate eyes upwards or downwards, the
superior rectus and the inferior rectus are involved (Figure 2.18), so that in order
to rotate the eye upwards, the superior rectus is actuated, and to rotate the eye
downwards, the inferior rectus is actuated [Wik20m]. All eye muscles rotate the
eye in a similar fashion – the antagonist pairs rotate the eyes in opposite directions
around an axis.

The eye muscles are controlled mainly by the oculomotor nerve, but the superior
rectus is controlled by the abducens nerve and the lateral rectus is controlled by
the trochlear nerve, all of which are cranial nerves (Figure 2.19) [Wik20m, Wik20s,
Wik20a].

These cranial nerves come straight from the brain, which allows for fewer points of
failure, low latency and direct connectivity between the brain and certain organs in
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2.4. Eye Movements

Figure 2.18: Eye from above, the superior rectus in the foreground and inferior rectus
in the background, the pair of antagonist muscles responsible for the
ability of an eye to look upwards and downwards [Wik20y]

close proximity to the brain, including the eyes [Wik20h].

The way a human brain controls eye movements by actuating eye muscles is shown
in Figure 2.20. Since the eye muscles are antagonist muscles, each muscle has to be
controlled solely to hold position or to contract. In order to contract, the neurons fire
into the necessary muscle with a certain rate. In order to hold position, the neurons
fire with a steady, baseline rate. The longer the initial burst of firings happens, the
further a muscle contracts and therefore, the further an eye rotates. The further the
eye is rotated, the higher the required baseline frequency of firings for the eye to
hold position is. Without the baseline firings while an eye is rotated, the eye will
rotate back to it’s resting position [PD01].

In general, the human eye interacts with objects by scanning them. The eye move-
ments include fixations and saccades, where fixations are periods where the eye
is fixated on a certain point, and saccades are periods where the eye gaze changes
rapidly from one position to another. Usually saccades are short and fixations are
long. The patch left behind by saccades and fixations is called the scanpath. The
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Chapter 2. Fundamentals

Figure 2.19: Nerves around the eye [Wik20x]

Figure 2.20: The neuron bursting rate is depicted as the frequency of black lines
corresponding to eye movement. The baseline frequency can be seen
with the eye holding position (horizontal line in the blue area), while
the movement distance is clearly correlated to the length of a bursting
event. [PD01]

scanpath is a unique feature of each individual, similar to a fingerprint, however,
unlike a fingerprint, a scanpath involves a temporal attribute (the time of each fixa-
tion, or, more precise, a sequence of fixations) which makes it more robust towards
being compromised compared to a fingerprint, since it requires an observation being
made over time, and can’t be documented at a later stage, which a fingerprint is
susceptible to. Additionally, even though a large percentage of devices is being
equipped with a fingerprint sensor, the majority of devices is equipped with a

24



2.5. WebGazer

front-facing camera, making more devices capable of capturing a user scanpath,
which additionally is less invasive into user privacy compared to the fingerprint
data, or even a picture of the face of the user, since it essentially requires just the
sequence of user fixations to be analysed and is being extracted on the user device,
preventing any leakage of actual pictures of the user, if implemented properly. In
this experiment, we concentrate most of our attention at saccades – even though
fixations and saccades are non-exclusive, and fixations with saccades can be derived
from each other, and we extract saccades from fixations in this experiment, the main
datapoints are saccades – the movements of eyes from point A to point B, which we
use for our analysis.

The movements of the eye relies on two variable factors across humans – psycholog-
ical and physical. The psychological aspect involves the way the brain controls the
eye, whether both eyes are controlled similarly and are given the same control signal,
or whether they are being given different signals depending on their position. The
physical aspect of eye movements involves the way each eye, as a separate, physical
light-sensing module, responds to the control signals and how it moves. The physical
aspect also involves the development of certain eye muscles, since the development
of eye muscle groups directly influences the way an eye as a physical module would
respond to a signal from brain asking it to face a certain direction, or to stop facing a cer-
tain direction. The psychological aspect of eye movements involves the actual signals
a brain sends to the eye module, and the parameters of those signals. Previous studies
have shown that personality traits/differences have an influence on the way humans
scan scenes they see [HH16, KV11, HLMB18a, PJD10, HLMB18b] and in general,
eye movement patterns are different for different individuals [BPS72, STD19, NL15]
and generally might depend on the difference of developmental processes between
individuals [CCH+17] and actually change as individual humans develop over
time [OLSM07, LVG08]. All this implies that eye movement patterns are highly
individual and could be used as a psychometric, since they develop over time,
as an individual develops. In fact, many studies have shown the possibility of
individual authentication based on the eye movement pattern – the scanpath, as a
biometric feature [CGN+15a, KO04, Kas04a, FMSM09, MFS04, WMH11, RPTH17]
and a lot of different patents have been issued for eye movement authentication
[BH07, JCG17, Her15, MS16]. All these applications of eye tracking movement record-
ings make use of the property of individual eye movement patterns depending on
individual characteristics such as eye muscle development, psychological features
as well as just differences in interest for different areas on a stimuli.

2.5 WebGazer

One of the most important tools for collecting user gaze data used in this study is
WebGazer [PSL+16b], a browser-based eye tracker offering impressive accuracy for
a browser-based eye tracking tool written in JavaScript, which simplifies the study

25



Chapter 2. Fundamentals

making it possible for anyone with a modern browser and a webcam to participate
in the study. WebGazer is capable of estimating the gaze point using two different
methods. The first method estimates the gaze by detecting the pupil and mapping
the pupil position to the known gaze locations on the screen. The second method
applies a ridge regression model to the input data based on continuous calibration
input.

Figure 2.21: An example of WebGazer tracking the gaze on a website. [AP]

Since it has been shown, that cursor movements and mouse clicks usually indicate
the location of the gaze of a user with acceptable tolerances [HPW11a, CAS01,
GA10, LD14, RFAS08], WebGazer utilizes user clicks and mouse movements in order
to gather calibration information, which is readily available in modern browsers.
Calibrating WebGazer with user interaction data such as mouse clicks and cursor
movements allows the separated calibration part, which is required for most eye
trackers, to be avoided entirely, which makes the usage of WebGazer on websites
much easier.

