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Abstract

We explored the requirement of proven features for real-time use in web browsers,
adopting a linear SVM based face detection model as a test case to evaluate each
descriptor with appropriate parameters. After checking multiple feature extraction
algorithms, we decided to study the following four descriptors Histogram of oriented
gradients, Canny edge detection, Local binary pattern, and Dense DAISY . These
four descriptors are used in various computer vision tasks to offer a wide range
of options. We then investigated the influence of different parameters as well as
dimension reduction on each descriptor computational time and its ability to be
processed in real-time. We also evaluated the influence of such changes on the
accuracy of each model.

Experiments were performed on the publicly available FDDB data set. Moreover,
the results showed that all descriptors could be used in real-time.
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1 Introduction

Advances in web technology have enabled exciting new applications. These advances
are also impacted by modern hardware development. Web applications are generally
defined as cross-platform since they are accessible from various web browsers within
different operating systems which makes them a perfect fit for user studies [1]
and marketing research [2]. New technologies such as eye tracking [3] or gesture
control [4] can also be used for this purpose. Eye Tracking has the advantage that
it not only provides the eye signal [5, 6, 7], but also allows you to access much
more information about the user. This would be the pupil diameter [8, 9], which
provides information about cognitive states, attention [10, 11], sequences of eye
movements [12, 13] and the different types of eye movements [14, 15, 16, 17, 14] as
well es information extracted from the eye lids [18, 19, 20].

Today, web browsers run on diverse hardware types, from smartphones and tablet
PCs to desktop computers. With this web application diversity, users can avoid
the hassle and memory usage of installation software on every device. Users will
also find web applications less demanding on older or low spec devices but those
applications also rise privacy concerns [21].

Despite such rapid progress in web technology, computer vision processing on the
web browsers has not been a common practice yet [22]. Computer vision usually
has a high computational [23] cost due to

• Images with high resolution and high frame rates require a sheer amount of
computation

• Complex algorithms to process and understand the visual data

• Real-time requirements for interactive applications

Real-time applications are standard today as they provide faster achievement
of tasks like semantic segmentation [24, 25, 26] on modern hardware. Real-time
applications are also subject to time constraints so that receiving data, processing
them, and returning the responses are often understood to be in milliseconds [27,
28]. The general paradigm of web-based application development is deploying
computationally complex logic on the server. However, with recent progress in
machine learning algorithms [29, 30, 31] and the hardware technology on the client-
side, web clients can handle more demanding tasks. Still, heavier workloads are
augmented by using edge or cloud services.
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Chapter 1. Introduction

Cameras and digital image processing have become essential tools in our modern
life with many applications. Real-time image processing is an exciting software and
hardware challenge as well as the validation of machine learning approaches [32, 33].
By extracting features in real-time, we reduce the amount of information that needs
to be processed. These new reduced sets of features should summarize most of the
information in the original set of features.

In this thesis, we describe multiple image processing feature algorithms. We also
present its main characteristics and discuss its performance in terms of accuracy and
execution time. In this context, accuracy is the system error rate, whereas execution
time measures its speed.
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2 Image processing background

The field of digital image processing is an extensive one, retaining digital signal
processing techniques in addition to techniques specific to images. Its use has been
increasing exponentially over the last decades. Digital image processing consists of
manipulating images to obtain enhanced ones or extract useful information from
them [34, 35, 36].

An image is a composition of picture elements (pixel) that could be represented
as a 2D-function f(x, y), where x and y are the coordinates of that element and an
amplitude value f determining its intensity [37]. For an image to be processed digitally,
it has to be sampled and transformed into a matrix of finite precision numbers.
Digital image processing consists of manipulating those finite precision numbers
so that the input data is an image, and the output could be image, characteristics,
features, or visual words associated with the image.

Digital image processing is one of the modern information society pillars with
various applications from medicine to entertainment and multimedia systems, from
autonomous systems to geological processing and remote sensing [38].

2.1 Pre-processing

2.1.1 Dimension reduction

Understanding a large quantity of multidimensional data requires extracting infor-
mation out of them [39]. Modern applications have steadily extended their use of
complex, high dimensional data. However, the particularity of analyzing a very high
dimensional data set is usually computationally intractable. Another problem with
high-dimensional data sets is that, in many cases, not all the measured details are
essential for understanding the underlying region of interest [40].

While specific computationally expensive methods can construct predictive models
with high accuracy from high-dimensional data, it is still a prerequisite in many
applications, especially real-time applications, to reduce the original data dimension
before modeling the data.