Apart from being capable of operating without a distinctive separate calibration stage,
WebGazer has all the components and steps of a conventional web-cam based eye
tracker. WebGazer can use three different JavaScript libraries [EMD+18, EL14, Tsc12]
to extract the relevant parts of the webcam picture containing eyes in real time.

The parts of the picture containing eyes are the main part being analysed in order to
extract the gaze. WebGazer utilizes two different methods to estimate the gaze in
real time based on the eye images from the webcam in real time. The first method
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utilizes the pupil location on the picture of the eyes as an input into a simple linear
regression model. The second method uses the whole eye image divided into a 6 x
10 grid, with some filters applied and in gray scale, resulting in a 120D vector, which
is then used as an input into a ridge regression model [HK12], which maps the 120D
vector representing the eye features to an estimated gaze point.

Instead of having a separate calibration stage, like most webcam based eye trackers
have, WebGazer self-calibrates. Self-calibration is implemented based on various
studies showing the correlation between mouse clicks and cursor movements
[HWB12, HPW11a] which allows WebGazer to gather calibration data from user
interaction, which is represented by cursor movements and mouse clicks. This
allows the calibration to be happening all the time a user interacts with web gazer.
Studies showing the correlation between mouse clicks and gaze points on the screen
[HWB12] indicate, that the average distance between a user gaze position on a screen
and the mouse pointer is 74 pixels at the time of a mouse click event, which is close
enough to the actual mouse click position to assume that they are located in the exact
same place. Additionally, 500ms of eye samples are kept in a fixation buffer and when
a mouse click occurs, the buffer samples are analysed. The samples from the fixation
buffer pointing to positions within 72 pixels around the mouse click position are then
added to the calibration set. The average duration of a fixation is 200-500ms, and it
is safe to assume that an eye fixation on a certain position on the screen has to occur
before the mouse is being moved to that certain position, which is why WebGazer
analyses the previous 500ms of eye samples for possible calibration samples that
could improve accuracy to be added to the model. Additionally to mouse click
events, cursor movements are used to gather information about the the user gaze
position used for self-calibration in WebGazer. Based on studies showing, that when
the cursor is being moved to click, the gaze position correlates to the cursor position
[HPW11a], WebGazer uses cursor movement information for self-calibration. Every
time the cursor is being moved, the cursor position combined with the corresponding
eye samples are being added to the Ridge Regression model, although the weights
used for the cursor movement samples added are just half the weights for click
events, and when the cursor stops moving, the weights for the samples are still
added to the model for 500ms while having their weights for the model linearly
decreased.

In general, WebGazer [PSL+16b] is an open-source eye tracker capable of avoiding
calibration while tracking user eyes in real-time in the browser, which is a perfect
tool to be used on websites to improve user experience or authenticate a user based
on the scanpath.

.
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2.6 Browser Eyetracking

Tracking the scanpath of a browser user on a website has been an interesting topic for
many researchers [PSL+16b, DB12, MKMS17, RPC01, HPW11b], however a separate
specialized device is used frequently in order to track browser-usage gaze patterns
produced by users. The usage of a specialized device for eye tracking makes the
process of eye tracking more complex, but most of the specialized devices offer a
fairly high tracking precision.

Figure 2.22: An example of a user scanpath in a web browser [GH10]

A large percentage of eye tracking studies involving the usage of a browser by a
user are aimed at determining certain regions of interest on one distinct webpage
[LW01], or on webpages in general, in order to analyse the behavioural part of the
interaction with a webpage, as well as whether or not some methods of delivering
information to a user is more or less effective.

Most of the setups for web-browser eye tracking consist of a web browser and an
eye-tracking system, where the eye-tracking system might be implemented either as
a standalone device or as a separate software using the web camera of the computer
being used.
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3 Method

The methodology used in this study is based on a standard browser on a computer
with a web camera. In general, any computer with a web camera and a modern
browser should be an acceptable data-gathering instrument for this study, which
makes it easily scalable. In order to gather general information about individual
eye movement patterns, a website has been constructed that would allow the
exploration of 5 different websites during the eye tracking process. All 5 websites are
differently layed out and have different content, which allows for a more generalized
data gathering compared to GANT [CGN+15b], where a standardized stimuli with
distinctive regions of interest available has been used.

Figure 3.1: An example of fixations on a face stimuli with grid [CGN+15b].

Even compared to the study by [MFS04], where an image that has already been
seen by a user is used as stimuli, this study utilizes a comparably more generalized
approach, since most of the interchangeable pages this study uses as stimuli are
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actual live online webpages that sometimes change dynamically and have different
content during the experiment.

Figure 3.2: Constant stimuli (b) used by [MFS04], where the similarity of a scanpath
(a) is used as input data.

Our approach might be in some way similar to the approach used by [Kas04b], where
the stimuli was random (Figure 3.2) and the individual eye movement patterns
were analysed, since our study offers somewhat random stimuli too, but it uses less
precise eye tracking accuracy and a realistic stimuli, which makes it more relevant
for actual applications, where perfect conditions for eye tracking usually cannot be
provided. Our study can be seen as having an approach close to many previous
studies [CGN+15b, MFS04, Kas04b], in some cases, even a mix of those approaches
in terms of data gathering.

The main difference of our approach is the availability of 5 different websites
[17, 18, 19, 20, 21] that a user is allowed to freely switch between at any time during
the experiment. Allowing for 5 different websites to be interchangeably switched at
any time on user’s signal provides us with a general image of an individual user web
browsing eye movement pattern and allows for the experiment to be less painful
for the user being experimented on. In this study, the 5 websites used have been
selected to be as different as possible, while still being interesting for a user. Any
website couldn’t be picked for this experiment because of technical limitations of
some websites not allowing to be shown inside an iframe. Since the self-calibration
feature of WebGazer [PSL+16b] couldn’t be used on web pages inside an iframe
because of some rational safety limitations of the iframe functionality, an additional
calibration stage had to be added to the experiment, which makes one of the main
features of WebGazer – self calibration, almost unused, which is a trade-off for being
able to show live websites instead of static stimuli. The self-calibration feature was
still capable of analysing user interaction during the interaction of the user with the
website interface responsible for interchanging stimuli websites. There are many
methods of avoiding the iframe safety limitations allowing websites to be shown
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Figure 3.3: An example of random stimuli used by [Kas04b], the number under each
stimuli is the time needed for the user experimented on to move the gaze
to the position on a screen.

with functioning self-calibration feature, which offers many possible further work
opportunities in improving this experiment for further studies.

3.1 Website for the Study

In order to perform this study, a simple website using JavaScript, PHP and HTML has
been constructed containing most of the main components. The general purpose of
the website was to provide a user with all necessary instruments for the experiment,
as well as execute the experiment on the user. In addition to the main experimenting
tools, a debugging tool page has been made in order to make the observation
of the fixations of any id possible, which has been used mainly for debugging
and for extended visual information gathering about a certain experiment. The
website could be run on any LAMP-compatible web server, local or remote. Because
WebGazer [PSL+16b] uses getUserMedia API to get the webcam feed from the user,
and getUserMedia requires a secure https protocol to be supported on the web
server to allow the webcam feed to be passed through, a web server used to run the
website has to have supported https protocol support or the safety feature has to be
changed in the browser, which is different for all browsers. Since the website has
been running on Awardspace [22], only http was available for use, which prompted
the study participants to have to change their browser settings in order to allow
getUserMedia API to work with http.
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The five websites used as stimuli for the scanpath recording experiment were used
inside an iframe [24], which has an absolutely rational safety feature – JavaScript
cannot record mouse clicks and movements inside an iframe. An iframe is a HTML
tag allowing another website to be displayed inside a website, as long as the remote
web server of the other website being displayed inside the iframe permits iframe
usage by setting the X-Frame-Options [23] parameter in the HTTP header to "allow".
Most of the websites selected for the experiment had their X-Frame-Options HTTP
header parameter set to "deny" or "sameorigin", which made them unsuitable for
this experiment. Despite the X-Frame-Options settings for most interesting websites
not allowing them to be used inside an iframe, it was possible to collect a set of
interesting websites with different content allowing their usage inside an iframe
HTML tag.

Figure 3.4: An example of an iframe being used. FT.com is being displayed inside an
iframe element on www.w3schools.com

3.1.1 Structure

The website consists of the main html page which guides the user through the
whole experiment. The main page has the calibration pattern, includes WebGazer
[PSL+16b], the necessary database saving functionality as well as the experiment
related interface for accessing the websites while having the gaze position recorded.
The additional show.html page designed for debugging consists of a single input
field which expects a valid ID, which is then used to get the fixations from the
database. Since it’s a debugging page, it’s not made to be used by all users and
therefore it has very little precautionary features built in. As an example, an incorrect
ID wouldn’t return an error, it will just try to get the fixations with an incorrect
ID from the database. The show.html page displaying fixations doesn’t display the
sequence of the fixations, which makes long sessions hard to visually analyse.
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Figure 3.5: An example of an x-frame-origin not allowing usage of the website inside
an iframe

Figure 3.6: Calibration stage, the estimated gaze is shown as the red dot

The main html page has everything the participant in the experiment for this study
will need during the whole experiment. The calibration stage of the experiment
on this website is implemented as a pattern of small round clickable circles with
different colours.

The round small clickable elements used for the calibration are simple HTML div
[80] elements with applied CSS parameters shaping them round and painting them
in different colours. All of the round small clickable elements used for calibration
have onClick event handlers that decrease their value with every click. The value of
each of those elements is important for the calibration process, since each element
is expected to be clicked twice, and each time each element is clicked, the value of
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Figure 3.7: The request to use the webcam handled by the browser and the JS-alert
window asking for a name while displaying the unique ID

the clicked element, which is also displayed on the element, is being decremented
until it reaches 0, when the element stops being displayed. While the user is busy
clicking the calibration elements, WebGazer is adding the corresponding eye feature
samples collected during clicks and mouse moves to the model.

3.1.2 Functionality

The website functionality can be divided into three consequent stages, between
which the website switches automatically. The fist stage is the stage with the JS-
alert window asking for the name and displaying the ID. The second stage is the
calibration stage and the third stage is the actual scanpath recording while the user
browses one of the five offered websites. The first stage automatically changes to the
second stage after the user completes the initial task of typing in a name, and the
second stage switches into the third stage immediately after the user is finished with
calibration. In the third stage, in which the user can browse five different websites,
no further changes are made. The user is free to browse the websites as long as
desired.

The first stage consists of the browser request for the webcam, which is handled
by the browser entirely, and the JavaScript alert window displaying the user ID
and asking for a name. During the first stage, not a lot of actions happen to the
user, but most of the initialization process happens during the first stage. From the
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moment the website is loaded, the calibration is going on. The scanpath is not being
saved to the database yet, but each click the user makes on the alert-window, every
cursor movement is being added to the RR model used by WebGazer, even before
the calibration screen is displayed.

The first thing the browser does is it assigns the user an ID. An ID is one of the
most important elements of a recording because it is the only key in all tables with
different information. Without the ID, it would be impossible to link a fingerprint or
a name to a scanpath, which is vital for this experiment. The ID is present in every
database entry in each table (Figure 3.8).

Figure 3.8: The user ID is the only key for the fixations and the fingerprints in this
database. Without the key, it is impossible to get the correct fixations.

The ID is not a random number, it is the sequential number of the user taking part
in the experiment. As an example, in Figure 3.8 we see the ID 702 and 703. Those
IDs represent the 702nd and the 703rd session of eye scanpath recordings, and
they are consequent, which is convenient enough to have easily usable numbers
that are not longer than needed. The ID is being assigned by calling the JavaScript
function "getNewID()", which tries to assign a proper ID to the user. The getNewID()
function calls the id.php script with the time in ms since January 1, 1970 returned
by Date.now(), as an argument. This number, when received by id.php, gets saved
into the database, into the "userlist" table with an "auto_increment" parameter. The
table creates a new, incremented number for each database entry. The time in ms
being saved in that table gets saved in a new entry with a new sequential ID number.
The entry in the database is then requested by the time number, which returns the
consecutive number of the entry in the database with the given timestamp value.
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The consecutive entry number in the database is the ID for this session. The ID is
then returned by id.php to the JavaScript getNewID() function, which saves it as
an ID, which is being used in any database request. The process of getting the ID is
made so complex in order to avoid the possibility of two users getting the same ID,
if they open the webpage at the same time. The only scenario, in which two users
would get the same ID in this current implementation, would be if two users would
send the request for a new ID in the exact same millisecond, which is very unlikely
given that this website is not even expected to be used by more than one user at the
same time.