Dimension reduction aims to translate high dimensional data to a low dimensional
representation so that the low-dimensional representation retains some meaningful
properties of the original data [41].
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Chapter 2. Image processing background

Cropping and resizing Region of Interest (ROI) extraction is a crucial step for
training a recognition system. ROI extraction aims to decide which part of the image
is suitable for feature extraction, reducing unnecessary input data [42].

Resizing is the next step after selecting ROI, as the training data set does not typically
have the same dimensions for all data points. See figure 2.1.

Figure 2.1: Selecting the region of interest and resizing example [L]

Gray-scale transformation Modern Descriptor Based Approaches for image
recognition systems often rely on gray scale images instead of color images, as
gray scale simplifies the feature extraction algorithm and therefore reduces the
computational power required. Additionally, color may also introduce unnecessary
information that could increase the amount of training data required to achieve good
performance.[43]

Figure 2.2: Luminance of an RGB image.
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2.2. Features

2.2 Features

Visual features (also known as visual descriptors) play a significant role in the field of
image processing. Many different techniques for describing local image regions have
been developed. The most straightforward descriptor is a vector of image pixels.

Features describe the relevant form of information in a sample so that the task
of classifying the sample is made easy by a formal procedure. Feature extraction
is done after applying various image preprocessing techniques such as resizing,
thresholding, and normalization to the sampled image. In image processing and
pattern recognition, feature extraction is a unique form of dimensionality reduction
(i.e., feature extraction seeks to obtain the most relevant information from the original
data and represent that information in a lower dimensionality space). Selecting the
most appropriate and robust features is a critical step in the process of classification
problems [44].

"Features should contain information required to distinguish between classes, be
insensitive to irrelevant variability in the input, and also be limited in number to
permit efficient computation of discriminant functions and to limit the amount of
training data required." [45]

In the following, the features’ details are represented for all the features used in our
evaluation.

2.2.1 Histograms of oriented gradients

Histogram of oriented gradients (HOG) [46] and their extensions [47] are a feature
descriptor used to detect computer vision and image processing objects. The HOG
descriptor technique counts gradient orientation occurrences in localized portions of
an image, detection window, or region of interest (ROI) [48]. This concept of dense
and local histograms of oriented gradients is a method introduced by Dalal and
Triggs [49]. A standard HOG implementation follows the following steps.

Compute gradients of the image: The first step is to compute the gradients.
The gradient of an image is a directional variation in the intensity or color in an
image. Gradient images are generated by convolving the original image with a
filter (e.g., Sobel filter), which provides two central pieces of information. The
gradient’s magnitude shows how quickly the image is changing, while direction
indicates the direction in which the image is changing most rapidly [50]. Since
the gradient may differ at every location in an image, it is common to encode the
direction and magnitude in a vector. The length of this vector provides the gradient’s
magnitude, while its direction gives the gradient direction. The most common
gradient computing method is to apply 1D centered point discrete derivative mask
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Chapter 2. Image processing background

in both horizontal and vertical directions to get the full range of direction [49]. See
Figure 2.3

Figure 2.3: Visual representation of horizontal and vertical gradients [L]

build gradient histograms: The second stage aims to produce an encoding recep-
tive to local image content while remaining resistant to small pose or appearance
changes. The image is divided into cells. A cell can be described as a spatial region
such as a square with predefined pixel size. For each cell, a local 1D histogram
of gradient is accumulated over all the pixels of the cell. This combined cell-level
histogram forms the underlying "orientation histogram" representation. Each orien-
tation histogram separates the gradient angle range into a fixed number of bins. The
gradient magnitudes of the pixels in each cell are the votes for each bin [49, 46, 48].
See Figure 2.4.

Figure 2.4: Illustration of the 2D gradient orientation histogram bins [L]
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2.2. Features

Normalizing across blocks The last stage computes normalization, which takes
a block (local groups of cells) and normalizes their overall responses. Normalization
introduces better robustness to illumination, shadowing, and edge contrast. A
normalization factor is then calculated over the block and then applied over all
histograms within the block. Typically each cell is shared between several blocks,
but its normalization are block-dependent and different. Thus, each cell appears
several times in the final output vector with different normalization, which revealed
performance improvement. Finally, a single feature vector is generated with all
normalized histograms [49, 46, 48]. See Figure 2.5.

Figure 2.5: Visualization of Histogram of oriented gradient features

2.2.2 Canny edge detection

Edge detection refers to the process of recognizing and determining sharp discon-
tinuities in an image. The discontinuities are sudden variations in pixel intensity,
which distinguish the boundaries of objects in a scene [51]. Edge detection is one
of the primary operations in computer vision with numerous approaches to it.
The edge detection process serves to simplify the analysis of images by drastically
decreasing the amount of information to be processed while maintaining useful
structural data about object boundaries [52]. The Canny edge detector is one of
the most precisely defined operators and widely used. The three main criteria of
proper detection, good localization, and single response to an edge contribute to its
popularity [53]. A standard implementation of the Canny edge detector algorithm
follows the subsequent five steps.