About 200 ms after the page has loaded, the browser fingerprint is being saved with
the function getBrowserFingerprint(). The getBrowserFingerprint() function gets the
browser fingerprint with an open-source fingerprint gathering tool, FingerprintJS
[82]. This process usually doesn’t require any user actions and by the time the user
starts to type his name, or even manages to close the alert-window asking for a name,
the fingerprint is saved. The user name is requested in a JavaScript alert-window,
which is initiated by calling the function getName(). The function getName() shows
a simple window asking for a user name and displaying a user ID. The username
and the fingerprint are then saved to the database (Figure 3.9).

After the username has been submitted, the calibration process is being started
(Figure 3.6). The initial part of the calibration is the arrangement of the small round
calibration elements in a pattern on the user screen. A JavaScript function calls the
small round div elements of the page DOM [83] and adjusts their location on the
screen (Figure 3.10).

Each of the small round calibration objects is clickable and is expected to be clicked
exactly twice. Each time the round clickable calibration component is being clicked,
a JavaScript event handler calls a function to decrease the individual round clickable
element click counter. When the click counter reaches 0, that particular clickable
element with the counter at 0 disappears. Apart from a counter for each of the
elements, there is a global counter for the whole calibration stage which counts how
many times each round clickable element has been clicked. Since there are 13 round
clickable elements, the global calibration counter expects each element to be clicked
twice – 26 clicks on the round small objects in total. Each time each round small
clickable object is clicked, the global counter is changed too. The moment the global
counter reaches 0, the calibration stage immediately switches to the gaze recording
stage and changes the calibration_complete variable to true, to inform the function
handling the gaze recording that the calibration is finished, which would allow
the recording function to start saving the estimated gaze points to the database.
Each of the small round clickable objects has a colour and a number inside, visible
to the user performing the calibration. The colour is randomly chosen, and the
number represents the number of times the user has to click on that particular round
clickable object until that particular small round clickable object disappears. Since
there is one global counter for all clicks on all round clickable object, in case one
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Figure 3.9: The database with the user names and their browser fingerprints. Users
rarely bother to use an actual name, which is why an ID is used every-
where.

Figure 3.10: The small round object with a number on it is used for calibration

of the samll round objects gets clicked more than twice, it will change the counter
value by 3, which might lead do a change of the calibration mode to the recording
mode without the calibration being properly done. This has not happened so far,
since the JavaScript function counting the clicks is faster than the speed of a human
double-clicking.

After the calibration counter reaches 0, the iframe with the first of the five websites
changes it’s HTML "hidden" attribute [84] from true to false, and the hidden iframe
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becomes visible to the user. Five interface buttons on the sides of the screen used
to change displayed website become visible too. By clicking each of the interface
buttons, an event handler triggered by a mouse click on those buttons gets called
and replaces the website address in the iframe.

The debug tool, show.html, has been implemented to show all fixations for a
certain user ID. show.html has a single input field with a button to submit the ID
number typed in the input field. After submission, the ID number is being sent to
getFixations.php, which retrieves all fixations from the database by that ID. The
fixations are then shown as squares on the screen.

Figure 3.11: The debugging tool used to visualize fixations for a certain ID from the
database, show.html. The fixations for ID 693 are shown.

WebGazer is active from the moment the page is loaded and the ridge regression
model used by WebGazer is constantly being updated. Gaze predictions are being
offered to the browser from the very first clicks the user makes too, even before
calibration starts. The predictions are taken by the browser, but they are not saved
into the fixations database until the calibration is complete. The handling of the
gaze prediction with WebGazer, which is a JavaScript module, is processed by a
callback-function – a function which is being called by the module each time there
is a new prediction available. The callback function gets the prediction point as a
pair of coordinates. The pair of coordinates is given to the detectFixations() function,
which detects fixations. WebGazer constantly offers predictions of the gaze, even if
the gaze is affixed. The relevant information that needs to be saved into the database
are the fixations. Saccades are detected as changes in fixations. In order to filter
false saccades reported by WebGazer, a detection radius is used for each fixation,
within which every prediction is considered to be the same fixation and is not being
detected as a saccade. The detection radius is set to 100 pixels. After a fixation is
detected, all successive gaze estimations within 100 pixels are ignored and assumed
to be the same fixation. In addition to a detection radius, another filtration technique
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is used to filter out possible false estimations. In order for a fixation change to be
detected, the fixation change has to happen at least 100ms after the previous fixation
change. Fixation changes within 100ms are usually false estimations. When a fixation
change is detected and not removed by a filter, the fixation gets given to the function
saveToDB() as an argument. The function saveToDB() sends the fixation to a php
script savefixation.php if the calibration is completed, and if the calibration is not
completed, the saveToDB() function doesn’t send the fixation to the php script. The
php script savefixation.php saves the fixation to the MySQL database, into the the
table with fixations, which is named "fixations", using the user ID as a key. All
fixations can be accessed in the table. Multiple fixations can be saved each second.

Since the fixations are sent to the database immediately after each fixation is detected,
there is no distinct or required method of "finishing" the experiment. The experiment
ends when the browser window is closed, or when the internet connection between
the user and the server disappears. The fixations are not being lost after the end of
the experiment since they already are saved on the server.

3.1.3 Process

The website starts in the first stage with a request to use the user’s web camera, if
the browser settings require such a request to be made (Figure 3.8). Since the camera
use request is being handled by the browser, it has no influence on the functionality
of the website besides of the website being temporarily covered by that request. The
website welcomes the user with a JS-alert window with a text input field asking for
the user’s name while displaying the user’s unique ID number (Figure 3.8), which
can be used to relate to that particular recording session and to request the fixations
through the debugging tool show.html.

After typing in a name, or leaving the field unchanged and submitting it, the JS-alert
window disappears and the calibration stage is being shown, with the calibration
pattern – differently coloured small round clickable objects with numbers displayed
on a blank page with the webcam video on the top left corner, with the face detection
outline layed on. During calibration, the user is expected to click each small round
object 2 times. The number on the small round object represents the number of times
that object still has to be clicked (Figure 3.10).

While the user clicks on the calibration pattern, a small red dot representing the
current estimated gaze position is displayed on the calibration screen. After the
user is finished clicking all elements of the calibration pattern enough times, the
calibration screen disappears, and the actual recording interface is being shown to
the user.

In the recording interface, the user is immediately taken to one of the websites, with
the gaze recording running, with five small buttons in the corners and in the middle
of the upper side of the screen available to the user to switch between users (Figure
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3.12).

Figure 3.12: The gaze recording stage, with five websites available with five orange
buttons buttons in the corners

Each time the user clicks on one of the orange buttons in the corners, the website
being displayed to the user changes. The user is free to explore, browse and even click
on links on the website. There are no built-in limits to this process and theoretically
the recording can take forever. Practically, the user will get tired, the database might
overflow or the browser will stop properly working. The last stage stops when the
user closes the website by closing the tab/window/browser.

3.2 Data Gathering

The process of gathering gaze position data is made as simple for the end user
as possible, in order to avoid overstressing the user being experimented on. It
is important that the user feels comfortable and doesn’t deviate from his usual
behaviour while browsing the website. The initial stages of the experiment are made
as simple as possible and are made to be completed as fast as possible, in order to
spend as much time recording the browsing eye movements.

3.2.1 Process

In this experiment, two individuals have been experimented on. The experiments on
each of the two individuals hve been conducted on different days, with one person
using two different systems. There has been a total 20 sessions of data gathering, 10
sessions for each user. During each session the user has been browsing the provided
websites for several minutes, with the websites being changed between freely.
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During each session, the user has been placed in front of the web camera, in a position
which would allow web gazer to correctly estimate the position of the user face and
record it. For each session, a separate calibration procedure has been performed.
During each session, the users have been browsing the correctly displayed 5 websites,
which they were allowed to switch between as often as they want. The experiment
was finished when the users would feel like they have browsed for long enough.

3.2.2 Grid

The user gaze fixations are distributed across their screens, which have variable
resolution and the gaze estimation accuracy varies highly across different sessions
based on different calibration procedures. In order to normalize the fixation positions
relative to their screens, each screen has been divided into a 5x8 grid. This grid rate
has been chosen in order to allow for almost perfectly square grid cells for most of
modern screens, including all screens used by the participants, which have a 10:16
aspect ratio. The gaze positions, when divided into a 5x8 grid, distributed across 40
cells, are normalized relative to the screen and can be compared even with different
screen resolutions. A larger cell count has been considered, but a 5x8 grid perfectly
satisfies the estimation accuracy provided by WebGazer.
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3.3 Evaluation with MatLab

The collected data from the experiment has been processed and evaluated using
MatLab. The datasets were exported from the database into comma separated value
files that are easily readable by MatLab.

3.3.1 Process

In order to evaluate the Data, first, the necessary data has been imported to MatLab
from the comma separated value files with the data. In order to import the browser
fingerprint data, which is represented as text, each of the 29 browser parameters
has been encoded into a numerical representation, in order for the decision tree
building algorithm to be capable of taking the values as parameters. The fixations of
each session are divided into sections of a 8x5 grid, with each grid cell having the
duration of all fixations in that grid cell. The values in the grid are then normalized to
represent the relative percentage of time a fixation being active. In order to compare
the improvement in browser fingerprinting, a dataset with both the scanpath data
and the browser information is created, which can be used in our classification
algorithm for classification of the combined information about the user from browser
fingerprinting and from eye tracking.
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The evaluation of the results of our study is the most important part of this study
and therefore has been being prepared for from the first steps into this study.
For the evaluation, experimental data from 2 individuals has been collected. The
experimental data contains the browser fingerprint and the eye tracking data. The
experimental data has been adjusted in order to be easily processed by various
decision tree building algorithms, as well as combined in order to detect any
improvements. The aim of this study is to research the possible improvement eye
tracking could make to the existing browser fingerprinting techniques.

In order to evaluate the combined fingerprinting and eye tracking performance,
we will first evaluate the performance of the conventional browser fingerprinting
technique, after which we will evaluate the performance of our eye tracking technique,
after which we will analyse them combined to see any evidence of improved browser
watermarking performance. All these evaluations will be conducted using different
cross-validation algorithms, because we only have two individuals that have been
experimented on, and different cross-validation algorithms might offer different
fingerprinting accuracy. All evaluation is going to be performed in the MatLab
Machine Learning Toolbox.
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Figure 4.1: The confusion matrix and the accuracy of the Fine Decision Tree algorithm
for browser data
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The first algorithm that is going to be used will be the Fine Decision Tree algorithm,
which should offer the performance of a normal decision tree. The Fine Tree algorithm
grows a classification tree with many leaves and tries to find many distinctions
between classes, with the maximum number of splits being 100. Fingerprinting based
on browser data is being evaluated first and as shown on Figure 4.1, the evaluation
results of pure browser fingerprinting offer 75% accuaracy, but because of different
browser combination used by the two test subjects, the accuracy is different for the
test subjects. For the test subject 1 all samples were correctly classified, because test
subject 1 has been using only 1 browser. For test subject 2, only 50% of the predictions
were correct, but test subject 2 has been experimented on with different browsers,
including the same browser test subject 1 has been using, which makes an accurate
cross-validation based on browser fingerprint data fairly biased.