Image Filtering: The first step of the traditional Canny algorithm is to smooth the
image by applying Gaussian filter. This step will slightly blur the image to reduce the
effects of visible noise on the edge detector. See figure 2.6. Such filters are essential
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Chapter 2. Image processing background

since all edge detection results are easily affected by the noise in the image leading
to false edges [51, 54, 55].

Figure 2.6: Illustration of image smoothing [L]

Image Gradient Calculation: The second step is to find the intensity gradients of
the image. An image edge may point in various directions, so the traditional Canny
algorithm uses the neighboring area to get the gradient magnitude and direction in
the blurred image [54, 55]. See figure 2.7.

Figure 2.7: Visualization of image gradient [L]

Non-maximum Suppression (NMS): After generating the gradient magnitude
image, the non-maximum suppression algorithm is applied. The pixel with maximal
value in the gradient direction will remain an edge pixel, and the rest will be
eliminated. See figure 2.8. The gradient maximum value appears typically in the
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2.2. Features

center of an edge, with the increase of the distance in the gradient direction, the
gradient value will decrease [51, 54, 55].

Figure 2.8: Non-maximum suppression effect on the gradient image [L]

Double threshold: The Canny algorithm adopts high and low threshold values to
select edge points after applying non-maximum suppression. See figure 2.9. Strong
edge points are the pixels with gradient magnitude above the high-threshold, and
weak edge points are the pixels with gradient magnitude below the high-threshold
and above the low-threshold. For all edge points below the low-threshold, they will
be suppressed [51, 54, 55]. This step can reduce the impact of noise on the edge
selection of the final edge image.

Figure 2.9: Hysteresis thresholding [L]

Edge tracking by hysteresis: So far, the strong pixels should undoubtedly be
involved in the final edge, as they are a part of the image’s actual edges. However,
weak pixels connected to strong ones will be kept while noise and color variation
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Chapter 2. Image processing background

responses are unconnected to strong pixels, and therefore, they will be excluded
[51, 54, 55]. See figure 2.10.

Figure 2.10: Visualization of Canny edge detection features [L]

2.2.3 Local binary patterns

Local Binary Pattern (LBP) [56, 57, 58] is a visual descriptor used for classification
tasks in computer vision. The operator is a simple yet powerful means of texture
description. LBP labels the pixels of an image block by thresholding each pixel
[3x3]-neighborhood with the center value and indicating the result as a binary
number (binary pattern) [59]. See figure 2.11.

Figure 2.11: The basic LBP operator [60]

LBP features have performed very well in diverse applications due to its discrim-
inating ability and computational simplicity, including texture classification and
segmentation, image retrieval, and surface inspection [61]. One of LBP’s essen-
tial properties in real-world applications is its robustness to monotonic gray-scale
changes caused by illumination variations [62]. See figure 2.12.
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2.2. Features

Figure 2.12: Texture images obtained by LBP under different lighting conditions [62]

The original LPB operator has been extended with two main extensions to further
improve its capabilities.

The bilinear interpolation of the pixel values extended the original operator allowing
different sizes of circular neighborhoods (P, R) [57], where P is the number of
sampling points on the circle with any radius R. See figure 2.13.

Figure 2.13: The circular (8,1), (16,2) and (8,2) neighborhoods. The pixel values are
interpolated whenever the sampling point is not in the center of a pixel.

Uniform patterns are another extension to further improve LBP by only allowing
at most two bit wise transitions in a binary pattern (0→ 1 or 1→ 0), therefore
significantly reducing the number of binary patterns [57, 62].
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Chapter 2. Image processing background

2.2.4 Dense DAISY

DAISY descriptor is a local image descriptor similar to the SIFT descriptor based
on gradient orientation histograms. It is designed to allow for fast dense extraction
[63, 64].

Figure 2.14: DAISY descriptor construction [63]

DAISY is constructed by several central-symmetrical circles, as shown in Figure
2.14. In general, around the center ’+’ sign, a concentric structure of three layers
with different radius is constructed. Each layer contains eight sampling points,
denoted with the ’+’ sign and distributed on equal intervals distribution. Each circle
represents a region where the radius is proportional to the standard deviations of the
Gaussian kernels, and the ’+’ sign represents the vector location where the descriptor
is computed [65].

Since the sampling points per layer have the same Gauss value scale, the Gauss
scale value linearly increases from the center to the outside. This structure makes the
DAISY descriptor has better robustness for image affine and illumination variation.
Besides, unlike the SIFT and SURF algorithm using a rectangular neighborhood, the
DAISY descriptor uses the circular neighborhood since the circular neighborhood
has a better positioning feature [65].

The next step is to normalize these vectors to the unit norm and denote the normal-
ized vectors. The normalization is performed in each histogram independently to
represent the pixels near occlusions as correct as possible [63, 64].

DAISY descriptor’s primary motivation is to reduce the computational requirements
by using Gaussian filters, which are separable (i.e., orientation maps can be computed
for different sizes at low cost as convolutions with a large Gaussian kernel can be
obtained from several successive convolutions with smaller kernels) [63, 64].
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2.3. Pattern recognition

Figure 2.15: DAISY descriptor construction

2.3 Pattern recognition

Pattern recognition is the process of identifying patterns by applying a machine
learning algorithm. This capability is not unique and often a prerequisite for
intelligent behavior. Pattern recognition can be defined as data classification based
on knowledge already obtained or on statistical information extracted from patterns
or their representation [66]. A pattern can be as basic as a set of measurements
or observations, represented in a d-dimensional vector. The key in many pattern
recognition applications is identifying suitable attributes (e.g., features), form a good
measure of similarity, and an associated matching process [67]. The main pattern
recognition steps are shown in Figure 2.16.

Figure 2.16: Model for statistical pattern recognition [67]
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Chapter 2. Image processing background

2.3.1 linear support vector machine (LSVM)

Support Vector Machine classifier is a supervised learning algorithm based on
statistical learning theory, aiming to determine an optimal separating hyper plane
(OSH) that separates two classes by using a training data set. The OSH separates
the positive and negative training samples with the maximum margin (the distance
from the chosen hyper plane to each category’s nearest data point) [68, 69, 70]. SVM
aims to maximize this margin to improve its generalization ability. Vectors from each
class that are nearest to the discriminating surface are called support vectors. See
figure 2.17. Since the support vectors include the information needed to define the
classifier, the remaining samples are not needed after the support vectors are selected
[71]. If no hard-margin hyper plane can separate the samples of two classes because
of the noisy samples, the hard-margin LSVM will fail to find a feasible solution as
it is super sensitive to outliers in the training data. So the soft margin extension is
proposed to handle this problem. As the soft margin method can weaken the effect of
outliers on SVM, it is widely used in classification problems. The soft margin method
introduces the hinge loss function to determine the trade-off between increasing the
margin size and ensuring that the data points lie on the margin’s correct side [72].

Figure 2.17: General classification hyper plane representation of SVM algorithm [L]

2.3.2 Probability calibration

Constructing a classifier to produce a posterior probability P(class | input) is very
beneficial in practical classification problems. However, not all classifiers produce
well-calibrated probabilities, and for some classifiers, the predicted probability does
not match the output of its decision function [73]. Probability estimates are essential
when the classifier uses the ’divide-and-combine’ approach for decision-making. For
example, in handwritten character recognition, the classifier’s outputs are used as
input to a high-level system that incorporates domain information, such as a language
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2.4. Post-processing

model [74]. Nevertheless, Support Vector Machines produce an uncalibrated value
that is not a probability.

John Platt introduced a method in 1999 for transforming predictions to posterior
probabilities by passing them through sigmoid. This probability calibration module
adds support for SVM’s probability prediction.

P(y = 1| f ) = 1
1+exp(A f+B)

This method is a logistic transformation of the classifier scores f (x), where the
parameters A and B are fitted by maximum likelihood estimation from fitting the
training data set ( fi, yi) [75].

2.4 Post-processing

2.4.1 Sliding Window

The sliding window approach is one of the primary strategies for object localization
with bounding boxes. It has been the strategy for many years [49, 76]. This approach
passes a small window with a fixed width and height over all portions of the image,
generating multiple patches of the input image. See figure 2.18. For each of these
patches, the classifier determines if it is necessary.

Figure 2.18: Visualization of the sliding window generated patches

2.4.2 Non maximum suppression

Non-maximum suppression (NMS) is a crucial post-processing step in various
computer vision applications. In object detection, NMS is a necessity due to the
sliding windows approach or detection algorithms’ imperfect ability to localize
regions of interest, resulting in collections of detections close to the correct locations.
This relatively dense output is generally not satisfying for understanding the content
of an image. Therefore, the goal of NMS is to retain only one prediction per group,
corresponding to the precise local maximum of the response function. See figure
2.19.