Next, the eye tracking data is being evaluated for Fingerprinting on Figure 4.2.
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Figure 4.2: The confusion matrix and the accuracy of the Fine Decision Tree algorithm
for eye tracking data

The pure eye tracking data fingerprinting analysis has performed much better
than the browser data fingerprinting using the fine decision tree cross-validation
algorithm. An accuracy of 85% could be considered fairly high, with the accuracy
for test subject 1 being at 90% and the accuracy for test subject 2 being at 80%.
Comparing these results, eye tracking data has been much better at being classified
properly for test subject 2, and for test subject 1 the eye tracking data has been almost
as precise as browser data fingerprinting.
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Now that the cross-validation results for both pure eye tracking data and pure
browser data classification using Fine decision trees are available, the evaluation of
the combined data used for classification is being shown on Figure 4.3.
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Figure 4.3: The confusion matrix and the accuracy of the Fine Decision Tree algorithm
for combined eye tracking and browser data

The combined eye tracking and browser fingerprinting cross-validation results
offer 80% accuracy for both test subjects, which is higher than then the browser-
based classification accuracy for test subject 2, and the accuracy for test subject 1 is
close enough to the initial browser classification accuracy. Although the different
proportions of the number of browsers used by both test subjects introduces a lot of
bias to our evaluation, specially for test subject 1, the accuracy for test subject 2 can
actually be used as a proper evaluation score, and in this case, using the fine tree
cross-validation algorithm, the fingerprinting accuracy for test subject 2 has been
lifted from 50% to 80%, and the overall testing accuracy has been lifted from 75% to
80% which is, despite being small, an actual improvement that has been measured.
Interesting is the fact that the overall accuracy for the combined data classification
has been reduced compared to the pure eye tracking data, but increased compared
to the pure browser information. It might seem as if the pure eye tracking browser
fingerprinting technique is more accurate, but this inaccuracy is probably caused by
the small sample size consisting of just 20 samples for each data type, 10 for each of
the 2 individuals being experimented on.

In general, using the fine decision tree cross-validation algorithm, eye tracking
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Chapter 4. Evaluation

combined with conventional browser fingerprinting data does improve the overall
classification accuracy in this study. Although using pure eye tracking data without
browser fingerprinting data combined with the fine tree classification algorithm has
performed overall better.

The results for fine trees have shown some improvement, but very slight. Fine trees
try to classify samples using many fine distinctions. In case our experimental data is
tree-type sensitive, the next algorithm to be used will be the Coarse Decision Tree
algorithm, which is going to have up to 4 splits, compared to 100 splits used in fine
trees. As usual, in order to evaluate the improvement in classification performance
for combining eye tracking data with browser data, first, classification has to be
performed based on pure browser data, as shown on Figure 4.4.
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Figure 4.4: The confusion matrix and accuracy for a Coarse Decision Tree algorithm
used on pure browser data

The coarse decision tree algorithm used for the experimental data cross-validation
has performed with a 75% accuracy on pure browser data, which is similar to the
performance of the fine decision tree algorithm with the same distribution as the
distribution of the accuracy in the fine decision tree algorithm, which is the result of
the experimental data being biased based on the different number of browsers used
by different experiment participants. Similar to the results of the fine tree algorithm,
the accuracy for test subject 1 is 100%, which is caused by the fact that test subject
used a smaller number of browsers test subject 2 used, which is why the accuracy
for test subject 2 is 50%, however, the overall accuracy is 75%, and this accuracy
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offers a great baseline for classification performance comparison.

In order to properly compare the classification results using the combination of
browser and eye tracking data, the coarse tree cross-validation algorithm first has to
be used on pure eye tracking values, which would make a deeper analysis possible.
The coarse tree algorithm classification results on the experimental data are shown
on Figure 4.5.
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Figure 4.5: The confusion matrix and accuracy for a Coarse Decision Tree algorithm
used on pure eye tracking data

An overall accuracy of 85% provided by the coarse decision tree cross-validation
algorithm based on pure eye tracking data is a great result that is very similar to
the result of applying the fine tree algorithm to the pure eye tracking test data. In
this result, the accuracy for each test subject does not seem to be biased and the
accuracy for test subject 1 is at 90%, while the accuracy for test subject 2 is at 80%.
The overall accuracy of classification using coarse decision tree for pure eye tracking
data is much higher than the pure browser data results accuracy, and the accuracy
is distributed with less variance across the test subjects – test subject 1 has 90%
accuracy, while test subject 2 has 80% accuracy, with just 10% difference in their
results accuracy, compared to 50% difference in the pure browser data accuracy for
the coarse decision tree.

Having the accuracy for the pure eye tracking and pure browser data, it is possible to
properly analyse the improvement in accuracy achieved by using both eye tracking
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Chapter 4. Evaluation

and browser data combined. When both the eye and browser experimental data
are combined, a higher accuracy is possible if both datasets have been offering an
accuracy higher than 50%, which has been the case. The results for the combined
eye and browser data is shown on Figure 4.6.
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Figure 4.6: The confusion matrix and accuracy for a Coarse Decision Tree algorithm
used on both eye tracking and browser data

In case of using a coarse tree, the overall accuracy for the combination of eye tracking
and browser data is similar to the overall accuracy for the same dataset used in a
fine tree, however, interesting is the fact that the variance of results for different test
subjects is higher than the result variance in fine trees. In case of fine trees, both
test subjects had an equal accuracy of 80%, which makes the variance 0%, however,
in this part, coarse trees have shown an accuracy difference between the two test
subjects at 20%, which is fairly high and close to the result variance observed in both
fine and coarse trees for the pure browser data. In this case, the biased experimental
browser data of test subject 1 might have had a greater influence on the results,
because the accuracy for test subject 1 is 90% while the accuracy for test subject 2 is
70%. But the overall accuracy of combined data used with the coarse decision tree
algorithm is the same as the overall accuracy achieved with the fine tree algorithm.

In general, coarse decision tree cross-validation offered similar overall accuracy
results to the fine decision tree algorithm, with a slight deviation in accuracy variance
among test subjects.
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Now that different decision tree classification algorithms have been evaluated in use
on the dataset, in order to try to improve the test results, a decision tree ensemble
[Wik20k] is going to be used to classify our test samples. Decision trees are famous for
suffering from high result variance, which has been observed even in our experiments
based on a rather small sample size. In the case of this study, the training data consists
of two parts and the previous evaluations have shown a high difference in accuracy
and accuracy distribution across test subjects based on the combination used, which
might be reduced in the following evaluation procedures using a method that would
provide more stable results. A decision tree ensemble, which is sometimes called a
bagged tree or bootstrap aggregated tree [Wik20e] creates multiple trees based on
random subsamples taken from the dataset. Tree bagging reduces variance in results,
which has been fairly high in our results. Apart from bagged tree ensembles, there
are boosted trees and random forest trees, but these ensembles are non-relevant.

Now that it’s time to perform the experiment using tree ensembles, the results might
differ. In this part of the experiment, a bagged tree is going to be used, since a bagged
tree should offer the best variance reduction. Just as in the previous parts of the
experiment, in order to properly evaluate, how a dataset improves classification, it
is important to have the baseline results, which is why the first bagged decision tree
used for cross-validation will be used on the pure browser fingerprint data (Figure
4.7).
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Figure 4.7: The confusion matrix and accuracy for a Bagged Tree algorithm used
with browser data
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Chapter 4. Evaluation

Despite using a bagged tree, the pure browser fingerprinting dataset classification
accuracy is similar to the accuracy that has been achieved with previous algorithms,
which is probably caused by the biased browser fingerprint dataset. The overall
accuracy is 75%, but the variance between different test subjects is extremely high,
with test subject 1 being classified with a 100% accuracy while test subject 2 is being
classified with a 50% accuracy.

Using the bagged tree ensemble classification methodology on the eye tracking
dataset is not expected to introduce a lot of change to our accuracy results, since the
eye tracking dataset accuracy has had pretty low variance when used with single
tree algorithms, and since the bagged tree is expected to reduce variance in high
variance cases, the variance for this dataset has been pretty consistent and low. The
bagged tree cross-validation results for the pure eye-tracking data are shown on
Figure 4.8.
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Figure 4.8: The confusion matrix and accuracy for a Bagged Tree algorithm for pure
eye tracking data

Surprisingly, the overall accuracy for the pure eye data has dropped compared to
the single tree algorightms when used as an input to the bagged tree. The overall
accuracy achieved with a bagged tree is 70%, which is even lower than the accuracy
achieved with the pure browser data, however, the accuracy variance among different
test subjects is 0%, both test subjects have been classified with the same accuracy as
the overall accuracy, 70%. The reason, why the overall accuracy has dropped with
the bagged tree algorithm, is a great topic for future work.
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Now that the datasets have been evaluated with the bagged tree classification
algorithm, the datasets, when combined, are expected to produce higher accuracy
compared to the single-tree algorithms used earlier, since the two datasets being com-
bined have different variances that are probably affecting the resulting classification
accuracy with single trees.
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Figure 4.9: The confusion matrix and accuracy for a Bagged Tree algorithm for
combined data

Surprisingly, the results of the bagged tree algorithm applied to the combined dataset
show a 80% classification accuracy, which is slightly higher than the results of each
of the pure datasets processed by the bagged tree classifier, but the overall accuracy
is not higher than the classification accuracies achieved with single-tree algorithms.
Despite not achieving higher accuracy by using a bagged tree compared to single-tree
algorithms, while using a bagged tree, the accuracy of combined eye tracking and
browser fingerprinting data has been improved compared to the accuracy of the
separate datasets, which is what this study is expected to show. The overall accuracy
gain with bagged trees is low, however, combining data as an input to a bagged tree
reduces variance while still improving accuracy.

Overall, three different decision tree classification algorithms have been used to
evaluate the dataset. In order to evaluate the dataset, each algorithm has been used
to evaluate the eye tracking data and the browser data separately, and combined.
The evaluation using fine trees offered 75% accuracy for pure browser data, 85%
accuracy for pure eye tracking data and 80% for the combined data. Evaluation
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using coarse trees offered 75% accuracy for pure browser data, 85% accuracy for
for pure eye tracking data and 80% accuracy for the combined data. Bagged trees
offered 75% accuracy for pure browser data, 70% for pure eye tracking data and 80%
accuracy for combined data. With all algorithms, the pure browser data has been
improved using eye tracking data, however, pure eye tracking data has been offering
higher accuracy than combined data for both fine and coarse tree algorithms than
combined data, the combined data has been offering higher accuracy for bagged
trees, but the offered accuracy was still lower than the pure eye tracking accuracy
achieved with fine and coarse tree algorithms.

Figure 4.10: Classification accuracy based on the data types across different algo-
rithms.
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5 Discussion

This study is aimed at improving browser fingerprinting using a scanpath, a path
followed by the user’s eyes while using the web service. Although a scanpath is
a biometric feature of humans, and doesn’t quite fit into the definition of "system
fingerprinting", we extract it through a JavaScript application running entirely in
the browser of the end-user, which makes it a feature provided by the browser,
allowing it to be used as part of a "browser watermarking" procedure, even though
it’s questionable whether the data is provided about the system and browser, or
about the human. From a technical point of view, it’s another set of datapoints
provided by a function which could be called from a browser, which makes it suitable
to be involved in the actual browser watermarking procedure.

Various decision tree algorithms have been used in this study, and the data has been
prepared to be easily processed by these machine learning algorithms, which is why
all the experimental data has been adjusted to be in a numeric format. The data
being in a numeric format made the combined usage of the scanpath and browser
data much easier.

The pure browser watermarking results in this study have been pretty inaccurate,
which is caused by the relatively small number of participants in the experiment,
as well as the relatively small number of different browsers used. For this study,
the dataset quality for browser watermarking is not relevant, since this study is not
researching browser watermarking accuracy and the browser accuracy provides just
a baseline for comparison.