The NMS algorithm molds a smooth response map that triggers several imprecise
object window hypotheses, ideally obtaining only one bounding-box response per
object. The most popular NMS approach for object detection is greedy NMS [77].
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Chapter 2. Image processing background

Greedy NMS Since the actual goal is to generate precisely one detection per object
(or accurately one high confidence detection), The procedure starts by selecting
the best scoring window and assuming that highly overlapping detections belong
to the same object and suppress them. Greedy NMS repeats this procedure with
the remaining detections, greedily accepting local maxima and discarding their
neighbors. This method involves defining a measure of similarity between windows
and setting a threshold for suppression. Eventually, this algorithm also accepts false
detections, which is no problem as long as their confidence is lower than correct
detections’ confidence [78].

Figure 2.19: Visualization of the NMS algorithm.

2.4.3 Jaccard index

The Jaccard index, also known as mean Intersection over Union, is a classical
similarity measure on sets with many practical applications in information retrieval,
data mining, and machine learning. Jaccard index measures the relative size of the
overlap of two finite sets A and B by dividing the size of their intersection by their
union size [79]. See figure 2.20.

Figure 2.20: Jaccard index [L]
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2.5. Image processing on the Web

2.5 Image processing on the Web

The web is the most ubiquitous computing platform with billions of connected
devices. Web technology is continually evolving in rich functionality as well as in
scope. It rolled away from the relatively static and document-oriented beginnings to
highly interactive and complex applications of today [80]. It is regularly converging
with other technologies to provide more advanced functionality. One of those
technologies is JavaScript. JavaScript (JS) is the primary scripting language for the
web, and it is essential to modern Web applications.

JS has also rapidly grown from a programming language designed to add scripting
capabilities into one of the most popular programming languages deployed on
billions of devices. The JS environment has the potential to support a new and
distinctive class of applications since it has the advantage of efficiency, completeness,
API maturity, and community’s collective knowledge [81].

However, image processing on the web is a complex and demanding task that
requires sophisticated algorithms and implementations as it usually has a high
computational cost, due to

• Real-time requirements for interactive applications

• A demanding amount of computation, mainly on images with higher resolution
and high frame rates

• Complex algorithms to process and understand the visual data

The general paradigm of web-based applications is deploying computationally
complex operations on the server. However, with recent client-side technologies,
such as in time compilation, web clients can handle more demanding tasks. Still,
there are requirements for a computer vision library on the web that are not entirely
addressed yet [22].
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3 Experiments

The web browser is probably the most used software application. It has evolved
significantly over the past fifteen years. The primary functionality of a web browser
is to bring information resources to the user, allowing them to view and access the
information.

Web standards also help to standardize how a website can interact with assistive
technologies, allowing different technologies to contribute to each other. Web standers
deliver accessible sites to more people and more types of Internet devices, ensuring
that most web users can have the best benefits.

Today, web browsers run on diverse hardware types, from smartphones and tablet
PCs to desktop computers. Modern web browsers’ capabilities allowed the develop-
ment of highly interactive websites that can dynamically update information on a
web page without reloading. JavaScript is a lightweight, interpreted programming
language that allowed the creation of network-centric applications. JavaScript is
also straightforward to implement since it is integrated with HTML as well as open
and cross-platform. Advances in CSS allow browsers to display responsive website
layouts and a wide array of visual effects. Cookies allow browsers to save session
information and settings for specific websites.

Web applications are generally defined as cross-platform since they are accessible
from various web browsers within different operating systems. The client-server
system is the general architecture for such applications with a wide variety of
complexity and functionality. Basic web applications achieve all or most processing
from a stateless server with all user interaction consists of direct exchanges of data
requests and server responses.

Meanwhile, the needs for software performance also increase the advancements and
innovations of hardware technologies. This development allowed many tasks, such
as real-time applications that were not possible in the past, to be possible today.

Real-time software is standard today as they provide faster accomplishment of tasks,
operations, and activities on the computer. Real-time software is also subject to time
constraints so that receiving data, processing them, and returning the responses are
often understood to be in milliseconds.
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Chapter 3. Experiments

3.1 Framework overview

For implementation, we used python as it offers a wide range of frameworks as well
as it can run in the backend. Python also provides a concise and readable code.

We used OpenCV in python during our first attempt as it is one of the most popular
computer vision frameworks. Later on, we had to change it due to the lack of good
documentation and debugging system. We then used sklearn [82] and skimage [83]
frameworks as they provide excellent documentation for all the algorithms we used
as well as an ideal debugging system.