This study is aimed at researching the possible improvement introduced to the
fingerprinting technology by eye tracking data retrieved from a normal webcam.
Human verification and authentication based on eye movements is a relatively
new subject in Computer Science, since eye tracking is a relatively new technology
made accessible to the general public by the improvements in digital image sensors,
capable of providing accurate eye tracking. Devices, designed specially for eye
tracking offer an incredible accuracy, but even built-in webcams and relatively cheap
image sensors offer acceptable accuracy nowadays, which makes this incredible new
safety level possible for a wide range of applications. Eye tracking data, basically
being an additional set of datapoints representing the user, without doubt is going
to improve the accuracy when used in machine learning classification algorithms,
which this study has successfully shown based on different algorithms, including
single decision trees and tree ensembles such as bagged trees. The quality of modern
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Chapter 5. Discussion

web cameras is perfectly suitable for eye tracking with good enough precision, since
in most use cases of web cameras user eyes need to be trackable too – eye movement
tracking is an essential part of a conversation, even if it’s a video call conversation.

Figure 5.1: A high-resolution image of a human iris with the human eye around
the iris [Wik20p]. This biometric feature cannot be captured by modern
technology available in every laptop, opposed to the eye movements

The reality of eye tracking is, that eye tracking data actually is a biometric feature
of a human that can be accessed through a browser. It is very similar to a proper
fingerprint of a human or an iris image.

Eye tracking data, unlike most of other human biometrics, is accessible through any
modern web camera and even phone camera, which are used in most modern devices
because of the recent popularity of video calls and overall different applications.
Browsers were made capable of handling web camera data due to the incredible
entertainment opportunities web camera footage in browsers offer, and although
the main purpose of web cameras is entertainment, their high enough image quality
allows for them to be used as a tool to extract one of the few biometric features
available to a remote server through a simple browser.

Eye tracking data is not the only biometric data available to a computer, many
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computers have fingerprint readers, some of the fingerprint readers even have
advanced biological metrics used for authentication, but there is no simple method
of sending or requesting fingerprint data through a browser, since fingerprints
cannot be used for entertainment. There are many more biometrics used by browsers,
such as voice or even mouse movements, but a human doesn’t constantly produce
voice while browsing. Eye movements happen constantly, even when the mouse is
not being moved. Eye movements seem to be the optimal biometric feature available
through a browser.

Due to reasonable privacy concerns, all browsers don’t allow just any website to
process web camera footage. Even though WebGazer [PSL+16b] never sends or
saves any images, it is reasonably complicated for the browser to inspect any script
handling browser data, which is why browsers let the users decide, whether or not
access to the web camera should be granted. Since granting access to web camera
for most users is something that is only required when actual web camera usage for
entertainment is involved, access to the web camera without any apparent reason
for the user is suspicious. The suspicions users have are relatable when asked for
web camera permissions – if there is no obvious reason to use the web camera, what
is the purpose of using the web camera? And indeed, a web camera offers access to
biometrics beyond the system, device and even location. Biometric data is pretty
unique and is a feature of the actual human, and probably should not be used in the
same fashion browser fingerprinting is used. Browser and system fingerprinting
is used by all large corporations nowadays, and the browser fingerprint features
represent the system, the device, even the location, but not the actual human, and it
might be reasonable to not require an actual human biometric feature extraction for
low-risk tasks like targeted advertising and access control to entertainment websites.
However, it is always desired to improve the accuracy of browser fingerprintng,
sometimes even for user convenience, which is why any information available to
the service provider, be it a simple browser user-agent, an IP address or even eye
movement data will be used in order to improve the service quality, which only
benefits the user most of the times. Still, it is highly unlikely for any user to grant
web camera access when involved in low-risk tasks without the direct involevement
of a web camera, which leaves only a narrow field for browser-based eye tracking
with modern technology consisting of mostly banks and other high-risk applications
where a user is ready to give up some privacy in return for extra safety.

As a biometric feature, eye tracking data, when compared to an iris scan or a finger-
print image, offers more security. An iris scan is usually a simple two-dimensional
image, unless a specialized device for three-dimensional scanning is used, and a
fingerprint is usually just another two-dimensional image with most of the addi-
tional metrics used by the fingerprint scanners available to the public being just
simple tests for temperature or pulse. In general, the popular human biometrics are
two-dimensional and can be easily captured and reproduced by a simple camera. Eye
tracking data is still susceptible to most vulnerabilities two-dimensional biometrics
offer, however, eye tracking data has to be taken over time, which introduces a third
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time dimension to this biometric feature, making it more secure due to the more
complicated techniques required for forging, including the necessity of a continuous
recording over time, compared to capturing just a single moment required for forging
fingerprints and iris scans. The best user authentication and verification methods
still consist of something a user knows or something a user has, and eye tracking
data, even with the extra forging barriers, cannot provide proper authentication
guarantee.

In the future, eye tracking data could potentially be processed by the device or just
the browser, which would offer web applications some sort of API to access the gaze
location for the improvement of user experience, or just for the user convenience,
without the risk of the footage from the user web camera being sent outside the
device. A great example is another biometric feature used in a low-risk application by
being processed inside the device – the fingerprint. User fingerprints are nowadays
common to be used while unlocking a cell phone – a low-risk field where the usage
of a biometric feature seems excessive. However, it improves the user experience
and is convenient for the user. Eye trackers could easily be implemented in phones
and other devices, just to improve user convenience. In case of a wide usage of eye
trackers, authenticating users based on their scanpath might become popular.
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6 Conclusion

In order to research the possible improvement in browser fingerprinting using eye
tracking data, an eye-tracking website has been made. The website allowed users to
browse other websites while tracking their eyes. The eye tracking data, combined
with the browser fingerprinting data has been saved into a database. The datasets
have been imported to MatLab and converted into a numeric value in order to be
easier processed by the machine learning cross-validation algorithms.

The datasets were divided into different testing datasets: one dataset with just the
browser fingerpirint, one dataset with only the eye tracking data and one browser
with both datasets combined. Each of the datasets has been tested with a fine tree, a
coarse tree and a bagged tree cross-validation algorithm. The results of the tests can
be seen on Figure 6.1:

Figure 6.1: The resulting accuracy determined by cross-validation using different
algorithms. The blue line represents the fine and coarse tree algorithms,
the green line represents the bagged tree algorithm

With all three decision tree algorithms, the classification accuracy has been improved
from 75% to 80%, and the variance in the accuracy depending on test subject has
been dropped significantly.

Overall, based on the experimental data used in this study, browser fingerprinting
can be improved using eye tracking data used as an input to machine learning
decision tree classification algorithms
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