3.2 Feature extraction

For feature selection, we experimented with a wide range of feature extraction
methods such as SIFT, SURF, ORB, and BRISK. These keypoints-oriented descriptors
required a clustering algorithm for visual words. Three primary conditions limited
our use of keypoints-oriented descriptors in our experiment

• Low accuracy in our evaluation

• Extra run-time for clustering

• Availability of binary clustering algorithm

We then decided on four different feature extraction methods used in various
computer vision tasks to offer a wide range of options with reasonable execution
time.

HOG: Object Recognition Histogram of oriented gradients is one of the most
popular features extraction algorithms with many use case in recognition tasks
[49, 84, 85, 86, 87, 88]. HOG descriptor is also used in multiple real-time applications
such as Robust Facial Expression Recognition [89], Object Detection [90], and
Detection and Recognition of Road Traffic Signs [91]. This popularity comes from its
decent performance in recognition tasks with reasonable computational complexity.

Canny: Edge Detection The Canny edge detection algorithm is a commonly used
edge detection method due to its low error rate and reliable detection. Its parameters
allow it to be customized to identify the edges with various characteristics. There are
many use cases for Canny algorithm such as medical application [92, 93], Road lane
detection [94], Remote sensing [95], and Real-time facial expression recognition [96].

LBP: Texture Classification The local binary pattern is a discriminating method
mainly used in texture classification of regions instead of individual pixels with
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3.3. Face Detection

robustness to illumination variation and computational simplicity. LBP has many
use cases such as Texture classification [97, 98], background modeling [59], Face
recognition [60, 99], and Human detection [100].

DAISY: Image Matching The DAISY descriptor is an image matching descriptor
inspired by SIFT but can be densely computed much faster. DAISY has multiple
use cases such as Image Matching [65], object recognition [101], duplication forgery
detection [102], and face recognition [103].

Dimension reduction is one of the primary keys to reduce each descriptors
processing time. For all of our descriptors, we used gray scale images, reducing
channel count to one channel. We also resized all the input images to multiple
dimensions, attempting to find the balance between the highest accuracy with the
lowest run-time.

3.3 Face Detection

To evaluation our descriptors, we chose the face detection task as it is one of the
most known and studied computer vision topics with data sets availability. Since
this problem has drawn more researchers’ attention, multiple techniques have been
developed to deal with it, such as classical feature-based techniques (e.g., cascade
classifier). More recently, deep learning methods (e.g., Faster R-CNN and MTCNN)
have achieved state-of-the-art performance on standard face detection benchmark
data sets.

3.4 Classifier

For classification, we chose the Support Vector Machine algorithm as it is one of
the most popular classification algorithms that directly minimize misclassification
errors. We also used the SVM’s linear variant as we are trying to predict either true
or false class assignments.

Since SVM does not have Probabilistic Outputs for its prediction, we calibrated the
classifier using Platt’s method to produce a confidence score for every prediction.

3.5 Web

In the web browser, we employed server-side computation as the availability of
front-end computer vision frameworks is not entirely addressed yet. Therefore,
we utilized Python for back-end development since it is popular among back-end
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technologies. There are many python frameworks for back-end development with
many optimizations, such as Django and Flask. Still, we preferred the native python
CGI script since it is part of Python’s core library. We also build an HTTP server that
invokes the CGI script to process the input submitted data through HTML elements.
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4 Evaluation

This chapter describes our evaluation characteristics as well as the input and output
form we followed to evaluate all models.

The primary evaluation characteristics for the features we discussed in the last
chapter are

• Features capability to describe landmarks (visual words) in the training data
set.

• The computational complexity required to calculate each feature.

By finding the appropriate trade-off between those two main characteristics, we can
achieve real-time performance with high accuracy.

The input and output stages consist of several fixed steps applied for all models,
reducing the evaluation’s bias between all models.

4.1 Dataset

This section gives an overview of the method we followed to generate the training
data set for our classification algorithm. We used the Face Detection Data Set and
Benchmark (FDDB), which contains 2845 images with 5171 faces. The specification
of face regions is elliptical regions and represented as a 6-tuple (major radius, minor
radius, angle, center-x, center-y). The FDDB consists of many difficulties including
occlusions, challenging poses, and low resolution and out-of-focus faces [104]. We
randomly selected 250 of single-face images as our test data set and used the rest as
the training data set. We generated two main categories from the training data set to
train our classifier: valid and Invalid samples.

Valid samples: First, the valid samples are generated by extracting every face in
the input image by bounding ellipses with windows and labeling them as a valid
sample. See figure 4.1
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Figure 4.1: Visualization of elliptic region bounding-box [104]

Next, to increase the count of valid samples, we cropped [0, 2, 4, 8] pixels from
every edge of the extracted window if the window’s width is greater than 18 pixels.
See figure 4.2. This step created at maximum extra three valid samples from each
window to be used in the training process.

Lastly, all windows are then resized to fixed size so that all the valid samples have
the same dimensions. The total count of valid samples is 5159.

Figure 4.2: Example of valid samples [104]

Invalid samples: To generate invalid samples, we used the sliding window ap-
proach over the input image with the size and step equals the valid sample dimen-
sions. The generated invalid samples are then accepted if they do not overlap with
any valid samples window. See figure 4.3. The total count of invalid samples is 39718.
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4.2. Groundtruth

Figure 4.3: Every cell represents an invalid training sample [104]

4.2 Groundtruth

The evaluation of the image processing models we build relies on the ground-truth
data used to train them. Practically deployed systems depend heavily on being
trained and tested on ground-truth data from images and videos obtained from
actual deployments. For evaluation, we allocated a subset of 250 random images
obtained from the FDDB data set as our evaluation data set and bounded every
elliptic region with a rectangle (window) to mark the face position. This evaluation
data set contains only single-face images to avoid multiple issues in our evaluation
process. The first issue is faces with different scales relevant to the prediction window,
as shown in figure 4.4.

Figure 4.4: Example of an image with different face-sizes [104]

The second issue is the intersection between the faces’ window. This issue leads to
one of the primary deficiencies with Gready-NMS algorithm, as it will suppress
windows with high intersection value. See figure 4.5.
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Figure 4.5: Example of intersecting faces [104]

With single-face images in the proper scale to fit inside the prediction window, we
significantly reduced the computational power as well as time complexity required
to evaluate different feature in different configurations as we do not have to apply
multiple scales on the evaluation data set. See figure 4.6. The evaluation data set
produces 3,311,069 patches to be predicted for each feature configuration.

Figure 4.6: Single face images in proper scale [104]

4.3 Evaluation metrics

Our evaluation process starts with generating patches from the input images using
the sliding window approach. This technique allows us to localize precisely the
faces in a photo by passing a window with a specific size over every image in the
evaluation data set generating many patches from the input image. We then pass
all the generated patches to our trained binary classifier to assign a class for every
patch. The binary classifier predicted a ’TRUE’ or ’FALSE’ class for every patch
with a confidence score between 0 and 1. Yet, the classifier also correctly classifies
multiple patches of the same face in the image due to the sliding window approach
introducing redundant predictions. One method of overcoming this problem is
the non-maximum suppression algorithm. Next, we provide all the ’TRUE’-class
predictions with their confidence score to the NMS algorithm to suppress all the
overlapping predictions. The NMS algorithm discarded all patches with a confidence
score below 0,3 and suppressed all windows with a Jaccard index higher than 0,5
(mIoU = 0,5). Finally, we selected the window with the highest confidence score
from the remaining predictions as our final face location.

36



4.4. Results

4.3.1 Jaccard index

Our first evaluation metric is the Jaccard index. We can estimate every descriptors
prediction accuracy by calculating the average intersection-over-union between the
ground truth window and the predicted one for the evaluation data set.

4.3.2 Run time

Our second evaluation metric is run time in the browser. We calculated the average
time required to extract features from multiple ground truth images.

4.4 Results

For Evaluation, we used the HOG, Canny, LBP, and Daisy extraction methods
implemented by [83]. We also used some of the parameters proposed in skimage
documentation and denoted them above every descriptor table.

Descriptor tables contain the following data:

• Training data set dimensions

• Descriptor specific configurations

• The time required to extract features from the training data set

• The number of features extracted form every data point

• Average mIoU value for the validation data set

• The time needed to extract features in the browser

HOG:

orientation_bins=9, pixels_per_cell=(8, 8), block_norm='L1'

Histogram of oriented gradients
Dimensions Cells per block Time Features Accuracy Browser

(44877, 47, 67)
[2, 2] 46.79 s 1008 87.15 % 3.27 ms
[3, 3] 36.19 s 1458 87.36 % 2.87 ms
[4, 4] 26.43 s 1440 87.32 % 2.44 ms

(44877, 38, 46)
[2, 2] 22.22 s 432 79.06 % 1.88 ms
[3, 3] 15.56 s 486 80.11 % 1.61 ms
[4, 4] 10.50 s 288 78.40 % 1.33 ms

(44877, 24, 29)
[2, 2] 9.90 s 144 73.84 % 1.12 ms
[3, 3] 6.04 s 81 75.95 % 0.99 ms
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Canny:

low_threshold=0.1, high_threshold=0.2, use_quantiles=False

Canny
Dimensions sigma Time Features Accuracy Browser

(44877, 47, 67)
1.0

56.23 s 3149 63.63 % 2.92 ms
(44877, 38, 46) 41.67 s 1748 58.02 % 2.08 ms
(44877, 24, 29) 34.46 s 696 60.14 % 1.72 ms

(44877, 19, 27)
1.0 30.06 s 513 65.66 % 1.71 ms
0.5 34.21 s 513 66.64 % 1.66 ms
1.5 33.08 s 513 62.40 % 1.71 ms

LBP:

method='uniform'

Local Binary Patterns
Dimensions (P, R) Time Features Accuracy Browser

(44877, 47, 67)

(8, 1) 16.04 s

3149

64.06 % 0.74 ms
(8, 2) 15.35 s 66.44 % 0.72 ms
(8, 3) 15.06 s 68.50 % 0.71 ms

(16, 2) 26.20 s 64.71 % 1.25 ms

(44877, 19, 27)

(8, 1) 4.50 s

513

62.51 % 0.35 ms
(8, 2) 4.45 s 67.08 % 0.34 ms
(8, 3) 4.40 s 67.95 % 0.34 ms

(16, 2) 6.10 s 66.37 % 0.52 ms
(P, R) = (points, radius)

DAISY:

normalization='l1'

DAISY
Dimensions (s, r, n, h, b) Time Features Accuracy Browser

(44877, 47, 67)

(4, 15, 3, 8, 8) 296 s 10000 87.76 % 16.40 ms
(4, 15, 2, 8, 4) 128 s 3400 85.50 % 7.13 ms
(6, 15, 2, 8, 4) 128 s 1428 84.33 % 6.91 ms
(4, 15, 1, 4, 4) 114 s 1000 82.59 % 5.85 ms
(6, 15, 1, 4, 4) 110 s 420 80.88 % 5.70 ms

(44877, 38, 46)
(4, 11, 2, 8, 4) 88 s 1632 78.15 % 3.73 ms
(4, 11, 1, 4, 4) 70 s 480 70.77 % 3.15 ms

(s, r, n, h, b) = (step, radius, rings, histograms, orientations)
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5 Discussion

Feature extraction improves learned models’ accuracy by extracting features from
the input data. Execution of real-time feature extraction tasks must satisfy timing
constraints, enforcing each task instance to complete its execution before deadline.
By finding the right balance between the three main key elements

• Input data dimensions

• Descriptor configuration

• Number of extracted features

that determine the computational complexity of each descriptor, we can achieve
real-time performance.

We tried multiple configurations as well as dimensions for the input data for all
descriptors. HOG and DAISY achieved good accuracy scores in a reasonable run
time. The best results were obtained from HOG features are expected since it is one
of the most popular features extraction algorithms with many applications.

Surprisingly by reducing the input data dimensions, LBP and Canny performed
similar or better, achieving the best run time between all descriptors.

Overall, all the descriptors performed well on simple images with the highest
confidence score indicating face-window, as shown in figure 5.1, 5.2.

Figure 5.1: The green rectangle is the ground truth, the blue rectangle is the predicted
face with the highest confidence score, and the red rectangles are ignored
predictions. The confidence score is noted beside each prediction [104].
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Figure 5.2: Prediction examples. [104]

Experiment limitations:

This experiment has some limitations which should be noted.

First, our evaluation data set is relatively small and only contains single face images
as we are trying to evaluate the descriptors with appropriate configurations instead
of building the most accurate face detection model.

Second, not all the descriptors we chose are suitable for face detection task, and the
low accuracy score does not represent each descriptors full potential. Selecting the
most appropriate and robust descriptor is heavily task dependant.

Third, our models often cause false detections, even if they do not have the highest
confidence score. Such false detections that only include hand or arm are probably
caused by valid samples shown in figure 5.3 since we manually checked the training
data set for false classified samples.

Figure 5.3: Example of valid samples containing hands. [104]
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6 Conclusion

We have shown that using one of the four selected descriptors gives a good run
time, achieving the overall computational complexity required to extract features in
real-time. We explored the influence of various descriptor parameters and input data
dimensions on the performance as well as the computation time of each descriptor.
Finally, with these descriptors available and an appropriate number of features, a
conventional classifier can compete with the state-of-the-art methods, processing
the input image close to real-time.

Further improvements:

Python is a scripting language that is interpreted at runtime instead of being compiled.
Despite each descriptor’s short run time, this python property makes it relatively
slower than other programming languages such as C/C++.

Descriptors should also be available natively in the javascript environment (front-
end) to better use modern and capable devices. The only descriptor we could find
implemented in JS is the canny algorithm implemented by OpenCV.js with very
similar computational complexity to the OpenCV-python variant.
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